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ON THE BEHAVIOR OF QUASIREGUTAR
MAPPINGS IN THE NEIGHBORHOOD

OF AN ISOTATED SINGULAR,ITY

Pentti Järvi

1. The purpose of the present study is to consider the behavior of quasimero-
morphic mappings about an essential isolated singularity or, by contraposition, to
seek conditions under which such maps possess a limit at a singular point. In Sec-
tion 2 we will establish two Picard-type theorems for quasiregular mappings both
of which generalize a recent result of Vuorinen [1a]. Furthermore, we will show
that isolated singularities are removable for normal quasiregular mappings. Here
normality means uniform continuity with respect to the quasihyperbolic metric.
Section 3 is devoted to the value distribution of normal quasimeromorphic map-
pings. In Section 4 we will discuss the oscillation of quasimeromorphic mappings
in the neighborhood of an essential singularity. This part of the work is related to
Lehto's result concerning the growth of the spherical derivative of meromorphic
functions near an isolated singularity [5].

I wish to thank Matti Vuorinen for his useful comments.

2. our notation and terminology will be mainly the same as in vuorinen's
book [13], Accordingly, B"(*,r) denotes the ball centered at c € R" with rad.ius
r while s"-'(r,r) is the sphere with the same center a^nd radius. For brevity,
B"(r): B"(0,r), B": B"(1), sn-l(r) : ,5"-r(0,r), ,s'-1 : ,9"-,(1). The
euclidean distance in R" is denoted by d(.,.), whereas g(.,.) refers to the chordal
distance in R", the one-point compactificaiion of R", *rri"r, as usual is identi-
fied with the Riemann sphere S"('r"n*r, |) (see [18, p. a]). Let D be a proper
subdomain of R". Then the quasihyperbolic distance ko(.,.), or briefly h(.,.),
is defined to be the metric induced by the density d(x,lD)-r, where d(a,lD)
stands for the distance of c and 0D, i.e., d(a,?D): inf{d(r, y) I y e 0D};
see [13, p. 33]. Because nonconstant quasimeromorphic mappings are open, we
may refer to the maximum and minimum principles in the same way as in planar
function theory.

Some results of this section rely heavily on the following generalization of
Picard's theorem due to Rickman [11]: For every integer n ) 2 and each K ) 1

there exists a positive integer p : p(n,I() such that if .f : R" ---+ R"\{o1 ,. . . ,ap_t}
is -K-quasiregular and a1, ... rdp-t are distinct points in R', then / is constant.
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As in classical function theory Montel's theorem can be derived from Picard's
theorem, so Rickman's result entails the following generalized Montel's theorem [9,
Theorem 4]: Let f be a, family of K-quasimeromorphic mappings in a domain
D C Il," , n) 2.If A-- {or,...,ap}, (p: p(n,/{)) is a set of different points in
R" suchthat AnfD:0 forall f e F, then f isanormalfamily.

In what follows p(n,K) always refers to the number mentioned above.

Theorem t. Let.R>0 andlet.f, R'\F"(rB)+R' bea K-quasiregular
mapping. Let E : {oi lj e  rrl be a subsef of R" \ E"(E) such that
(1-) tåere is a.n increasing sequence (r) of positive numbers (r, > R) tending

to q andaconstaat s ) L such-thatfor Ai: {r € R"l"i l lrl < sr;},
$n E - A and Ai 11 Aial : 0 for rJi i e N, and

(2) for each j € N the set {c € R" I sri 1 lrl S ti+, } n A contains at most
p-2 (p:p(n,K))points.
If W: {br,.. .,bo-t} C R" consistsofp-! differentpointsand f-tW CE,

then the ]imit lim,*""/(") exisfs.

Proof. We may assume that / is nonconstant. Let gi denote the map
u *, rirfrl, r € A1. By the generalized Montel's theorem, the family {/ o

