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ON THE BEHAVIOR OF QUASIREGULAR
MAPPINGS IN THE NEIGHBORHOOD
OF AN ISOLATED SINGULARITY

Pentti Jarvi

1. The purpose of the present study is to consider the behavior of quasimero-
morphic mappings about an essential isolated singularity or, by contraposition, to
seek conditions under which such maps possess a limit at a singular point. In Sec-
tion 2 we will establish two Picard-type theorems for quasiregular mappings both
of which generalize a recent result of Vuorinen [14]. Furthermore, we will show
that isolated singularities are removable for normal quasiregular mappings. Here
normality means uniform continuity with respect to the quasihyperbolic metric.
Section 3 is devoted to the value distribution of normal quasimeromorphic map-
pings. In Section 4 we will discuss the oscillation of quasimeromorphic mappings
in the neighborhood of an essential singularity. This part of the work is related to
Lehto’s result concerning the growth of the spherical derivative of meromorphic
functions near an isolated singularity [5].

I wish to thank Matti Vuorinen for his useful comments.

2. Our notation and terminology will be mainly the same as in Vuorinen’s
book [13]. Accordingly, B®(z,r) denotes the ball centered at z € R® with radius
r while S®~!(z,r) is the sphere with the same center and radius. For brevity,
B"(r) = B"(0,r), B™ = B*(1), $"7(r) = S™7!(0,r), S™! = §""1(1). The
euclidean distance in R™ is denoted by d(-,-), whereas ¢(-,-) refers to the chordal
distance in R", the one-point compactification of R™, which as usual is identi-
fied with the Riemann sphere S™(%en41, 1) (see [13, p. 4]). Let D be a proper
subdomain of R™. Then the quasihyperbolic distance kp(-,-), or briefly k(-,-),
is defined to be the metric induced by the density d(z,dD)™!, where d(z,0D)
stands for the distance of z and 0D, i.., d(z,0D) = inf{d(z,y) | y € dD};
see [13, p. 33]. Because nonconstant quasimeromorphic mappings are open, we
may refer to the maximum and minimum principles in the same way as in planar
function theory.

Some results of this section rely heavily on the following generalization of
Picard’s theorem due to Rickman [11]: For every integer n > 2 and each K > 1
there exists a positive integer p = p(n, K) such that if f: R® — R"\{a1,...,a,-1}
is K -quasiregular and ay,...,a,_; are distinct points in R", then f is constant.
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As in classical function theory Montel’s theorem can be derived from Picard’s
theorem, so Rickman’s result entails the following generalized Montel’s theorem [9,
Theorem 4]: Let F be a family of K -quasimeromorphic mappings in a domain
DCR",n>2.If A={ay,...,a,}, (p=p(n,K)) is a set of different points in
R"” such that AN fD =0 for all f € F, then F is a normal family.

In what follows p(n,K) always refers to the number mentioned above.

Theorem 1. Let R > 0 and let f: R*\ B"(R) — R" be a K -quasiregular
mapping. Let E = {aj|j € N} be a subset of R" \ B"(R) such that
(1) there is an increasing sequence (r;) of positive numbers (r; > R) tending
to co and a constant s > 1 such that for A; = {z € R"|r; < |z| < sr;},
AJ‘OE=® and AjN A1 =0 for all j € N, and
(2) for each j € N the set {z € R"|sr; < |z| < rji1} N E contains at most
p—2 (p=p(n, K)) points.
W = {b1,...,bp,_1} C R™ consists of p—1 different points and fWCE,
then the limit lim, .o f(z) exists.

Proof. We may assume that f is nonconstant. Let ¢; denote the map
z — rjz/ri, ¢ € A;. By the generalized Montel’s theorem, the family { fo
pjlj €N } is normal in A;. Let F stand for the cluster set of the sequence
(f ogj), i.e.,, F consists of all mappings which occur as limits of various sub-
sequences of (f o ;) (the topology is of course that of uniform convergence on
compact subsets). If F contains a quasiregular mapping, then f is bounded
in the neighborhood of oo. This implies that oo is a removable singularity,
ie., lim, .o f(z) exists. If F contains only the constant map z ~— oo, then
f(pj(z)) — oo uniformly in S§7=1(s1/2r;). Hence there is j' € N such that
|f(z)| > M = max{|b1],...,|bp—1]|} for z € Sn=1(s'/2r;) whenever j > j'. Con-
sider the closed annulus C; = B " (s'/?rj41) \ B™(s'/?r;), j > j'. It follows from
the hypothesis of the theorem that C;NE contains at most p—2 points. Therefore
B™(M) ¢ fC;. Making use of the relation f0C; C R*\ B"(M) and the openness
of f, we infer that fC; C R" \ B"(M). Now the minimum principle implies that
lim; o0 f(z) =00. O

