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THE DOMAINS OF NORMALITY OF
HOLOMORPHIC SELF-MAPS OF C*

Janina Kotus

1. Introduction and results

The iteration theory of Fatou and Julia applies to analytic maps f: D — D
where the domain D is contained in C, and introduces the sets N(f) = {z :
z € D,(f™) is a normal family in some neighbourhood of z} and a Julia set
J(f) = D — N(f). In 1953, Radstrém [10] showed that, to obtain interesting
results, it is necessary to assume f not to be a Moebius transformation and the
complement of D to consist of at most two points. One may assume that the
complement of D is @, {oo}, or {0,00}, and with this normalisation there are
essentially the following cases:

I. D=C, f rational,

II. D=C, f entire,
III. D=C*={z:0< |z| < o0}.
In the third case there are four types of function f, depending on the behaviour
at the points 0, oo (see [1]):

a) f(z)=kz", k#0,neZ—-{0,£1},

b) f(z) =exp(G(z)), G non-constant entire,

¢) f(z) =z "exp(G(z)), G non-constant entire,

d) f(z)=zmexp(F(27')+ G(2)), F, G non-constant entire, m € Z.
Note that (a) and (b) belong to cases I and II, respectively, and for k£ > 2 and f
of type (c) we have f* of type (d).

In this paper we consider the dynamics of functions of class III(d), denoted
by R. This class of functions was first discussed by Radstrom [10] and next by
Baker [1], Bhattacharyya [3], Keen [6, 7], Kotus [8] and Makienko [9].

For f € R, the Julia set J(f) is a non-empty perfect subset of C* and also
completely invariant, i.e. f(J(f)) = f~1(J(f)) = J(f) and J(fP) = J(f) for
p € N (see [10]). The dynamics on N(f) is better understood for rational than
for entire functions or for functions of class R. It is a consequence of Sullivan’s
theorem which states that every component is eventually periodic. This theorem
is true only for a certain subclass of R:

Theorem A. Let f € R have finitely many singular values. Then every
component of N(f) is eventually periodic.
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Theorem A was proved independently by Keen [6], Kotus [8] and Makienko [9].
A component D of N(f) is called parabolic at 0 (or at co) if f(D) C D and
f"—=0in D (or f* — oo in D).

In [8] the following theorem was proved:

Theorem B. Let f € R have finitely many singular values. Then f does
not have a parabolic component at 0 and oo.

A consequence of both theorems is a classification of periodic components.
The aim of further investigation is a description of wandering components. The
next theorem, proved by Baker [1], implies that any such component is simply-
connected for n > ng.

Theorem C. If f € R, components of N(f) are simply or doubly-connected.
There is at most one doubly-connected component.

The known examples of wandering components were constructed by Baker [1]
and belong to class III(b). Now we show the following examples.

Theorem 1. There exist functions f;, f € R such that:

a) f1 has a wandering component D of N(fi) such that the limit set of fI*(D)
equals one of the two essential singularities,

b) f2 has a wandering component D of N(f,) such that the limit set of f3(D)
equals {0,000} .

Theorem 2. There is a function f € R which has a wandering component
D of N(f) with an infinite limit set.

The construction of these examples depends on the results obtained on com-
plex approximation. This method of construction of components for entire func-
tions was introduced by A. Eremenko and M.Yu. Lyubich [4] and improved by
LN. Baker [2]. We modify their constructions to obtain analogous examples of
wandering components for functions of class R. Also applying the results on
complex approximation, we give examples of parabolic domains.

Theorem 3. There are functions of class R admitting parabolic domains at
0 or at co.

2. Preliminary lemmas
We shall make use of the following results.

Lemma 1 (Runge, see e.g. [5]). Suppose that K is compact in C and f
is holomorphic on K; let also € > 0. Let E be a set such that E meets every
component of C — K. Then there exists a rational function r with poles in E
such that

|f(z) —r(2)| <e, z€K.
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Lemma 2. ([5], p. 131) Suppose that E is a closed set in C and f is a func-
tion defined on E. Then f can be uniformly approximated on E by meromorphic
functions without poles in E if and only if f can be uniformly approximated by
rational functions on each compact subset of E.

