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THE DOMAINS OF NORMALITY OF
HOIOMORPHIC SELF.MAPS OF C*

Janina Kotus

1. Introduction and results

The iteration theory of Fatou and Julia applies to analytic maps /: D -: D
where the domain D is contained in Ö, and introduces the sets N(f): {z:
z e D,(/") it a normal family in some neighbourhood of z) and a Julia set

J(f) : D - If(/). In 1953, Rådström [10] showed that, to obtain interesting
results, it is necessary to assume / not to be a Moebius transformation and the
complement of. D to consist of at most two points. One may assume that the
complement of D is 0, {m}, or {0,m}, and with this normalisation there are
essentially the following cases:

T. D: e, / rational,
II. D: C, f entire,

III. D: C*: {z:0 < lrl < -].
In the third case there are four types of function /, depending on the behaviour
at the points 0, oo (see [1.]):

") f(r) : lezn, k + o, n eZ- {0,+L},
0 fQ): exp(G(z)), G tot-"onstant entire,

") f(r): z-n exp(c(z)), G non-constant entire,
d) f(r):z*exp(F(r-')+G(r)), F, G non-constantentire, me z.

Note that (a) and (b) belong to cases I and II, respectively, and for k > 2 and f
of type (c) we have /* of type (d).

In this paper we consider the dynamics of functions of class III(d), denoted
by R. This class of functions was first discussed by Rådström [10] and next by
Baker [1], Bhattacharyya [3], Keen [6, 7], Kotus [8] and Makienko [9].

For / € R, the Julia set /(/) is a non-empty perfect subset of C* and also
completely invariant, i.e. f (J(f)) : f-t(J(f)): J(f) and "r(/e) : J(f) f.or

p € N (see [10]). The dynamics on lf(f) is better understood for rational than
for entire functions or for functions of class R. It is a consequence of Sullivan's
theorem which states that every component is eventually periodic. This theorem
is true only for a certain subclass of R:

Theorem A. Let f e n have finitely many singuJar values. Then every
component of lf(/) is eventually pefiodic.
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Theorem A was proved independently by Keen [6], Kotus [8] and Makienko [9].
A component D of N(/) is called parabolic at 0 (or at m) if. f(D) C D and
f" -0 in D (or "f" r oo in D).

In [8] the following theorem was proved:

Theorem B. Let f e 1? have finitely many singular vaJues. Then f does
not have a parabolic component at 0 and oo.

A consequence of both theorems is a classification of periodic components.
The aim of further investigation is a description of wandering components. The
next theorem, proved by Baker [L], implies that any such component is simply-
connected for n) ns.

Theorem C. If f € R, components of If(/) a,re simply or doubly-connected.
There is at most one doubly-connected component.

The known examples of wandering components were constructed by Baker [1]
and belong to class III(b). Now we show the following examples.

Theorem L. There exist functions fi , lz e '17 such that:
a) fi åas awanderingcomponent D of N(å) suehthatthelimitsetof fi@)

equaJs one of the two essential singulaÅties,
b) fz has a waadering component D of If(/2) such that the limit set of fl(D)

equa)s {0, *}.
Theorem 2. There is a function f e n which has a wandering component

D of N(f) with an infrnite limit set.

The c,onstruction of these examples depends on the results obtained on com-
plex approximation. This method of construction of components for entire func-
tions was introduced by A. Eremenko and M.Yu. Lyubich [a] and improved by
I.N. Baker [2]. We modify their constructions to obtain analogous examples of
wandering components for functions of class ?. Also applying the results on
complex approximation, we give examples of parabolic domains.

Theorem 3. There are functions of class Tl admitting parabolic domains at
0 orat oo.

2. Preliminary lemmas

We shall make use of the following results.

Lemma 1 (Runge, see e.g. [5]). Suppose that K is compact in C a,nd f
is holomorphic on K; let also e ) 0. Let E be a set sucå that E meets every
component of e - K . Then there exists a rational function r with poles in E
such that

It@-r(z)l<e, zeK.



