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THE ELEMENTARY CASES IN
TEICHMÖLLER'S MAPPING THEOR,EM

Kurt Strebel

1. Introduction

1.1. Teichmiillerts mapping theorem. Let .R be a compact bordered
Riemann surface with finitely many distinguished points P, in the interior or on
the boundary of R. The surface .E punctured at the P, is denoted by R :
E\ {P"}. The punctures P, are called the vertices of .R, the boundary intervals
between the vertices its sides. A quadratic differential g is said to belong to .E or
to be associated with R, if.it has the following properties:
(t) e is holomorphic on .E,
(Z) e has finite norm

ttett : ll,lrt,ld,x d,v < a,

(S) e is real along the sides of .R (i.e. 9Q)dz2 real for tangential dz).
Because of (3) we also just speak of a real q.d. on E. Condition (2) implies that g
carr have poles of the first order at worst at the punctures Pr. We always exclude
g = 0. Of course, if the border is empty condition (3) is void.

Let g: R -- Rt be a quasiconformal mapping of .E onto another such surface
R' . A mapping 9o: R + .R' which is homotopic to g is called extremal in this
class, if it has smallest maximal dilatation Ko. The homotopy is meant to keep
each boundary component (as a whole) and each vertex fixed.

Teichmriller's theorem now says that for each g there exists a unique extremal
mapping Ss, and unless it is conformal it has the following structure. There is
a pair of real quadratic differentials g on R arrd tl; on .R' as described above,
such that gs has locally and away from the critical points (zeros and poles) the
representation

9o : iP-1 o 'F'o (D,

with
(-o(r): l'
e'- v(r) : l*

eQ) d,,

,b@) d*,

koskenoj
Typewritten text
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and .F' the horizontal stretching by Ko,

F:(:€+ln-('':Ko€*iq.
The differentials g and { are unique up to positive constant factors. They are
caJled the Teichmiiller differentials associated with 9.

1.2. Elementary regions. One conceivable way to establish Teichmiiller's
theorem is to find the Teichmiiller differentials associated with g as solution of
some extremum problem and then construct the mapping. In the general case there
is no such method known. We will come back to this problem in a later paper. If,
however, one can exclude that the solutions have recurrent trajectories, a deeper
understanding of the so called quadratic differentials with closed trajectories leads
to a direct construction. This is the case for plane domains of connectivity at most
three (see [4], Section 15).

So let G be a plane domain with at most three boundary components. By
conformal mapping we can assume that they are analytic Jordan curves or points.
At least one of the boundary components must be a curve, since otherwise, because
of the finite norm, necessarily g = 0. The punctures are supposed to lie on the
boundary. One example is the unit disk with finitely many distinguished boundary
points (polygon), and possibly one or two interior point boundary components. In
case of an annulus, we want to have at least one puncture on a boundary curve, to
ensure uniqueness. We call these configurations "elementary regions". They give
rise to what we call "the elementary cases in Teichmöller's mapping theorem".

L.3. Let now G and G' be elementary regions, and let g: G --+ G' be a
qc mapping. We first set up a correspondence, induced by g, of the differentials
associated with G and those associated with G'. This is possible in several ways,
one way being by moduli of strips (as in [1], [2] and [3]). Here, we will however
work with the heights of the strips. We then formulate an extremum problem
involving the norm of quadratic differentials. A compactness argument and an
elementary variational lemma leads to the Teichmiiller differentials with which we
can construct the Teichmtiller mapping homotopic to g.

2. Quadratic diferentials with closed trajectories
2.L. The trajectory structure. Let G be the closure of an elementary

region and let g be areal quadratic differential on G, i.e., enjoying properties (1),
(2) and (3) of Section 1.1. Then, g car, be reflected across the boundary curves
of G to become a symmetric differential Q or the double G of G. The norm of
f is twice the norm of g. Conversely, if we start with a symmetric ,i on G , its
restriction g to G is real. This l.-1-correspondence between the real differentials
on G and the symmetric ones on 6 wil be used in the sequel.