Let D be a proper subdomain of R®. Then D can be equipped with the
quasihyperbolic metric kp(-,-). Let f: D — R" be a quasimeromorphic mapping.
Following Vuorinen [13, p. 163] we say that f is normal provided that it is
uniformly continuous with respect to kp(-,-) (the range space R" is equipped with
the chordal metric). It must be pointed out that normality in the sense of Lehto
and Virtanen (in dimension 2) is equivalent to uniform continuity with respect
to the hyperbolic metric; see e.g. [4]. We first show that isolated singularities are
nonessential for normal quasimeromorphic mapping omitting at least one point.

Theorem 2. Let R > 0 and let f: R*"\ B"(R) — R" be a normal quasireg-
ular mapping. Then the limit lim,_, f(z) exists.
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Proof. Let r > 1 and let ¢, stand for the map z — rz, 2 € D = R*\B"(R).
Since @, is distance-decreasing, i.e., kp(¢r(z), ¢(y)) < kp(z,y) for all z,y € D,
the family { fopr|r> 1} is equicontinuous in D. By the Arzela—Ascoli theorem,
{ fowr|r > 1} is a normal family. Consider the sequence (f o ¢y;) restricted
to B"(8R) \ B"(R). Let F again denote the cluster set of this sequence. If
F contains a quasiregular mapping, f is bounded in a neighborhood of co, and
hence the limit lim,_,o f() exists. On the other hand, if F contains only the
constant map z — oo, then the number of the zeros of f must be finite. Indeed, if
ai,asg, ... are the zeros of f, we can choose the natural numbers ji, jo,... so that
a;/2% € B"(4R) \ B™(2R); then (f o ¢,s;) contains a subsequence, whose limit
mapping attains the value 0. Accordingly, we may apply the minimum principle
to obtain lim,_,o f(z) = 00.

Remark. Theorem 2 does not hold for normal quasimeromophic mappings.
For instance, the meromorphic function

I (1-227)
[I7° (1 + 2279)
fulfils the condition lim,_,o sup |z|f*(z) < co, where f*(z) stands for If’(z)l/(1+

|f(2)|?). This means that f is normal in any domain of the form {zeC||z| >
R}. See Section 4 for further information concerning the expression |z|f*(2).

fif(z) =

Recalling that the omitted values are asymptotic values at an essential isolated
singularity [7, p. 16], the next result can be regarded as a generalization of the
preceding theorem. The proof is a fairly standard normal family argument and is
omitted.

Theorem 3. Let R > 0 and let f: R"\ B"(R) — R" be a normal
quasimeromorphic mapping possessing an asymptotic value at co. Then the limit
lim, o f(z) exists.

In the special case of meromorphic functions the validity of Theorems 2 and 3
was observed already by Lehto and Virtanen [4, pp. 7-8]. In fact, their concern
there was the class of weakly normal functions, i.e., functions whose restrictions
to every simply connected subdomain are normal with respect to the hyperbolic
metric. However, by [4, Theorem 2] a function defined in a set of type {z €
C|0 < |z] < |2 < oo} is weakly normal if and only if lim,_, ., sup |z|f*(2) < co.
Furthermore, we are going to show that this happens exactly when f is normal
with respect to the quasihyperbolic metric of D = {z € C||z0]| < |2| < o0}.
Since f is meromorphic also on S*(|zg|), lim,—,c0 sup |2|f* < oo if and only if
sup{(|z| — |20]) f*(2)| 2 € D} < co. It is clear that the latter relation implies
the uniform continuity of f with respect to kp. Now assume that f is uniformly
continuous with respect to kp and choose § > 0 such that ¢(f(z), f(2')) < 1
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whenever kp(z,2') < §. Fix 2’ € D. Since the spherical derivative is invariant
under rotations of the sphere, we may assume that f(z') = 0. Set r = (|| —
|z0])(1 — e7%). A simple calculation shows that

B*(2',r) C {z € C|kp(<',2) < 6}.