The domains of normality of holomorphic self-maps 331

Lemrna2. ([5], p. 131) Suppose that E is aclosed set in C *rd f is afunc-
tion defined on E . Then f can be uniformly approximated on E by meromorphic
functions without poles in E if a,nd only if f "ro 

be uniformly approximated by

rational functions on each compact subset of E.

LemmaB ([5],p. 137). Suppose that E isaclosedset jn C andthat ztt z2

lie in the same component of C - E. Then for each function n1, meromolphic in
C with a pole at z1 a,nd for each e ) 0 there exists a function rn* meromorphic
in C which is analytic at z1 , has a pole at 22, has no other poles except those of
m, and for which

l*(r)-m*(z)l<e, zeE.
Lemma 4 ([5], p. 1a0). Suppose that E is a closed set jn C such that

(i) Ö \ E is locaJly connected at a.
If the meromorphic fiunction m has no poles on E , then for each e ) 0 tåere exist
a rational function r with poJes outside E and a,n entire function g such that

l*(r) -(r +o)(z)l I e, z e E.

Remark 1. Let m be a meromorphic function such that m(z) : u(z-t) *
g(z), where ur is a polynomial, while g is entire. Then the function lQ) :
exp(tr,(z-r) + sQ» belongs to R.

The next lemma is based on the main lemma proved in [4], p. 460.

Lemma 5. Let Kn, Ln t n : 7r2,
following properties:

., be compact subsets of C* with the

oo as n -» oo and 2 max {lrl ,

Let wn e Kn, zn e Ln, €n ) 0 and the function h be analytic on U?:rK"U
UZtLn. Then there exist non-constant entire functions F, G such that g(z):
exp(.tr'(z-l) + G(z)) satisfies

lg?) - nQ)l I e, z e Kn t) Ln,

(2)

(3)

g(w")- h(*,), g(zn) - h(r"),

g'('*)- h'('n),

followirrg lemma.

(i) Kn, Ln are simply-connected for every n;
(ii) Kn)K*- A and Ln)L*--0 for n#m;
(iii) (uL, K") n (uL, L"): A;

(i") max{lzl iz€K"} 0,min{lzl :z€L"}

(1)

g'(*n) - h'(*n),

the proof we apply theIn

n : tr2,



Proof of Lemma 2. Lel U be a union of two simply-connected sets which are
neighbourhoods of Kr and tr1 such that h is analytic in U and tl n Kn : A :
U iLn:0 for n) 2. Consider the space ,4 of alt functions analytic in t/ with
the topology of uniform convergence on compact sets. Then

v : {s : loQ) - nQ)l I lur, z e K1u zr}
is a convex domain in ,4. Let W be the subset of rational functions with poles at
0 andat oo only. ByLemma 1,w is densein tr/. Clearly w isalsoconvex.'we
also consider the affi.ne subspace

S:{se A: s@):h(wt), g(z):h(rr),
s'(wr) : h'(wr), s' Q) : h' (rr)\ .

By Lemma 6 there exists a rational function h e W fl ,S such that g1(z) :
Fr(r-') + G{z), where Ft, Gr are polynomials and

lsrQ) -h(z)l < le1, z € K1uL1,

7t(tor) : h(tor), 9{21): h(u:r),

sl@r): h(wt), slQt): h'(zr).

For n > 1 there is a rational function g, such lhat g,(z) : Fn(r-l) * G.(z),
where Fn, Gn are polynomials and
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Lemma 6 (t4]r p. 460). Let
domain in A, W a convex subset
codimension, such that, ^9 n V * 0.
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A be a locally convex topological space, V a
in V and ^9 an affi,ne subsp ace of A of frnite
Then S nW is dense in S )V .

z e Knl) Ln,

&:1

Tt

&:1

(4)

(5)

(6)

(7)

(8)

l» skQ)- h(,)l . *,n,
Ic:1

» e*(w;) - h(*),
k:L

rl,

» gL@;) - h'(*,),
&:1

It follows from (6) that the series g : DLr gn converges uniformly on the
compact subsets of C* and defines a function g: C* + C of the fortr- g(z) :
F(r-') + G(z). Next, (a) and (5) imply (1), while (Z) and (8) imply 1z; "ra 

(Sy.