Every non critical trajectory ray of a quadratic differential which belongs to
a compact surface with punctures is either closed or recurrent. Let g be real
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on an elementary region G. Because of the symmetrS its double cp cannot have
recurrent trajectory rays on G. Such a ray would have to leave G and come back
into it, thus close ,rp by reflection. Therefore tl has closed trajectorieS. They
partition G into ring domains .E;. Each .E; which contains points of äG (in
its interior) is bisected, either by two symmetric vertical intervals on 0G or by
an entire boun$ary curve of G, which is then a clo_sed trajectory of cp and the
middle line of .Br . In the first case the intersection R; n G is a quadrilateral with
modulus 2lftt;, in the second case it is a ring domain with modufus f,f,I;, where

.M; ir th" modulus of. fr.;. There is a slight complication: if there are punctures on
äG which are regular points of g, there has to be subdivision of the corresponding
domains along the horizontal trajectories through these points, because we always

deal with the punctured surface R: R\ {&}. With this in mind we can use the
construction and theorems of [4], Chapter VI, rather than repeating the proofs for
bordered surfaces.

2.2. The basic existence and uniqueness theorem. Let {7;} be an
admissible system of Jordan curves on a compact Riemann surface -E with finitely
many punctures P, (for details see [4], Section 21). Then, to every system of non
negative numbers äl there exists a quadratic differential g which is holomorphic
and of finite norm on r? and has the following properties: its regular trajectories
are closed, they lie in the free homotopy classes of the loops 7; , and its cylinders .E;

have g-height ä;. Of course, if for some i, bi:0, there a,re no closed trajectories
homotopic lo ^l;, and we say that -E; is degenerate.

The differential rp is uniquely determined by these data (see [4], Theorem 2L.7).

Let now G be an elementary region as described above. An admissible system
of curves consists of disjoint cross cuts a+d Jordan curves such that the double is an
admissible system of Jordan curves of G. One point of caution: if a Jordan curve
of the system is freely homotopic to a boundary curve I of G without punctures,
then it is also freely homotopic, on G, to its mirror image. In that case we omit
this mirror image in the system of Jordan curves on G. The associated annulus
on G will be bisected by I. We can now apply the above theorem to the double
and then restrict the resulting quadratic differential to G. We get: for any system
of positive numbers ä; assigned to the given admissible curve system there is a

unique real quadratic differential g with the prescribed topological determination
and heights. (In order to get the correct heights one has to take into account the
cutting and choose the heights for the double correspondingly.)

2.3. The surface of the squares of the heights. We will work here
with the double of G, or more generally with a compact Riemann surface .B with
punctures P, and an admissible system of Jordan curves l on il: E\ {P"} . The
g-heights of the cylinders are å;, their circumferences axe ai, and their moduli
M; : b;lo;. For a fixed admissible system {7;} the set of normed quadratic
diferential, p,, llpll : 1, has a remarkable structure. Namel5 the vectors with



322 Kurt Strebel

the squares of the heights as components,

describe a concave
vector

The norm of g on

Ilell -»a;b;-»

fi - (rttfrz). .. ,rp) - (b'rr...r4)

surface H in the positive quadrant of p-space, with normal

Y - (Yr,.. ', uo): ( ]-.1.... - 1 t-
\M1 'Mr'"o'Mo)'

R is given by

#,- ( n'u)'

It is easy to see that in every non negative direction there is exactly one vector
r such that (r, y) : L. For, write the unit vector in the form e : ("r, ...,ep),
and denote the quadratic differential with heights 

^/"i 
bV 96 . Then g : \go,

Å : llpoll-' has the desired property. Its heights are

b; : l u,leQ)l' 
/' ld,l- tn\n,

with B; a vertical cross cut of. R;. Thus äl - \e;, and g is clearly the only
solution.

The surface I/ is concave, continuously differentiable at its interior points
16 ) 0 for all i, and y is the normal at the point c (see [4], Section 21.0).

The result can easily be translated to the case of elementary regions, with
corresponding moduli and heights, but we rather work with the double.