Observe that |f(z)| < 1 for z € B?(z',r). Hence by Schwarz’s lemma, f*") =
|f’(z’)| < r~1 whence (|2'| — |20]) f*(2") < (1 - e~%)71. Thus

sup{(|z| — |20|)f*(z)| z € D} < o0.

The next theorem shows that the equivalence of the two concepts generally
prevails.

Theorem 4. Let D be a proper subdomain of C, and let f: D — C =
C U {oo} be a quasimeromorphic mapping. Then f is weakly normal if and only
if f is normal with respect to the quasihyperbolic metric of D.

Proof. First suppose that f is normal with respect to the quasihyperbolic
metric. Let D' be an arbitrary simply connected subdomain of D,and fix z € D'.
It is well-known, and easy to prove by means of Koebe’s Viertelsatz, that o(z),
the hyperbolic density of D' at z satisfies p(z) > }d(z,0D')™". Therefore

1
> >1
o2) 23 53; 807 © 14(z,0D)
= ‘11— the quasihyperbolic density at z.

Hence f is normal in D' in the sense of Lehto—Virtanen. This means that f is
weakly normal.

Now assume that f is weakly normal in D. Suppose for the moment that f is
not normal with respect to kp. Then there is an ¢ > 0 and two sequences (z;) and
(2) of points in D such that kp(z;,z;) — 0 and q(f(z)), f(zg)) >e. Set rj =
d(zj,8D), j € N. By passing to a subsequence if necessary we may assume that
B?(z;,r;) N B?(zj,rj) = 0 for i # j and 2} € B?(zj, 37;) for each j. Obviously,
given any j € N we can connect B%(zj, 3r;) and B*(zj41, 37j41) with a narrow
corridor C; C D\ug, B?(z, %ri) such that the set D' = U2, (B2(zi, %r,-)UCi) is
a simply connected subdomain of D. We are going to show that f|D’ is not normal
with respect to 6(-,-), the hyperbolic metric of D’. First, lim; . kp(2;,25) =0
implies that d(zj,z})/r; — 0 as j — co. On the other hand, o(z), the density
of 8(-,-) at z € D', satisfies p(z) < d(z,0D')!. In particular o(z;) < 2/r; for
each j. It follows that é(zj,2j) — 0 as j — oco. Yet q(f(zj), f(2})) > €. Thus
fID' fails to be uniformly continuous with respect to é(:,+). This contradiction
with the assumption completes the proof. o
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Remark. Other characterizations of normality with respect to the quasihy-
perbolic metric in dimension 2 can be found in the recent work of Minda [8].

We conclude this section with another result on Picard sets, which is modelled
on a theorem by Toppila [12, Theorem 3].

Theorem 5. Let R > 0 and let f: D = R*"\ B"(R) — R" be a K-
quasiregular mapping. Let E = {aj |j € N} be a subset of D with a; — oo as
j — oo such that thereis an € > 0 with B™(aj,¢laj|) C D and B"(aj,¢|a;|)NE =
{a;} for large j. If W = {b1,...,b,—1} C R™ consists of p — 1 different points
(p=p(n,K)) and f~'W C E, then the limit lim, . f(z) exists.

Proof. Suppose that oo is an essential singularity for f. It then follows from
Theorem 2 that f cannot be normal in D. Thus there is ¢ > 0 and two sequences
(z;) and (y;) of points of D such that z; — oo, d(zj,y;)/(|z;| — R) — 0 and
q(f(zj), f(yj)) = c. Set Bj = B"(zj, %e|xj[); we may assume that B; C D and
y; € B™ (acj, ;13-6]:rj|) for each j € N. Let ¢; denote a similarity transformation of
B; onto B; and set y; = c,o;'l(yj). Then