Lemma 3 ([5],p. 137). Suppose that E is a closed set in C and that 21, 27
lie in the same component of C — E. Then for each function m meromorphic in
C with a pole at z; and for each € > 0 there exists a function m* meromorphic
in C which is analytic at z;, has a pole at 2z, has no other poles except those of
m, and for which

|m(z) — m*(2)] <, z€ E.

Lemma 4 ([5], p. 140). Suppose that E is a closed set in C such that
(i) C\ E is locally connected at co.
If the meromorphic function m has no poles on E, then for each € > 0 there exist
a rational function r with poles outside E and an entire function ¢ such that
|m(z) = (r +g)(2)| <¢, z€ E.

Remark 1. Let m be a meromorphic function such that m(z) = w(z™!) +
g(z), where w is a polynomial, while g is entire. Then the function f(z) =
exp(w(z™!) + g(z)) belongs to R.

The next lemma is based on the main lemma proved in [4], p. 460.

Lemma 5. Let K,, L,, n = 1,2,..., be compact subsets of C* with the
following properties:
(i) Kn, L, are simply-connected for every n;
(ii) KonNKp=0 and L,N Ly, =0 for n # m;
(iv) max{|z|:z € K,} — 0, min{|z| : 2 € L,} — 00 as n — oo and 2max{|z]:
z€ Kp} < imin{|z|: 2 € Ln}.
Let w, € K,,, 2, € Ly, €, > 0 and the function h be analytic on UK, U

U, L,. Then there exist non-constant entire functions F', G such that g(z) =
exp(F(271) + G(z)) satisfies

(1) [g(z) - h(z)| <eg, z€ K, UL,,
(2) g(wn) = h(wn)v g(zn) = h(zn),
(3) g (wa)=h'(wn),  §'(zn) =h'(za), n=12,....

In the proof we apply the following lemma.
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Lemma 6 ([4], p. 460). Let A be a locally convex topological space, V a
domain in A, W a convex subset in V and S an affine subspace of A of finite
codimension, such that SNV # 0. Then SNW is densein SNV .

Proof of Lemma 2. Let U be a union of two simply-connected sets which are
neighbourhoods of K; and L; such that & is analyticin U and UN K, =0 =
UNL, =0 for n > 2. Consider the space A of all functions analytic in U with
the topology of uniform convergence on compact sets. Then

V={g:|g(2) - h(z)| < Ler,z € K, UL}

is a convex domain in A. Let W be the subset of rational functions with poles at
0 and at oo only. By Lemma 1, W is dense in V. Clearly W is also convex. We
also consider the affine subspace

S={geA : g(w)=h(w), 9(z1) = h(z1),
9'(w1) = ' (wy), g'(21) = B'(z1)}.

By Lemma 6 there exists a rational function g; € W N S such that g¢,(2) =
Fi(z7') + G1(2), where Fy, G; are polynomials and

l91(2) — h(2)| < 2e1,  ze€ K, ULy,
g1(w1) = h(wy), 91(z1) = h(wy),
91(w1) = h(wy), g1(z1) = h'(21).

For n > 1 there is a rational function g, such that g,(z) = F,(271) + G.(2),
where F,, G, are polynomials and

(4) > k(=)= h2)| < ten,  zEKnUL,
k=1

(5) |gk(z)| < 27tk 2z€ Ky UL, and k <n,
(6) |9n(2)] < 27" 2max{I¢|: ( € Kn} < |2 < }min{|¢]: ¢ € Ly}
(M) Yogr(wi) = h(wi), Y gr(z) = h(zi), 1<i<n,

k=1 k=1
(8) Yogk(wi) =h(w), Y gh(z)=h(z), 1<i<n.

k=1 k=1
It follows from (6) that the series ¢ = 3 °2 g, converges uniformly on the

compact subsets of C* and defines a function g: C* — C of the form ¢(z) =
F(27') + G(z). Next, (4) and (5) imply (1), while (7) and (8) imply (2) and (3).