?jl j e N) is normal in Ä1 . Let f stand for the cluster set of the sequence

(f o pi), i.e., f consists of all mappings which occur as limits of various sub-

sequences of (/ o gi) (the topology is of course that of uniform convergence on
compact subsets). If .F contains a quasiregular mapping, then / is bounded
in the neighborhood of oo. This implies that oo is a removable singularity,
i.e., limr-""/(r) exists. If .F contains only the constant map o H oo, then

f(vi@D ---+ oo uniformly ir, 5n-r(s1/zrt). Hence there is j' e N suc-h that

l/(r)l ) M :*.*{lö11,..., |äp-rl} for r €,s"-l(sr/zr) whenever i > i'. con-
sider the closed annulus Cj:8"("tl'ri*r)\p"(sr/2rj), i > j'. It follows from
the hypothesis of the theorem lhat CillE contains at most _p-2 points. Therefore
B"(M) / f Ci. Making use of the relation f 0C1 C R"\8"(M) and the openness

of /, we infer that f Ci C R" \8"(M). Now the minimum principle implies that
lima-oo./(r) : -. o

Let D be a proper subdomain of R". Then D can be equipped with the
quasihyperbolic metric &p(.,'). Let /: D --F'" be a quasimeromorphic mapping.
Following Vuorinen [t3, p. 163] we say that / is normal provided that it is
uniformly continuous with respect to kp(',') (the range rpu,"" -Ro is equipped with
the chordal metric). It must be pointed out that normality in the sense of Lehto
and Virtanen (in dimension 2) is equivalent to uniform continuity with respect
to the hyperbolic metric; see e.g. [ ]. We first show that isolated singularities are
nonessential for normal quasimeromorphic mapping omitting at least one point.

Theorem 2. Let l? > 0 andlet "f: R"\8"(R) + R' be anormal quasireg-
ula,r mapping. Then the limit lim,*oo /(r) exists.
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Proof. Let r ) 1 andlet g, standforthemap o ;s rnt a e D: R"\E"(ft).
Since g. is distance-decreasing, i.e., kp(9,(*),p,(y)) I lcp(r,y) for all a,y e D,
the family {f oV,l, > 1} is equicontinuous in D. By the Arzela-Ascoli theorem,

{f o V,l, > 1i is a normal family. Consider the sequence (/ o 92i) restricted
to B"(8Ä) \ E'"(rB). Let F again denote the cluster set of this sequence. If
f contains a quasiregular mapping, .f is bounded in a neighborhood of oo, and
hence the limit limr-oo /(z) exists. On the other hand , if. F contains only the
constant map o ;--v oo: then the number of the zeros of / must be finite. Indeed, if
ettd2s... are the zeros of /, we can choose the natural numbers jt, j2,... so that
a;f2it eE"(4R) \ B"(2.R); then (f o 92;t) contains a subsequence, whose limit
mapping attains the value 0. Accordingly, we may apply the minimum principle
to obtain limr*oo .f(r) : -. o

Remark. Theorem 2 does not hold for normal quasimeromophic mappings.
For instance, the meromorphic function

f : f (r)_ ilf (t - zz-i)

[[f (t + z2-i)

fulfils the condition lim,-oo srry lzlf* (z) ( oo , wher e f *(z) stands t", lf '(r)l/ (t+
lf Q)l'). This means that / is normal in any domain of the form {z e C [;r1 >
,Bi. See Section 4 for further information concerning the expression lrlf-Q).

Recalling that the omitted values are asymptotic values at an essentia,l isolated
singularity [7, p. 16], the next result can be regarded as a generalization of the
preceding theorem. The proof is a fairly standard normal family argument and is
omitted.

Theorem 3. Let R ) 0 a.nd let f: R" \ E'"(.8) * -R" be a normaJ
quasimeromorphic mapping possessing an asymptotic value at a. Then the limit
limr*oo f(r) exists.

In the special case of meromorphic functions the validity of Theorems 2 and 3
was observed already by Lehto and Virtanen [4, pp. 7-8]. In fact, their concern
there was the class of weakly normal functions, i.e., functions whose restrictions
to every simply connected subdomain are normal with respect to the hyperbolic
metric. However, by-[4, Theorem 2] a function defined in a set of type {z €
C l0 < lrol < lrl < m) is weakly normal if and only if lim,*oo sup lzll*(z) < oo.
Furthermore, we are going to show that this happens exactly when / is normal
with respect to the quasihyperbolic metric of. D : {z € Cllrol < lrl < m}.
Since / is meromorphic also on sl(lzol), lim,*-suplzl/. ( m if a,nd only if
sup{(lzl -lzol)l.Q)|, e D} < o". It is clear that the latter relation implies
the uniform continuity of / with respect to lco. Now assume rhat f is uniformly
continuous with respect to kp and choose 6 > 0 such that q(f(r), f(r,)) < |
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whenever kp(z,zt) < 6. Fix z' € D. Since the spherical derivative is invariant
under rotations of the sphere, we may assume that f(z'): 0. Set ,: (l/l-
lrol)(t - "-t). A simple calculation shows that

B'(r',r) c {z €Clkp(z',r) < 6}.