3. The 66mapping by heights,t and a norm inequality
3.1. The 6'mapping by heights". The existence and uniqueness theorem

of Section 2.2 can be used to establish a correspondence between the quadratic
differentials with closed trajectories of two surfaces. Let .E and -B' be compact
surfaces with punctures P,, Pj respectively and let g: R --+ ft, be a homeomor-
phism, s(P") : P!,.for all indices u. Let g be aholomorphic quadratic differential
of finite norm on .R : E \ {P"} , with closed trajectories. The trajectory structure
of g partitions .B into ring domains R;, with- g-heights ä;, saf. Pick a closed
trajectory 7;. out of every J?;. The system of Jordan curves 4 : SO) is ad-
missible on J?' : 8' \ {P:,}. Denote by r/ the guadratic differential with closed
trajectories or, å' which is associated with the curve system {,fi} *d such that
the cylinders .E! have r/-heights b!; : b;. The correspondence is the "mapping by
heights" Ou (H for "height") induced by the homeomorphism g. It is not hard
to see that it is a special case of the general mapping by heights of [5] and [6] (see
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[4], Section 25.5). It only depends on the homotopy class of g *d is actually a

homeomorphism of the set of qyadratic differentials with closed trajectories on .B

onto the corresponding set of .R'.
Let now G , G' be the closures of two elementary domains and let g: G --+ Gt

be a homeomorphism. We can continue g to G by reflection. Let g be a real
quadratic differential of G. Continuing p to_Q by reflection, passing to the image

by heights '$ *rd then restricting to tlt on G' we find the mapping by heights 9s
of the real differentials on G to those on G'. They both have the same heights on

corresponding strips (quadrilaterals and annuli).
3.2. The norm inequality. Assume now that g: G -+ G' is a quasiconfor-

mal mapping with maximal dilatation K. Then the following inequality for the
norms of the quadratic differentials holds.

Theorem 3.2. Let ,b : gn@). We have

with equality if and only if g is a Teichmiiller mapping with dilatat'ion K and
with Teiehmiiller differentials g and rb respectively.

Proof. We pass to the doubles, thereby multiplying both norms by two. We
therefore work with two compact surfaces B and.8' with punctures. Let g be a
quadratic differential with closed trajectories on .B : E \ {&} , and let b;, M; be
the heights and moduli respectively of the induced ring domains .R;. The .E; are
taken, by g, into ring domains -B; on E', with moduli M; . Then,

(0)

(1)

ll,rll < K llpll

i :1r...)P.

From the left hand inequality we get, after multiplication with b? ,

(2)

and by summation,

(3)

The partitioning {.Ei} induced by { is minimal (see, [4], Theorem 20.5). Therefore
the moduli M! ot the .Bl satisfy

»
;

»
d

h<K#,

ifir:41 + M;

L<KT LM; ?M;M:
(4)
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With the equalities

(5) ll.,lt - llpll -
this proves inequality (0).

Assume that there is a q.d. g with closed trajectories on R such that equality
holds in (0). Then, we must have equality in the left hand side of (4), and hence
because of the uniqueness of the extremal partitioning, fro : Rti, i : L,...,p.
Furthermore, equality must hold in the left hand side of (L), which gives

Kurt Strcbel

Ib??M;
\r b?

? M:,

(6)
^Vi: *u,, i - 1r " 'rP'

Since the mapping g:_R; ---+ frl is K-qc, this can only happen if g is an extremal
mapping of J?; onto & : Rl;. Because -R; and rBl have the same heights in terms
of g and ry' respectively, this is a stretching along the trajectories of g.

The same must then be true at the points of the critical graph. For, let z
be a point on a critical trajectory of g. Then t 1D : g(z) must lie on the critical
graph of ry', since it cannot lie in a ring domair R|: ,1R;). The integral O
maps a neighborhood U of z conformally into the (-plane, ar.d g corresponds to
a horizontal stretching by .i'( in both the upper and the lower half neighborhoods.
We conclude that the same must hold on the critical trajectory interval in U. In
particular, to is a regular point of a critical trajectory of T/. The argument can be
adapted to critical points and one finds that zeroes of g are mapped onto zeroes
of tlt of the same order. Of course we have always made use of the fact that we
have a given qc mapping g.

It is known that a Teichmiiller mapping g associated with a q.d. of finite norm
is uniquely extremal, and moreover that rp and hence tfi arc uniquely determined
up to positive constant factors. (Extremality is actually evident here, since we ca,n
start with an extremal g.)

Let us now start with a real differenrial g on an elementary region G. Then,
its continuation cl to the double 6 hu. closed trajectories, and so does f . We
can therefore apply the above argument. In the case of equality ll,i ll : K lltpll in
G, we have equali* 

ll./ll 
: Kll,ill in G. Therefore s, G-- G, ii,, uTeichmiiller

mapping, and because of the symmetrS it can be restricted to G.