Remark 2. Let g be the function of the form g(z) = F(271) + G(z), with
F, G non-constant entire. Then f = expg belongs to R.
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Lemma 7 ([4], p. 461). Let f(z) = z + g(2) be an analytic function in the
disk {z : |2| < R} such that g(0) = ¢’(0) = 0 and |g(z)| < eR and some € < 3.
Then

(9) J21(1 = lel) < £ < 120 (1 + 5 21),

(10) |arg f(z) — arg z| < 2%|z|, 2] < R.

Lemma 8 ([4], p. 461). Let ¢ > 1. Then there exists a number s(q) such
that the estimates

n—1
S0 Zsk < s(q), so > 0, ex > 0,
k=0

Sk(l - €k'3k) < Sk41 < Sk(l + sksk), 0<k<n-1,
imply that
1
~-s0 < sk < ¢So, 0<k<n.
q
Lemma 9. If f € R and D;, i = 1,2, are components of N(f) such that
fP(D;) C D; for some p € N and f™ — 0 in D;, f™ — oo in D,. Then there

are fP invariant curves 7; and positive constants a;, b; such that v; tends to 0
in Dy, 42 to oo in D, and a;|z| < |fP(z)| < bilz|, z € 7i.

The proof of this lemma is analogous to the proof of Theorem 2 in [2], p. 503.

3. Proof of Theorem 3

Denote

A={z:|z+2[< 1},
A ={z:|z+2 <1},
B={z:10<|z| and 0 < argz < ir},
B'={z:9<|z]and —0.1<argz < ir+0.1},
D={z:0<|z|]<0.1and — }r < argz < 0},
D'={z:0<|z|<0.2and — (37 +0.1) < argz < 0.1}.
Define functions g and h on the set A'U B U B’ by

(z) = log2 +im if z€ A'UOB’
IE) =9 1og(10]2]1/2) +i(3argz+ gm) if z € B,
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: . , )
h(z)={log2+m ifze A'UOB

—log(100|2|*/2) — i(t argz + tm) ifz € B.
Then the functions exp g and exp h have the form

(-2 if z€ AUOB'
(11) expg(z) = { 0z1/2¢i7/8 if 2 € B,
3 -2 ifze AUOB'
(12) exp h(z) = { 00~ 1z=1/2¢=im/6 if » € B,
where 2!/? means one branch of the root function.

Clearly expg(B) C B, expg(A') C A, exph(A') C A, exp h(B) C D. Let
C = A/UBUOB'. Then C and g, h satisfy the assumptions of Lemma 2, so
there are meromorphic functions m;, ms with no poles on C such that

(13) |m1(2) — g(2)| < 36, z€C,

(14) |m2(z) - h(z)| < 16, zeC,

where é is a small positive number. Since C also satisfies the assumptions of
Lemma 4, there exist rational functions ry, ro, with poles outside C, and entire
functions e;, ez such that

(15) |mi(2) = (r1(2) + e1(2)) ] < 16, z€C,

(16) |ma(z) — (r2(2) + 62(2))] < 16, z€C.

Applying Lemma 3 we can choose r; such that it has exactly one pole in C - C
at say a = 0. We can suppose that r; really has a pole at a since the addition
of A\1/z, where )\; is a sufficiently small constant, will bring this about without
spoiling the approximation properties listed above. Thus we may assume that
my(z) = \z7 ! + e1(2) and ma(z) = Ae27! + e2(2). By Remark 1, f; = expmy
and fy = expmy belong to the class R. Now, we show

(17) 6 =log(1l+ p)+ e

with 0 < ¢ <0.1,0<e<0.1, fi(B)CB, fa(B)CD. By (13-16) and (17) we

have

Remi(z) > Reg(z) — log(1 + ) = log(10]z|*/2(1 + p)™*) > log 10
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and
Remy(z) < Reh(z) +log(l + p) = log(100‘1|z|"1/2(1 +p)) >log1071.

As w(z) = 27! maps D onto B for f; = f,ow, we have f3(D) C D and f3 € R.
Next, (11), (12) and (17) imply

|71(2)] > [expma(2)|(1 + p) > 2]zl z € B,

|£5(2)] < [expma(e)| L+ #)7F < 3lel, 2 €D.