Observe tt"t l/(z)l ( 1 for z e B2(zt,r). Hence by Schwarz's lemma, f*(r'):
lf'(r')l ( r-1, whence (lr'l - lznl)f.(z') < (1 - "-')-'. Thus

sup{(lzl -lrol)f-(r)1, e Di < *.
The next theorem shows that the equivalence of the two concepts generally

prevails.

Theorem 4. Let D be a proper subdomain of C, and let f : D -- Ö :
c u {oo} be a quasimeromorphic mapping. Then f is weakly notmal if and only
if f is normal with respect to the quasihyperbolic mettic of D.

Proof. First suppose that / is normal with respect to the quasihyperbolic
metric. Let D' be an arbitrary simply connected subdomain of D, and fix z e Dt .

It is well-known) and easy to prove by means of Koebe's Viertelsatz, that p(z),
the hyperbolic density of D' at z satisfies p(z)> f,d(2,0D')-1. Therefore

oQ)>idr».tph
: t the quasihyperbolic density at z.

Hence / is normal in D' in the sense of Lehto-Virtanen. This means that / is

weakly normaJ.
Now assume that / is weakly normal in D. Suppose for the moment that / is

not normal with respect to kp. Then there is an € > 0 and two sequences (27) and
(z';) of.points in D such that kp(zi,z') --+ 0 and s(fQ),f(/j)) ) e . Set rr':
d('zi,lD) , i e N. By passing to a subsequence if necessary we may assume that
B'(rn,r;)n B2(21,r j): A for i * j arrd z', e Bz(zi,,lr) for each j. Obviously,

given any , € N we can connect B2(zi, |r;) and B'(rj*r,lri+t) with a narrow
corridor C, C D\U= rB'(rt, |r;) such that the set D' : UEr (B'("0, |r;)UC;) is

a simply connected subdornain of D. We are going to show thal, f lD' is not normal
with respect to 6(.,.), the hyperbolic metric of Dt. First, lim;**lcp(zi,z'i):0
implies that d(zi,r')lri + 0 as, --+ oo. On the other hand, p(r), the density

of 6(.,.) at z e D', satisfies eQ) < d(z,?Dt)-l. In particular p(21) 12f ri fot
each j. It follows that 6(zi,z') - 0 as j --+ oo. Yet q(f(z),f(/j)) ) e. Thus

/lD' fails to be uniformly continuous with respect to 6(.,'). This contradiction
with the assumption completes the proof. o
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Rernark. Other characterizations of normality with respect to the quasihy-
perbolic metric in dimension 2 can be found in the recent work of Minda [8].

We conclude this section with another result on Picard sets, which is modelled
on a theorem by Toppila [12, Theorem 3].

Theorem 5. Let R ) 0 and let f:D: Rn \8"(e) ---+ R' be a K-
qua,siregular mapping. Let E: {oi lj e .art1 be a subset of D with aj ---+ 6 as

j -* suchthatthereisane>0 withB"(oi,elo;l) c D andB"(oi,elal)nO:
{a1} forlarge j. If W: {år,...,bo-t} C R" consists of p-l differentpoints
(p: p(n,K)) and f-'W C E, then the limit lim,*oo /(c) exists.

Proof. Suppose that oo is an essential singularity for /. It then follows from
Theorem 2 that / cannot be normal in D. Thus there is c ) 0 and two sequences

(r;) and (yi) of points of D such that ri -1 oo: d(*i,y)l(l"jl- R) ---+ 0 and
qu@), f @)) ) c. set Bi : 8"(r1,Lrelrfi; we mav assume that Bi C D and
yj e Bn (ri, |elril) for each i e N . Lel 91 denote a similarity transformation of
.B1 onto Bi andset yti:pi'@). Then

d(*t,a'i): d(*i'Yi) 
lr, l- ffiWlr, l--+ o

l* il
and

n(f (ei@,)) , / (eitul))) - q(f (*), f @)) ) c.