Remark 2. Let g be the function of the form g(z) : F(r-r) + G(z), with
F, G non-constant entire. Then /: expg belongs to 'l?.



Lemma 7 (14),p. a61). Let f (z) : z * g(z) be an analytic function in the
disk {z,lrl <,8} sucå that s(0): s'(0):0 and lo(r)l < eR and some e <1.
Then

(e) t,t(r - hta) <lr@l< t,t(r + frr,r),
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(10) larsf(z) - *srl.zfrlrl, lrl < R.

Lernrna 8 ([4], p. 461). Let q ) L. Then there exists a number s(q) such
that the estimates

n-L
,o Ier ( s(g), s6 ) o, et ) o,

Ic=0

,*(1 -e7.s7,) 
(s*+r (sp(l*6*sr), 0 < & < n-L,

imply that
lr, a sr S gso, 0 1k 1n.
q

Lemma g. If I € '17 and D;, i : 1,2, are components of N(/) such that
fo(Dt)CD; forsomep €N and f"p -0 in Dl, fnp --99 in D2. Thenthere
axe fe invariant curves .y; and positive constants a;, b; such that 1 fends to 0
in D1,.yz to oo in D2 and a;lzl<lfr{r)l<b;lrl, z e 1i.

The proof of this lemma is analogous to the proof of Theorem 2 in l2l,p. 503.

3. Proof of Theorem 3

Denote
A-{z:lz+21 <å},
A': {z:lz +21 < 1},

Define functions g and h on the set At U B U 0B' by

, \ [tos2*ir if z € ATUOB's\z)- 
tr"ä(rolrlrtr) +i(å"'s z+ å") if z e B,
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Then the

(11)
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,,. f logz+inr if z € Atn\z)- 
t-ios(roolrlt/r)-i(å"'sz*å") if z € B.

functions exp g and exp ä have the form

exp g(z): 
{;i,t/zei,c/6 ii:Z*: 

uu'

U ABI

(12)
if z € AUAB'

exp h(r): 
{ ;; -t z-t /z 

"-h 
/a if z€ 8,,

where zrl2 rr,earrs one branch of the root function.
Clearly expg(B) C B, exp s(A') c.A, exph(At) c.A, exph(B) C D. Let

C : Ä' u .B u äB'. Then C and g, ä satisfy the assumptions of Lemma 2, so

there are meromorphic functions rrttt nt2 with no poles on C such that

(18) l*rQ)-sQ)l<*6, z€c,

where 6 is a small positive number. Since C
Lemm a 4, there exist rational functions rL t 12

functions eL t €2 such that

(15) l*rQ) - (',( z) + "'(r)) I .

z € C,

also satisfies the assumptions of
with poles outside C , and entire

Ia, z € C,

(16) l*r(r)-(rr(z)+"r(r))l .I0, z € C.

Applying Lemma 3 we can choose 11 such that it has exactly one pole in C - C
at say a : 0. \Me can suppose that 11 really has a pole at a since the addition
of. Å1f z, where ,\1 is a sufficiently small constant, will bring this about without
spoiling the approximation properties listed above. Thus we may assume that
*r(r): Årz-r * e1(z) and m2(z): \zz-7 * e2(z). By Remark 1, "fi : eXpml
and f2 - exprn2 belong to the class 7t. Now, we show

(17) 6:los(1 *p.)+ie

with 0 < p <0.1, 0 < 6 < 0.1, å(B) c B, f2(B) c D. By (13-16) and (17) we
have

Rene (r) } Re g(r) - los(r + p) - Ios(tolrl'/'(t + Li-1) > Ios10
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and

Puem2(z) < Re ä(z) * log(1 + ti : tos(roo-l lzl-rl2Q + p)-') > 1og10-1.