Hence all orbits of f; in B tend to oo and all orbits of f; tend to 0 in D. Thus
B C N(fi1), D C N(f3). The functions f;, ¢ =1 or 3 map A’ into A, so A’
contains attractive fixed points (;, f* — (; in A’ and A’ C N(fi). Further,

f1(6B') Cc A, f3(8D') C A’, B is contained in a parabolic component of N(f)
at co and D in a parabolic component of N(f3) at 0.

4. Proof of Theorem 1

We first construct an example of a function f € R which has wandering
components Dy of N(f) such that f® — oo in Dg, k,n € N.

Define ¢, = 107" 3, n € N,and 1 =0, g = €1, 7p = ;:;11 g-ntktle,
for n > 2,80 Nng1 = 2fn + €n. Write ¢; =2, ¢, =2°7""! n € N and, further,
ay=1,b1 =2, an = 5cp_1 and by, =cZ_, for n > 1. Set

s
Ln={z:an<|z|<bn and ’argz—2—n <

H, = {z:lnan < Rez < Inb, and ‘Imz— 21n

Define the function A on the set US>, L, by

h(z) = log(cn[zll/z) +itargz

for z € L. Then exph(z) = cpz'/?, z € L,, where z'/2 means one branch of
the root function. It is easy to check that h(L,) C Hy41, so exph(Ly) C Lpy;.
The sets L,, n € N, and the function h satisfy the assumptions of Lemma 5.
Thus there is a function g: C* — C, ¢(z) = F(27!) + G(z) where F and G are

non-constant entire functions such that
(18) |9(2) = h(2)| < b6n, 2 € Ly;

here 6, is a small positive number. Analogously the proof of Theorem 3 one can
check that if

(19) 6n = log(1 + pn) + icn,
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where p, >0 and p, — 0, then exp g(L,) C Lp4+1 for n € N. By (18) and (19)
for z € L,,
|Reg(z) — Re h(z)| < log(1 + pp).

So
Reg(2) < Reh(z) + log(1 + in) < log(cals[/(1 + )

< logenlch_;|"*(1 + pa) < log ck = logbn s

and

Reg(2) > Reh(z) - log(1 + tn) > log(cal2/2(1 — 11,)
> log cnlgcn_1|l/2(1 —uh) > log %cn = loganyi.
Thus for z € L,

(20) ant1 < |exp g(2)| < bpg1.

Also by (18) and (19) we have

™
(21) [tmg(2) - 2,ﬁ] < lImh(z) S| + &
1 (7 T 1
< |5(§;+ gn¥s +’7n) Fen - Wl = nq T 1

Let f = expg. Then, by Remark 2, g belongs to R. It follows from (20) and
(21) that f(Ln) C Ln41 and so f* — oo uniformly in L,. Thus L, C N(f).
Let N, be a component of N(f) containing L,. Clearly f: N, — Np.;. If
some N, = Np41, then N, isin fact an unbounded domain which is mapped into
itself and in which f"(z) — co. By Lemma 9 there is a path v to co in N, and
positive constants ¢, d such that c|z| < |f(z)| < d|z| as z — co on 7. But this
contradicts the growth implied by the construction on

{z i |2| = ¢n—1 and largz - — +77n} C N,.

on 2n+3
We have |f(z)‘ > apy1 = 22°»-1. Thus all N, are different and each is a
wandering component of N(f). Analogously one can construct an example of
wandering components in which f™* — 0.

Now, we give an example of f € R which has wandering components with
limit set equals to {0,00}.

Let L,, H,, €n, nn be defined as above. Write d, = ¢!, r, = b;?,
s, = a;! and set

1
K, = {z:rn< |z|] < sp and largz+1 < W"‘""}’

2n
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1
Dnz{zzlnrn<Rez<lnsn and llmz+2ln <W+nn}, n € N.
Define the function h on the set US2,(K, U L,) by

h(z) = —(logdan|2|t/? +ilargz)  if z € Kog,
—(logcan—1]2|*/? + it argz) if 2 € Lyp_q,n € N.