Thus the family {f o pi I 
j e ryi is not normal it Bn (a1,lela1 l) . The same is of

course true for each family consisting of some subsequence of. (f og1). Hence by the
generalized Montel's theorem (see Section 2) f o(pj assumes in B"(q, |elr1l) at
leastoneofthevalues br,...,bo-1fot largej. Bypassingtoasubsequenceandre-
labeling we may assume that f og1 attains ö1 for each j € .lf . On the other hand,
it follows from the hypothesis of the theorem that for large i , Bi coriains at most
one point of E. Therefore the image of the annulus Bn(xi,*ul*i)1B"(ri, åulril)
under / does not meet W for large j. Furthermore, ö1 ard b2 do not belong
to the same component of R" \/S"-t(r1,,lnelx1) for large j (see [13, p. 121]).
Thus we can find an M > 0 such that

min{ lrf ,ll I

for aJl j e N. Invoking the generalized Schottky theorem [13, p. L66] we see that
/ is bounded in Upr S"-t(ai,I"l*i), whereas the maximum principle implies
that / is bounded in UprB"(xi,f,e@il) . But this state of affairs contradicts the
fact that {f opi} (or any of its subfamilies) is not normal in B"(x1,}elr1l). o

Remark. Both Theorem L and Theorem 5 generalize a recent result by
Vuorinen [14, Theorem 1.1].
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3. In this section we ma,ke some observations on the value distribution ol
normal quasimeromorphic mappings in the neighborhood of an isolated singular-
ity. For the sake of convenience we assume that the mappings are defined in the
whole of R". Theorem 6 below partly generalizes the work of A. Ostrowski on
exceptional meromorphic functions in the sense of Julia [10, pp. 245-249]. Recall
that /, a function meromorphic in the complex plane, is said to be exceptional
provided that for a-rry sequence (oi) of complex numbers with limi-oo : oo the
family {z ,* f(oiz)lf e N} is normal in C \ {0}. The equivalence of the two
notions in question is established in the following lemmal cf. [4, Theorem 3]. The
proof is straightforward and hence omitted.

Lemma l. Let.f, R" -* -R" be a quasimeromorphic mapping. Then the
following st atement s are equivalent :

(1) /lR" \ {0} is normaJ.
(2) Let §o stand for the gtoup of similarity transformations of R fixing the

origin. Then the family {f o p l9 e §o} is normal in R" \ {0}.
(3) let (r1) be a sequence of positive numbers with ri ---+ oo. Then the family

{r e f (rir) lj e .nr1 is normaJin R" \ {0}.
@) Thefurnfu {r,+ f(zir) lj e lf} is normal in the annulus B"(4) \8"(å).

Let f: R'--+R" bequasimeromorphicandlet r)0. Given y€R" weset

k

nr(r,y): 
E 

i@i,f);

here {r1, ...,nk} : f-r(y)nB"(r) and i(ai,/) is the local index of / at c; (see

[13, p. 123]). We also set

nÅ,,y): f ie1,f),
i=l

where {rr,...,2*} : f-l(y)n (B"1Zr1\ B"(.)). In order to obtain estimates
for the diferences of the counting function we shall make use of the notion of the
winding number. This is defined as follows. Let ^9 be an (n - 1)-sphere in R',
let f:,S -+ R" be a continuous map and let y € R" \ /S. Consider the map
u: S -- Sn-l

u(r):'f(*)-Y''\ / lf(*)-yl'
Then the winding number of / with respect to y is defined as

t(f ,Y): deg(u),

where deg refers to the topological degree. If then ,S : Uf=rSi is a finite union
of mutually disjoint spheres S;, w(f ,y) stands for f,f=, .(llS;,y). Observe that
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*(f ,y) depends on the orientation of the spheres. In what follows, the spheres
always constitute a part of the boundary of a relatively compact subdomain of R' ,

and it is understood that the orientation is positive with respect to this domain.

Lemma 2. Let r > 0 and let f be a nonconsta,rtt quasimeromorphic mapping
defrned in a neighborhood ofE"(r). Suppose that f S"-1(r) n {0, oo} : 0. Then
w(71s"-t1r),0) : ny@,0) - n1(r, oo).