As ra(z) : z-r maps D onto B for /3 - f2ow, wehave /s(D) c D and h eR.
Next, (11), (12) and (17) imply

lft(41, l"*orn1(z)l(1 + p,)>zlzl, ze B,

lÅ(r)l .l"*pm2(z-t)l(t+ t)-t .*lrl, ze D.

Hence all orbits of fi in B tend to oo and all orbits of /3 tend to 0 in D. Thus
B C If(å), D C lf(/r). Thefunctions f;, i:1 or 3 map A' into A, so A'
contains attractive fixed points C;, fi -r (; in Ä' and A'C lf(fi). F\rrther,

ft(08') C A' , fr(?D') C A' , B is contained in a parabolic component of N(fi)
at oo and D in a parabolic component of N(/3) at 0.

4. Proof of Theorem L

We first construct an example of a function "f € 7l which has wandering
components Dr of ff(/) such that /" -» oo in D*,le,ra € N.

Define En:10-2-3, n € N, and ?r :0, n2: €t,t Tn: »;=l 2-n*k*L"o
for n > 2rso rTnqt: f,n,.*er. Write c1 :2,, cn:2c-n-L, n € N and, further,
a7 : 1, å1 : 2, an : ?"r-, and år, : c2n-t for n ) 1. Set

L* : {, : an l lrl < b,ur,d l*S, - #1. # +rl,},

( I ltt L rH": \z:lnan ( Rez ( lnå,n and 
llmz - ;l< 2,,+B 

*T"j, n € N.

Define the function h on the set U;a1.0" by

h(z) : log(c,lzlt /2) + iL, "rg,
for z €.t,r. Then exph(z): cnz!/2, z € Ln, where zr/2 trrrearrs one branch of
the root function. It is easy to check that h(L.) C Hn+t, so exph(L") C Ln+t.
The sets Ln, fr € N, and the function ä satisfy the assumptions of Lemma 5.

Thus there is a function g: C* * C, g(z) : F(z-r) + ep1 where F and G are
non-constant entire functions such that

( 18)

here 6n is a small positive
check that if

( 1e)

number. Analogously the proof of Theorem 3 one can

6n -1og(1 + F")*i€n,
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where Hn ) 0 an.d p,n -* 0, then expg(L") C Ln+r for n € N. By (18) and (19)
for z e Ln,

lRee(z) - Re ä(z)l < log(1 + p,).

So
Ptes(z) < Reä(z) * log(1 + p,)< log(c,lzltlzQ * p))

<logc*lcf;-rl'l'(t + p*) <logc2n: log ä,,-.,.1

and
R.g(") > Reä(z) - log(1 + p,) > log(c,lzll /'(t - pt"))

> logc,Ifc.-1lL/21L- t',,) > log]c,,: logo,,+r.

Thusfor z€Lo

(20)

Also by (18) and (19) we have

(21) lr*e(,) - ;rl. lr*a1,; - inl*,"
-ll/n 1 r T t 1

- li (,, + ,*s + n") * €n - 2"-l: z"+4 * rt,.+t.

Let f - expg. Then, by Remark 2, 9 belongs to 71.. It follows from (20) and
(21) that f(L") C Ln+l and so fn - oo uniformly in Ln. Thus L" C N(f).
Let /f" be a component of lf(/) containing -L,. Clearly f, Nn --+ I[oa1. If
some -lf, : Nr+r, then If" is in fact an unbounded domain which is mapped into
itself and in which l"k) - oo. By Lemma 9 there is a path 7 to m in If, and
positive constants c, d such that clzl <lf@l <dlrl as z ---+ oo on 7. But this
contradicts the growth implied by the construction on

{,, l,l : cn_t.r,d l*s, - #1. # + n.\c n,.

We have lt@l , an*l : l2'--'. Thus dl lf" are different and each is a
wandering component of N(/). Analogously one can construct an example of
wandering components in which f" - 0.