4. The extremum problem

4.1. There is no a priori evidence that there exists a qc map g: G ---+ G, for
which equality holds in (0). Therefore we will work with the supremum

L-ili{#]l'lr*]l} ' 'h:e^(p)
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The space {p} ir a finite dimensional vector space over the real numbers, and the
mapping by heights gs is continuous (which follows easily from [4], Section 21,.6).

Therefore there exists at least one extremal pair of differentials. By the definition
L > 1,, and we may assume that

, - ll'ill
" : ll,pll'

4.2. Th.e variational lemma. Let g be an extremal quadratic differential
on G, .b : Sa(p). Again we pass to the double by reflection. We are therefore
back to compact surfaces with punctures, and we formulate the auxiliary result
for this situation.

Lemma 4.2. Let R and Rt be compact Riemann surfaces with punctures,
and let g: F - Rt be a homeomorphism. Let g have closed trajectories and finite
norm on R: R \ {&} and assume that L: llt/ll I llVll i" maximd. Then, there
is a positive number ) such that the moduli (see Section 3.2) satisfy

11 \w nM, i - 1r ' ' . )p'

surfaces the two differentials g and ,h

o'i: \al. From

Proof. We pick a closed trajectory 7; out.of every ring domain R; of. g. This
is an admissible system of Jordan curves on .8, while the curves | : g(1;) form
an admissible system on r?' : .B' \ {Pi}. We look at the normalized quadratic
differentials e , llell: 1 , with closed trajectories of homotopy type 'y;. Let H be
the surface of the squa,res of heights (Section 2.3). The differentia,ls ,b : Sn(p)
are normalized by the requirement that ll,r/ll : L. Let H' be the corresponding
surface for .B'. The two surfaces have the point o in common, whereas in all other
directions ä lies to the left of H' (i.e. closer to the origin). Therefore the two
normal vectors y and yt at c must be parallel, which is the relation claimed in
the lemma. (Of course, if. L : 1, both surfaces ff and ä' coincide.)

We will use the lemma for the differentials on G and G' respectively. But the
restrictions in the different ring domains are the same on both sides. Therefore it
is also true.

At the common point r of the two
have the same heights b; - b'n. Therefore

ll,rll - » o';br: ) » arb;: r llpll - Lllpll

weget \:L.
(If there is only one ring domain, the lemma is trivial.)
4.3. The basic fact we need for the construction of the Teichmiiller mapping

which is homotopic to g is that for the extremal pair gs not only takes the
horizontal trajectories of g into those of ry', but also the vertical ones into the
vertical ones (see [6]).
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Lernrna 4.3. Let llsr(e)ll : Lllell, a.nd let L > 7 be maximal. Then

s,(-d: fir-ol.
Proof. We start with the differential -rb on the right hand side. It is real

on G' and subdivides G' into strips Sj (tuadrilaterals and ring domains) with
lengths and heights c! and d! respectively. Notice that the heights are along the
trajectories, the lengths along the vertical trajectories of ty'.

Let Q : g|t er», and let ,§; U" the strips of cf , corresponding to the -9j

with heighk åi : dj and lengths 27. If the vertical trajectory 0j in Sj cuts

the horizontal trajectory a! in Bl, then the trajectories pi of. Q ir-,§; cut the
horizontal trajectory a; of. g in .B;. This is so because the number of crossings
in G' is in fact the geometric intersection number which is invariant under a
homeomorphism. (For simply connected domains, the number of crossings in G'
is zero or one; it can be at most two in the other cases.)

We now compute the norm of Q,, using the strips Rt of
domains and representing A in terms of the parameter O, which

Let a; be a trajectory of g in R;, and let dfi - @ dz .

( 1) 
1,,

where the
strips of g

(2)

? as parameter
we call z again.
Then,

- o'j - Lat,

sum is taken over all strips §i traversed by a;. Integrating over the
and summing we find successively

Laib;,,

ty we get

ll"loe)ldr 
dv: uel ltrn ,

(3)

By

(4)

and hence

(5)

means of the Schwarz inequali

L'llpll's llell .

lläll > L'llell - Lll,/ll

Evidently, because of the extremality, the equality sr_gn must hold. Therefore,

l,lf4l: const. Fbom (1) we conclude that the strips ,9i must be traversed verti-
cally, i.e. the vertical trajectories of. Q are the horizontal trajectories of g, which
means that <fi : t(-V) with a positive constant f .