Proof. Let /-1(oo)nB"(r): {rr,...,n*}. For each j € {1,...,k} choose
rj > 0 such that B"(*j,r) c B"(r), fB"(*i,r)nB": 0 and B"(a;,r;)n
E"(ri,rj):0tor il j. Set D: B"(r)\E'(ci,ri). Itfollowsfromthe
definition of the local index and [1, Kap. XII, Sektion 2,Satz II] (see also [1, Kap.
XII, Sektion 1, Nr. Sl) that

j :1,.. .,,k,,

(observe that reversing the orientation changes the sign of the degree). By the
same Satz

n/r,0) : w(flaD,0) : ?r,(/laB"0),0) + u(/laD \ ä8"(r),0)
k

: * (fls"-'(r), 0) - D* uloB" (r i,'i), 0)
,;,

: w(flS.-,(r), o) +\t(a,,11
,=l

: w(fls"-'(r),0) * n1(r, m).

The assertion follows. o

Theorem 6. Let "ft R' * R" be a quasimeromorphic mapping such that
/lR" \ {0} is normaJ. Then:
(1) For each d ) 0 tåere is a positive constant Ct : Cr(d,f), depending only

on d and f , such that given any two points o, ö € R" with q(a,b) )_ d, then

lnyQ,a) - nt(r,å)l < Cr for aJI r ) 0.
(2) There is a positive constant Cz : Cz(f), depending only on f , such that

fryQ,a) I Cz for all r ) 0 and aiJ o e E" .

(3) let a and b be two distinct points of R", and let f-'("): {aj lf e lf},
/-,(b) : {åi lj € tri. Tåen

'*{%P1,,,.r},0
Proof. We may assume that m is an essential singularity for /. By Theo-

rem 2, / then assumes all values of -R," infinitely often.
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To prove (1) we fix d > 0 and suppose there are two sequences (oi) and (åi)
of points of R" and a sequence of positive numbers (ri) such lhat q(ai,b) > a
and ln/ri,aj) - ny(ri,åi)l * oo as j --+ oo. By passing to subsequences we

may assume that there are two points a,b eR" such that o,j --+ a) ö; --r å and
q(a,b) > d. Let r[ be a Möbius transformation of R" sending a and ö to 0

and oo, respectively, and set 9: ,ho f .We may assume thal llb@) | < 1 and

lbftDl ) 1 for all j. Wenext modify (rr) in themannerindicated by Ostrowski
[10, p. 246]. Fix j e N, and assume first that

nr(ri, ai) : ns(ri,rb@)) ) nt?i,b) : frs(ri,rh\))

Set ,'j - max{ l"l l" € B"(r) and g(*) _
Bn(r) and g(r) - ,h\i) ). By continuity,
g S"-7 7rt.tr ) n Ji"-' + A . Furthermore,

,'; - min{l"l l, € Rn \
,';' € lr'i, r'l) such that

,h@i)),
there is

lnn O!" , rh(oi )) - ns (r'i' , rh(U)) ,n(ri,rh(öj)) 
I

Sn*Aand
find ,';' such that g S"-L (r'l') )

nn(r'l' ,rh(ai )) - ns(r'i' ,rh@))

we then replace ri by rf' but retain the notatio" (ri) for the new sequence.
Altogether, we have a sequence (r;) such that

l"nO'"b@))
and g S"-'("r.)

nn(ri,rh(U)) we can

(*) - ns(ri,r[\ill-+
n S'-1 + A for all

oo

j.

Obviously rj --+ oo as J --+ oo.
Let gi stand for the map o F-+ rj,D, j e N. By Lemma 1, the family

{s opi lj e lf} is normal in R" \ {0}. Hence, by passing to a subsequence once
more, we may assume that (g o gr) converges uniformly in the closed annulus
B"(Z) \ B'(å). Bv (*) 7piS"-r'n t.-r I 0. Therefore the limit mapping
h(r):lirns(p{u)), * e E"(z) \8"(}), is either a constant c with l"l :1 o,
a nonconstant quasimeromorphic mapping. Assume first that h(t) : c. Then
gopj 15"-t ishomotopicto hlS"-t in R"\{0} forlarge j. Hencethesameis
true of the map

r € sn-"



On the behavior of quasiregular mappings 349

for large j. This implies that to(g ogilS"-r,0) :.(älS'-t,O) :0 for large
j. Hence by Lemma 2 no(ri,O): no(ri,oo) for large j. Furthermore, it follows
from [13, 9.1]" and 9.2.(1)] that

nn(ri,rb@)) : no(rit0) : nr(r;, oo) : nn(, j,rb(t))

for large j . But this contradicts (*).
Suppose then that ä is nonconstant. It may happen that ä,S"-1 n {0, oo} I 0.