d(z;, y;) 21| d(zj,y;) |z — R
1

don,yl) = XEa¥i) eul = 0
(@0%5) = =1 -k o

and

a(Flei(e)s (o)) ) = a(f(2s), £w) 2 e

Thus the family {fo;|j € N} is not normal in B"(z1, 2¢|z1|). The same is of
course true for each family consisting of some subsequence of (foy;). Hence by the
generalized Montel’s theorem (see Section 2) fo¢; assumes in B™(z1, Lelz1]) at
least one of the values bq,...,b,_; for large j. By passing to a subsequence and re-
labeling we may assume that foe; attains b; for each j € N. On the other hand,
it follows from the hypothesis of the theorem that for large ¢, B; contains at most
one point of E. Therefore the image of the annulus B™(z;, Le|z;|)\B "(z}, Le|z;j|)
under f does not meet W for large j. Furthermore, b; and b, do not belong
to the same component of R™\ fS™~!(z;, f¢|z;|) for large j (see [13, p. 121]).
Thus we can find an M > 0 such that

min{|f(x)l | z€ 5" (zj, i-elle)} <M

for all j € N. Invoking the generalized Schottky theorem [13, p. 166] we see that
f is bounded in U;-”;IS"_I (:L']', 4l€|1:j[) , whereas the maximum principle implies
that f is bounded in U?‘;IB"(wj, Lelz;|) . But this state of affairs contradicts the
fact that {f o;} (or any of its subfamilies) is not normal in B™(z1, g¢lz1|). ©

Remark. Both Theorem 1 and Theorem 5 generalize a recent result by
Vuorinen [14, Theorem 1.1].
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3. In this section we make some observations on the value distribution of
normal quasimeromorphic mappings in the neighborhood of an isolated singular-
ity. For the sake of convenience we assume that the mappings are defined in the
whole of R™. Theorem 6 below partly generalizes the work of A. Ostrowski on
exceptional meromorphic functions in the sense of Julia [10, pp. 245-249]. Recall
that f, a function meromorphic in the complex plane, is said to be exceptional
provided that for any sequence (o;) of complex numbers with lim;_.., = oo the
family {z — f(cjz)|j € N} is normal in C\ {0}. The equivalence of the two
notions in question is established in the following lemma; cf. [4, Theorem 3]. The
proof is straightforward and hence omitted.

Lemma 1. Let f: R* — R" be a quasimeromorphic mapping. Then the

following statements are equivalent:

(1) fIR™\ {0} is normal.

(2) Let So stand for the group of similarity transformations of R™ fixing the
origin. Then the family {f o |y € So} is normal in R™\ {0}.

(3) Let (r;) be a sequence of positive numbers with r; — oco. Then the family
{z + f(rjz)|j € N} is normal in R™\ {0}.

(4) The family {z — f(2/z)|j € N} is normal in the annulus B*(4)\ B"(}).

Let f: R®” — R" be quasimeromorphic and let r > 0. Given y € R" we set

k

ng(ry) =Y i(zj, f);

J=1

here {z1,...,zx} = f~1(y)NB"(r) and i(z;, f) is the local index of f at z; (see
(13, p. 123]). We also set

m

as(ry) = Y iz, f),

7=1
where {z1,...,zm} = f73(y) N (B"(2r) \ B™(r)). In order to obtain estimates
for the differences of the counting function we shall make use of the notion of the
winding number. This is defined as follows. Let S be an (n — 1)-sphere in R",
let f: S — R"™ be a continuous map and let y € R"\ fS. Consider the map
u §— §71
|f(z) — v

Then the winding number of f with respect to y is defined as

w(f,y) = deg(u),

where deg refers to the topological degree. If then S = UX_,S; is a finite union
of mutually disjoint spheres S;, w(f,y) stands for ELI w(f|Si,y). Observe that
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w(f,y) depends on the orientation of the spheres. In what follows, the spheres
always constitute a part of the boundary of a relatively compact subdomain of R™,
and it is understood that the orientation is positive with respect to this domain.

Lemma?2. Let r > 0 and let f be a nonconstant quasimeromorphic mapping
defined in a neighborhood of B"(r). Suppose that fS™*1(r)N{0,00} = §. Then
w(f|S™71(r),0) = ng(r,0) — ng(r,00).