In order to match the stretching of the horizontal trajectories of g by L,we
replace the mapping by heights for -9 by the stretching of the heights by tr. We
thus have a mapping of the horizontal and vertical strips of g onto the horizontal
and vertical strips of r/. On this basis we ca.n construct the Teichmiiller mapping
which is homotopic to g.
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5. Construction of the Teichmiiller mapping

5.1. In [6] the following characterization of Teichmiiller differentials was given.
Let g: R ---+ R' be a homeomorphism of compact surfaces with punctures. We

denote by Qo and Q[ the subsets of normed quadratic differentials of .R and .R'

respectively. The normed mapping by heights 94 maps Qs onto Q'o i" such a
way that corresponding heights are proportional (not necessarily the same). Then,
g alad ,1, : S+@) are the Teichmiiller differentiaJs associated with 9 if and only
if S*ep): -S*(p). The definition of "height" is more general then we use it
here, but it is easy to see, applying geometric intersection numbers, that ours is in
fact a special case. If we work with the double rather than the elementary region
itself, we have exactly the situation of the theorem. By the symmetry of the data
and the uniqueness of the differentials and the mapping, we can restrict the result
to G. This proves the existence of an extremal Teichmiiller mapping homotopic
to g.

5.2. In the case of a simply connected region with distinguished points on the
boundary (polygon) two mappings / and g are homotopic if and only if they agree
on the vertices. \Me can then construct the Teichmiiller mapping / homotopic to
g without referring to the above mentioned theorem.

Let g: G --+ G' be a qc mapping of two polygons, and let cp be the solution of
the extremum problem 4.1- with respect to g. As shown in 4.3, the decompositions
of G into horizontal strips .R; and into vertical strips ,S; induced by g correspond
to the decompositions {J?l}, {Sr4} of G' with respect to rb - Sn(p). The heights
of the horizontal strips .R; and .Bl are the same, whereas the lengths are multiplied
by L, a!; : La;. On the other hand, the heights of the vertical strips S'i of. $ are
.L times the heights of the vertical strips Si of. g, which again is a streching by
.L along the trajectories.

It is easy to figure out that these maps fit together to a Teichmäller mapping
/, with dilatation tr, associated with the differentials g and r/ : SH(g). To every
regular horizontal trajectory a of g corresponds a unique horizontal trajectory
at of. rf; by the requirement that o' subdivides the horizontal strip .El in the same
proportion as a subdivides -B;. Likewise, to every regular verticai trajectory B of
(p corresponds a vertical trajectory 0' of ty'. Assume now that a and B intersect
at a point z € G. Then, they join sides of G which are separated by vertices. By
construction, the same is true for a' and 0' . h follows that o and B cut in a
point z if and only if o' and B' have an intersection to.

We now define lQ) : to. This is a bijection of the intersections of regular
horizontal and vertical trajectories. It is evident that every g-rectangle R;fiSi
is thus horizontally stretched by .L onto the ry'-rectangle -Rl n Sj. We therefore
have a piecewise Teichmiiller mapping.

Let now o be a regular horizontal trajectory. It is contained in a horizontal
strip R; a,nd thus in rectangles J?; tl §i except for its finitely many intersections
with critical vertical trajectories. Evidently, the intervaJs ofl.9r' correspond to the
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intervals a'nS'r, and thus the intersections of a with critical vertical trajectories of
cp to the intersections of a' with critical vertical intersections of. tl:. We conclude
that the map "f stretches each non critical trajectory a of g to a well defined
trajectory at of rfi by the factor .t.

Similarly, every vertical trajectory B of. g is mapped onto a well defined
vertical trajectory 0' of ,b, preserving lenghts. What remains are the finitely
many intersections of a critical horizontal and a critical vertical trajectory, and
the finitely maf,ry critical points. But the map .f can evidently be extended to
these too, and we thus have a Teichmiiller map / with dilatation .t, associated
with the diflerentials g ot G ar'd lb on G'.

The argument applies to the sides of G as well, which are composed of hor-
izontal and vertical intervals of g. They are therefore mapped by / onto the
corresponding sides of. G'. This shows that / and g are identical at the vertices
and are thus homotopic.

Rernark. From the uniqueness of the Teichmiiller mapping in case L ) 1,
we conclude that the extremum problem 4.1 has only one solution.
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