However,wecanfind.Bl € (å,1) and.Rz € (1,2) suchthat hs"-l(.El)o{0,m}:
hS"-1(R2) n {0,oo} : 0. Since g ogj q ä uniformly in ,S"-l(.R1), we see as

above that the maps u: S"-'(Er) -» Sn-1 and ui: S"-'(Er) -+ §"-t

,\ h(*) ,\ g@i@))u\u): FG)l' ui\r): 
l7.r,rr)r1

are homotopic for large j. Hence

w(nl s"-t (8, ), 0) :, (g o e i I s'-r (Er), 0)

for large j, whence by Lemma 2

ur(n I S"-1(Er),0) - no(R1ri t0) - no(R1r;, m).

Further by [13, 9.2(1)]

n n (Rtr i, r/r(o )) : n n(R1r i, 0)

and
n o (Rrr i, rb(U i)) : n n(Rrr i, a)

for large j. Consequently, in order to arrive at a contradiction with (*) it is
enough to exhibit a positive M such that for large j the numbers of r/(a7)-points
and t/(åi)-points of gogi inB"1A'1A1) (with due account of the locai indices)
are boundedby M. Since g ogj + ä uniformlyin B"(.Bz)\B"(J?r), wemay
apply [13, 9.1], and 9.2.(5)] to conclude that for large j

k

» i@ i, h) : frsoei (R2,0) - frso?i (Br , 0)
j-t

rn

» i@i,h): Dsoei(Rz,oo) - frso?j (n1 , rc),
j-t

and
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where {*r,...,rx}: h-t(0) n(A"1Ar1\8"(Ar)) *d {yr,...,a*}: ä-1(m)o
(A"(A)\ B"(Ar)) . On the other hand, it follows from [13, 9.1]. and 9.2.(1)l that
for large j

and

,oo*, (Rz,rh(OiD - ftsoei (Ar,rh(t)) : nsosi(R2, oo) - ftsosi(ftr, oo).

Thus we may choose

M : max{ Do",,h), » ;.@i, h)\.
j=l j=l

The proof of (1) is thereby complete.

If (2)isnottrue,wecanfindasequence (oi) of pointsof R" andasequence
(r;) of positive numbers tending to oo such lhat ny(ri,aj)_? oo. By passing

to subsequences we may assume that aj + a, for some a e -P-" as j -+ m. Let
A eR" denote the point antipodal to a, and let gi be the map , å r j$, i e N .

Then {/ opilj € N} is normal in R" \ {0}. By passing to a subsequence we
may assum" ihrt (f o p) converges uniformly it B" (+) \ B"( å). w" infer from
(1) that the limit mapping g is not constant. Indeed, it follows from (1) that

?tsosi (nr,rb("j)) - ns"r, (RL,$("j)) : frsoei(R2,0) - nso?i(Er,0)

f-L(ä) n (8" (2, i) \ B"("i)) + 0

for large j . Replacin gB" (2)\ B"(1) by a slightly larger annulus A with a / g0A
and arguing as in the proof of (1), we see that nr(1, a) ) nyoei(1,oi) : fly(ri,ai)
for large j. This contradiction completes the proof of (2).

The proof of (3) is rather trivial. If

t*{#lo'''.-'nrr} :o'

we can find two subsequences (a;-) and (å;-) such that

lo,i^ - bi^l 
__. o, as rr, -+ oo.

la;^l

Clearly this means that kp,11oy(a;*rbi^) -- 0 as rn -+ oo. Since

q(l@;^),f(bi-)): n@,ö) > o,

this state of affairs contradicts the uniform continuity of f. o

Remark. With obvious modifications, Theorem 6 also holds for normal
quasimeromorphic mappings defined in sets of type {r e R," llrl >- U} .
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4, Let / be a quasimeromorphic mapping having oo as an essential isolated
singularity. What can be said about the size of the set /,S"-1(r) as r ---+ m? This
is the problem we will consider in this section.

Let K C -R". The chordal diameter of I{ is defined to be

s(K): sup{g(r, v)lu,v € l(}.

Given a sphere S : S"(r,r) in R"+t , a subset ,S' of ,9 is said to be an (" - 1)-
subsphere of ^9 

provided that .9' : ,SO ä, where .F/ is an n-hyperplane of R'*r
with u € I/.