Proof. Let f~'(c0) N B™(r) = {z1,...,xx}. For each j € {1,...,k} choose
rj > 0 such that B"(zj,r;) C B™(r), fB"(zj,r;) N B" = 0 and B"(zi,r;) N
B"(zj,r;) = 0 for i # j. Set D = B"(r)\ B"(zj,r;). It follows from the
definition of the local index and [1, Kap. XII, Sektion 2, Satz II] (see also [1, Kap.
XII, Sektion 1, Nr. 5]) that

i(xj,f)=—w(f|BB"(zj,rj),0) j=1,...,k,

(observe that reversing the orientation changes the sign of the degree). By the
same Satz
ng(r,0) = w(f|8D,0) = w(f|0B"(r),0) + w(f|dD \ 8B"(r),0)
k

= w(f1S"71(1),0) = 3_w(fI0B"(a;,7),0)

<
1l
—

= w(f]S"7(r),0) + > iz, f)

1
= w(f|5"_l(r), O) + ng(r, o).
The assertion follows. o

Theorem 6. Let f: R* - R" be a quasimeromorphic mapping such that
fIR™\ {0} is normal. Then:

(1) For each d > 0 there is a positive constant C; = C,(d, f), depending only
on d and f, such that given any two points a,b € R" with g(a,b) > d, then
Ing(r,a) —ng(r,b)| < Cy for all r > 0.

(2) There is a positive constant C2 = Ca(f), depending only on f, such that
ff(r,a) < Cy forall >0 and all a € R".

(3) Let a and b be two distinct points of R", and let f~'(a) = {a;|j € N},
f71(®) = {bj|j € N}. Then

inf{ s flbjl ‘zj € N} > 0.

la

Proof. We may assume that oo is an essential singularity for f. By Theo-
rem 2, f then assumes all values of R" infinitely often.
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To prove (1) we fix d > 0 and suppose there are two sequences (a;) and (b;)
of points of R" and a sequence of positive numbers (r;) such that g(aj,b;) > d
and 1nf(rj,aj) ng(rj,b; )! — 00 as j — o0o. By passing to subsequences we
may assume that there are two points a,b € R" such that a; = a, bj —» b and
q(a,b) > d. Let 1 be a Mdbius transformation of R” sending a and b to 0
and oo, respectively, and set ¢ = ¥ o f. We may assume that |1/)(a]~)| <1 and
|#(b;)| > 1 for all j. We next modify (r;) in the manner indicated by Ostrowski
(10, p. 246]. Fix j € N, and assume first that

ny(rj,a;) = ng(rj, ¥(a;)) 2 nyg(rj, b;) = ng(r;,%(b;)).

Set r} = max{|z||z € E"(rj) and g(z) = ¥(a;)}, = min{|z||z € R" \
B(r}) and g(a) = w(t;)}. By contimuity, there is 1 € [rh,r"] such that
gS™ 1 (r")yN S™~1 £ (. Furthermore,

g (15" 0(a3) = g (15", 08)) | > |y (s 60a) = g (g, 605) |

Similarly, if n, (rj,¢(aj)) < ng (Tj,%b(bj)) we can find 7/ such that gSn—l(T;jI) N
S™ #( and

ng (ry"s ¥ (b;)) = ng (i, 1h(a;)) = ng(rj, (b;)) — ng(rj,¥(a;)).
We then replace r; by rj" but retain the notation (r;) for the new sequence.
Altogether, we have a sequence (r;) such that

(+) g (13, 6(a,)) = g (s, $(87)) | oo
and gS™ Hr)NS™ 1 £ for all j.

Obviously r; — co as j — oo.

Let ¢; stand for the map = +— rjz, j € N. By Lemma 1, the family
{gow;|j € N} is normal in R™\ {0}. Hence, by passing to a subsequence once
more, we rnay assume that (g o ¢;) converges uniformly in the closed annulus

(2) \ B™"(%). By (x) g¢;jS™™ ' N S"~1 # §. Therefore the limit mapping
h(z) = llrng(go](:v)), z € B"2)\ B™(%), is either a constant ¢ with |¢| =1 or
a nonconstant quasimeromorphic mapping. Assume first that h(z) = ¢. Then
gow;|S™ ! is homotopic to h|S™! in R™\ {0} for large j. Hence the same is
true of the map

9(p;(2))

lg(cpj(m))|’ z e S,

T
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for large j. This implies that w(go ¢;|S™™1,0) = w(h|S™"1,0) = 0 for large
J. Hence by Lemma 2 ny(r;,0) = ny(rj,c0) for large j. Furthermore, it follows

from [13, 9.11 and 9.2.(1)] that

Mg (Tj’¢(aj)) = ngy(r;,0) = ng(rj,00) = ng (rj’ ¢(b1))

for large j. But this contradicts (x).