Clearly h(Lan-1) C D2y, h(K2,) C Hzpt+1. By Lemma 5 there is a function
g(z) = F(z7') 4+ G(z), F and G non-constant entire functions, satisfying

|9(2) = h(2)| < b2n—1, 2 € Lonoy,

|9(2) = h(2)| < 630, 2 € Kan,n €N,

where 03,—1 and 6y, are so chosen that f = expg maps Ly,_; into K,, and
Ks, into Lypt1. Hence f2® — oo and f2"~! — 0 uniformly in each Lop_1,
and conversely f2"~! — oo, f*® — 0 in each K3,. Let No,_; and N,, be
components of N(f) containing Ls,_; and K,,, respectively. On

e 1
{z : |z| = don—1 and ’argz + 22_n < 22—71_'_3 +772n} C Ny,
we have .
lfz(z)l < Songa = 3(277) 7 = 327
while on
T 1
{z i |z| = cgn—2 and ’argz ~ 53 ‘ < Int3 + nzn_l} C Napa

we have

@) > amen = (32)
This and Lemma 9 imply that all Ny,_; and Nz, are different components of
N(f).

5. Proof of Theorem 2

To construct this example, first fix € and ¢ suchthat 0 < € < %, 1<gq<2/3,
Consider a sequence r,, 0 < n < oo, such that 0 < r, < %rn_l, n=12...,
and

n—1
Tn . T
(22) € ’;) - < mm{s, §},
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where s = s(q) is chosen to satisfy Lemma 8. Define a sequence ag = 2, agf_; =
4k agr =47F k>1. Let
B, ={z:]|z—an| < ir,},

D, = {z 1q 7, < 2| < g7

rn,largzl < iﬂ'}a
Qn={z:¢"rn <|z—an| <ry,|argz| < ir}, n>0,
and define the function h on the set U2 (B, U Q@,) by

n=0

h(z) = {108z £ @n41 —an) if2€Buyn 20,
~ | log(g™3*rn4q) if 2€Qn,n>0.

See Figure 1.

Qo
Q2 ‘ f(D1)
e )
D>
Dy

Figure 1.

By Lemma 5 there are non-constant entire functions F and G such that

f(z) = exp(f(z7!) + G(z)) satisfies

(23) f(an) = An41, f'(an) =1, n >0,
(24) |F(2) = h(z)| < Lera, z € B,
and

(25) f(Qn) - Dn+1-

Let |z| < 37n, sk = |f¥(2) - akl, k > 0. We shall prove that

g 'so<sk<gsp, O0<i<k-1<n.
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As gso < (%21/3)” <r, < %ri, it follows that fi(z) € B;, 0 <i <k —1. Then
from (23) and (24) and Lemma 7 we have

si(1—esifri) < six1 < si(1+esi/ri), 0<:<k—-1.

Moreover,
n—1 e n—1 r
n
S0 E —< E — < 8.
; Ty ; Ty
1=0 1=0

Using Lemma 8 we obtain ¢~ 1sy < sx < ¢so. Thus (26) is proved by induction,

and we have f¥(2)€ By, for 0 < k<n-—1.
Using Lemma 7 once more we obtain

Iarg(fk"'lz — apg1) —arg(frz — ak)l < 2€i—k < 26:‘—", 0<k<n-1.
k k

Therefore, by (22),
n—1 r
jarg(f"z — an) —argz| <2y < g
k
k=0

It follows that (taking £k =n) f*(D,) C @Qn, n > 0. Since f(Qn) C Dpt1 by
(25), it follows that every orbit originating from Dy has a limit point at ay = 2,
and, consequently, further limit points at a; = f(ao), a2, as, .... Moreover, it
is clear from f"*!(D,) C Dp4:1 that the limit functions are constants. As in the
case of entire functions, the existence of an infinity of constant limit functions of
(f™) in a component of N(f) implies that the component is wandering. Thus the
component which contains Dy is wandering and the limit set of f*|Dy contains
an oscillating trajectory ag, a1, az, ....
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