Now, we give an example of / € 71. which has wandering components with
limit set equals to {0, m}.

Let Ln, Hn, €nt \n be defined as above. Write dn : cir, rn : bnt,
sn: dil and set
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Dn:{r'hr, (Re z l-t,,s,*,a lI*, . #1. #+n,\, n €N.

Define the function h on the set UEr(K" U.[") by

Lt_\_ l-(logd2"lrl'l'+ila.rgx) if ze K2n,
'o\') - \ -(t"e c2n-lzltl2 +ilwgr) if. z e Lzn-1,n € N.

Clearly h(Lz"-t) C Dzn, h(Kr*) C Hzn+t. By Lemma 5 there is a function
s(r) : F(r-') + G(z), .F' and G non-constant entire functions, satisfying

lsQ)-nQ)l<62n-1, z e L2n-1,

lsk)-h(z)l<62*,, z e Kzn,n € N,

where 62p-1 and 62n are so chosen that /: expg maps Lzn-t into K2r, and
K2n ir:to Lzn+t. Hence f'" ---, oo and f2n-r --+ 0 uniformly in each L2n-1 ,

and converse|y fz"-r ---+ oo , f'n - 0 in each K2r. Let .l[z,n-r and N2r, be
components of .nf(/) containing Lzn-r arrd K2r, respectively. On

{, ,lrl: d,zn-t and l.r* z * #l . # * rr*\ c r{zn

we have

while on

{, ,a: c2n-2 *,d 
lurs 

, - #...1. #, * rtzn-t} c Nr,-,

we have

It'@l ) azn+t: (?z*").

This and Lemma 9 imply that all Nzn-r and trfz, are different components of
N(/).

5. Proof of Theorem 2

Toconstruct thisexample,firstfix e and q suchthat 0 < € < å, t a q < 2rl, .

Consider a sequence rr, 0 S n < oo, such that 0 < rn < *rn-rt rt : 1r2r...,
and

(22) "»_7< *i,,{", }},k=o' k

lf'(r) I . szn+z: *(2"'")-' - l2-a'^
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where s - s(q)
4k,azk-4-k,

and define

is chosen to satisfy
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Lemma 8. Define a sequence

Bn: {r,lz - anl 1*r"},,

the function h on the set ULo( BnU Q")

h(r) f1"s(z*9n*1 -an) if z€
\ 1"S( q-312rn+t) if z e

tu\,

by

Bnrfr > 0,

there are non-constant entire functions F and G such that
+ G( r)) satisfies

f ("") : dn*L t

,ro'

See Figure 1.

By Lemma 5
f (r) - exp (tQ-l)

(23)

(24)

and

(25) f (Q") c

sp _ lto(r) - "ol, & ) o.

g-lsoSsrS gso,

Dn*l.

We shall prove that

0SiSk-L<-n.

»
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from (23) and (24) and Lemma 7 we have
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1.

Moreover,
n-l n-7nc J-b<".

"o L; = ,_, ,,i=0 ' i:0

Using Lemma 8 we obtain g-'ro ( s6 ( qss. Thus (26) is proved by induction,
and we have fk(z) € Bp for 0 < ,t < n - 1.

Using Lemma 7 once more we obtain

T1,
\ g|l t

I

T1t

Therefore, by (22),

ki rP

It follows that (taking lc : n) f"(D") C Q,, n ) 0. Since /(Q") c D"..1 by
(25), it follows that every orbit originating from Ds has a limit point at ao:2,
and, consequently, further limit points at a1 : f(oo), a2; dB, .... Moreover, it
is clear from /'+r(D") c Drr41 that the limit functions are constants. As in the
case of entire functions, the existence of an infinity of constant limit functions of
(/") i" a component of If(/) implies that the component is wandering. Thus the
component which contains Ds is wandering and the limit set of. f"lDs contains
an oscillating trajectory ao t at t e2 t . . ..
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