Suppose then that A is nonconstant. It may happen that AS®~1N{0,00} # 0.
However, we can find R; € (3,1) and R; € (1,2) such that hS™™'(R;)N{0,00} =
hS™~1(Ry) N {0,00} = @. Since g o ¢; — h uniformly in S""!(R;), we see as
above that the maps u: S""!(R;) — S™~! and vj: S"7}(Ry) — S™7!

he) gy = (@)
|A(=)] )g(wj(:v))‘

u(z) =

are homotopic for large j. Hence
w(h|S$"7(Ry),0) =w(gop;|S"(R1),0)
for large j, whence by Lemma 2
w(h | S Y(Ry), 0) =ng(Ri7j,0) — ng(Ryr;j,00).
Further by [13, 9.2(1)]

Ng (Rl Tj ¢(aj)) =ng(Rr;,0)

and
ng (erj, zb(bj)) = ng(Ryirj, 00)

for large j. Consequently, in order to arrive at a contradiction with (x) it is
enough to exhibit a positive M such that for large j the numbers of ¥(a;)-points
and ¢ (b;)-points of goy; in B"\ B*(R,) (with due account of the local indices)
are bounded by M. Since g o @; — h uniformly in B"(R;)\ B*(R:), we may
apply [13, 9.11 and 9.2.(5)] to conclude that for large j

Uz, h) = ngoy; (R2,0) — ngoy, (R1,0)

k
=1

J

and
m

Z W(Yj, h) = Ngoy; (R2,00) — Ngoy; (R1,00),

=1
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where {z1,...,zx} = A~10)N (B"(Rg)\ﬁn(Rl)) and {y1,...,Ym} = R (c0)N
(B"(R2)\ B"(R1)). On the other hand, it follows from [13, 9.11 and 9.2.(1)] that
for large j

Ngow; (R2,%(a;)) = ngoy; (R1,9(aj)) = Ngogp; (R2,0) = ngoy; (R1,0)
and
Ngow; (RZ’ ¢(b1)) — Ngoy; (Rla ¢(b1)) = Ngoyp; (R2’ oo) — Ngoy; (Rla Oo)
Thus we may choose
k m
M= max{Zi(z‘j, h), Z t(y;, h)}

j::l j=1

The proof of (1) is thereby complete.

If (2) is not true, we can find a sequence (a;) of points of R" and a sequence
(rj) of positive numbers tending to co such that 7f(r;,a;) — oco. By passing
to subsequences we may assume that a; — a for some a € R" as j — oo. Let
a € R" denote the point antipodal to a, and let ¢; be the map z +— rjz, j € N.
Then {foy;|j € N} is normal in R\ {0}. By_%assing to a subsequence we
may assume that (f o ;) converges uniformly in B (4) \ B"(%). We infer from
(1) that the limit mapping g is not constant. Indeed, it follows from (1) that

fFH@n (B (2r;)\ B™(r;)) # 0
for large j. Replacing B (2)\ B™(1) by a slightly larger annulus A with a & gdA
and arguing as in the proof of (1), we see that 7y(1,a) > Tifey, (1,a;) = 7f(r;, a;)
for large j. This contradiction completes the proof of (2).
The proof of (3) is rather trivial. If
. la; — bjl1. . _
mf{ T ,z,],e N}—-O,

la

we can find two subsequences (a;,,) and (b, ) such that
|9i, = bj,, |

|ai,, |
Clearly this means that kgrn\{0}(@i,,,0;,,) — 0 as m — co. Since

this state of affairs contradicts the uniform continuity of f. o

-0, as m — oo.

Remark. With obvious modifications, Theorem 6 also holds for normal
quasimeromorphic mappings defined in sets of type {m eER™||z| > M } .
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4. Let f be a quasimeromorphic mapping having oo as an essential isolated
singularity. What can be said about the size of the set fS™~!(r) as r — co? This
is the problem we will consider in this section.

Let K ¢ R". The chordal diameter of K is defined to be

q(K) = sup{q(z,y) | z,y € K}.