Theorem 7. Let B > 0 a,ndlet.f' R"\E'"(R) -*R": S"(*"n*r,å): S
be a quasimeromorphic mapping having an essential singularity at q. Then
iåere is a sequence (ri) of positive numbers with ri ---+ oo sucå that for each j
f S--tt) is contained in no open hemisphere of S , i.e., f S*-'(ri) meets every
(" - 1)-subsphere of S. In pa,rticular,

t(f s"-t41)) > (!tZ1'r' for au , € N.

Proof. Suppose that from a certain 16 each "f,S"-'(t) is contained in some
open hemisphere of ,S. Let .9i-1 stand for an (n- 1)-subsphere of ,5 such that
.f S"-'(", ) n Sf -t : A . Let rn,-1 denote the standard measure of ,Si-l , and set

?'7 :

Observe that the above set is nonempiy by the generalized Picard theorem (even
the more elementary [6, Theorem 4.4] would do). Next choose an (n*l)-subsphere
Si-t of ,9such that Si-r + Si-'and /,S"-1(r1)nSi-1 :0. Then,Si-r divides
,9i-1 into two open hemisphere. SIr-' and ^9if 

1. At least one of these, say ,Sflfl,
fulfils the conditio, Slr-1 tl/^9"-1(r1) : 0. If follows from the openness of / that

inf {r I

7 n-L
J rr

Fi,-'nf (8"(r,)\B."(ro)) - A.

In the former case we have by continuity that

r;-'

**,-1(sf -')).(/(B'(') \ B"('o)) n

c f (a"(",) \ F"('o))

c f(8"(rr)\B."('o))

\ B"("0)) -

for some rz <-rt, in contradiction to the choice of 11 . In the latter case

0,F;-' n f (a"(rr)
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for some 13 ) 11, again in contradiction to the choice of 11 .

Now let (r3) be a sequence described in the theorem and fix j e N. We claim
that B"+1(1",*r,|) is tfre smallest closed ball in R"*1 containing /^9"-1(r;).
Indeed, if. E"+11r,r) is a closed. ball with , < L , th"n B "+1( r,r)i,S is contained

in an open hemisphere of ,9. Hence f S"-t(ri) /8"*'(*,r). Jung's theorem [2,
p. 3571 now implies that t(f S"-r(r1)) > ((" +z)lQn+Z))1/2 as was asserted.. o

Remark. We do not know whether the constant ((" + 2)/(2n + 2))'/'
in the preceding theorem is the best possible. It seems feasible that it can be
replaced even by 1, i.e., that there is a sequence (ri) such that each sphere
S"-'(ri) contains two points which are mapped into antipodal points of ^9.In the case of meromorphic functions this is at least approximately true, for
limsup,*oos(/S'(t)) : 1 as appea,rs from the proof of [5, Theorem 1]. Fur-
thermore, there is a footnote in [5, p. 198] which claims that the same is true for
planar quasimeromorphic mappings. However, we have not been able to verify
this assertion.

The theorem of Lehto mentioned above ([5, Theorem 1]) asserts that

lim srrplzlf . Q)

and the constant
shown by

is sharp. In fact, this statement can be expanded further as

Theorem 8. tret f be a meromorphic function defined in a neighborhood
of the essential singularity oo. ?åen there is a sequence (z) tending to oo sucå
that lz1lf"(rj) > + for each j .

Proof. Supposethereis rs ) 0 suchthat lrlf.Q) < | forall z with lrl>_ro.
Then for all r ) rs the spherical length of /^9r(r) is less that z-, the length of the
g::eat circles of the Riemann sphere ,S. It is known that such a curve is contained
in au open hemisphere of ,S; see [3] for a very simple proof of this claim. But this
is impossible by Theorem 7. o

Corollary. Let D be the open unit disc {z e C I lzl < 1} and let f be a
meromorphic function in D*: D \ {0} witå f*(r) < il"l-, for z e D* . Then f
extends to a meromorphic function in D.

Added in proof. We have been informed that J. Heinonen and J. Rossi (to
appear in Michigan Math. J.) have obtained results related to Theorem 7. In fact,
their Theorem 2.3 combined with Remark 2.4 asserts in essence that, under the
assumptions of Theorem 7, limsupr*ooq(/S"-1(r)) > å. Their method of proof
is that of [4, Theorem L].

I
c
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