Given a sphere S = S™(z,r) in R*!, a subset S’ of S is said to be an (n — 1)-
subsphere of S provided that S’ = SN H, where H is an n-hyperplane of R"*?
with ¢ € H.

Theorem 7. Let R > 0 and let f: R*\ B"(R) -» R" = S*(tent1,3) =S
be a quasimeromorphic mapping having an essential singularity at co. Then
there is a sequence (r;) of positive numbers with r; — oo such that for each j
fS™*(r;) is contained in no open hemisphere of S, i.e., fS™(r;) meets every
(n — 1)-subsphere of S. In particular,

n+2)1/2

5 12 for all j € N.

q(fS"7(ry)) > (

Proof. Suppose that from a certain ry each fS™ !(r) is contained in some
open hemisphere of S. Let SP'~! stand for an (n — 1)-subsphere of S such that
fS™ Y ro)N Sp~! = 0. Let m,_1 denote the standard measure of St and set

ro=int{rir>r and maoy(F(B VB () N577) 2 dmaa(ST7H

Observe that the above set is nonempty by the generalized Picard theorem (even
the more elementary [6, Theorem 4.4] would do). Next choose an (n—1)-subsphere
S~ of § such that SF~! # SP~! and fS™1(r;)NSy ™" = 0. Then SJ~! divides
S~ into two open hemispheres STy and S7;7!. At least one of these, say S7; %,
fulfils the condition S77'N fS™~(r;) = @. If follows from the openness of f that

7N f(B™M(r) \ B"(r0))

or

— ._1 n —
Slnl ﬂf(B (T])\Bn(’l'o)) =0
In the former case we have by continuity that
p— _1 —_—
S C f(B™(r2)\ B"(r0))
for some ry < r1, in contradiction to the choice of r;. In the latter case

570 F(B(rs) \ B"(ro)) = 0,
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for some r3 > r;, again in contradiction to the choice of r;.
Now let (r;) be a sequence described in the theorem and fix j € N. We claim

that —B_n+l(%en+1, 1) is the smallest closed ball in R™*! containing fS™~!(r;).
Indeed, if §n+l(:c, r) is a closed ball with r < %, then §n+1(x, r)N.S is contained
in an open hemisphere of S. Hence fS"~!(r;) ¢ §n+1(:v,r). Jung’s theorem [2,
p. 357] now implies that ¢(fS™7(r;)) > ((n+2)/(2n + 2))1/2 as was asserted. o

Remark. We do not know whether the constant ((n + 2)/(2n + 2))1/2
in the preceding theorem is the best possible. It seems feasible that it can be
replaced even by 1, i.e., that there is a sequence (r;) such that each sphere
S™=1(r;) contains two points which are mapped into antipodal points of .
In the case of meromorphic functions this is at least approximately true, for
limsup,_ . q(fS*(r)) = 1 as appears from the proof of [5, Theorem 1]. Fur-
thermore, there is a footnote in [5, p. 198] which claims that the same is true for
planar quasimeromorphic mappings. However, we have not been able to verify
this assertion.

The theorem of Lehto mentioned above ([5, Theorem 1]) asserts that

lim sup |z|f*(z) > %

Z—00
and the constant % is sharp. In fact, this statement can be expanded further as
shown by

Theorem 8. Let f be a meromorphic function defined in a neighborhood
of the essential singularity co. Then there is a sequence (z;) tending to co such
that |z;|f*(z;) > % for each j.

Proof. Suppose there is ro > 0 such that |z|f*(z) < £ for all 2z with |z > rg.
Then for all » > ry the spherical length of fS(r) is less that 7, the length of the
great circles of the Riemann sphere S. It is known that such a curve is contained
in an open hemisphere of S; see [3] for a very simple proof of this claim. But this
is impossible by Theorem 7. o

Corollary. Let D be the open unit disc {z € C||z| < 1} and let f be a
meromorphic function in D* = D\ {0} with f*(z) < |z|~! for z € D*. Then f
extends to a meromorphic function in D.

Added in proof. We have been informed that J. Heinonen and J. Rossi (to
appear in Michigan Math. J.) have obtained results related to Theorem 7. In fact,
their Theorem 2.3 combined with Remark 2.4 asserts in essence that, under the
assumptions of Theorem 7, limsup,_,, ¢(fS™~(r)) > 1. Their method of proof
is that of [4, Theorem 1].
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