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FREE QUASICONFORMALITY IN BANACH SPACES I
Jussi Väisälä

1. Introduction
1.1. ?åe idea of the paper. The concept of a quasiconformal map was intro-

duced in 1928 by H. Grötzsch [Gr], who considered maps in the plane.R2. The
notion was later extended to maps in B" by several authors. The purpose of this
article is to lay foundations of an analogous theory in general Banach spaces. The
main emphasis will be on the basic definitions and on relationships with various
known classes such as the quasisymmetric maps. The methods of this paper are
elementary. In a later paper [Väa] we shall consider the boundary behavior and
other more specific properties of these maps. Some of these results are announced
in Section 7.

Let E and E' be real Banach spaces, and let G c E and G' C Et be
domains, that is, open connected nonempty sets. Let g: [0, *) -+ [0, m) be a
homeomorphism with g(t)>_ t. In Section 3 we shall define the class of.freely 9-
quasiconformal homeomorphisms f : G --+ G', abbreviated p-FQC. The definition
will be given in terms of the quasihyperbolic metric. Two alternative character-
izations are given: one is based on the 0-mappings considered by F.W. Gehring
already in 1963; the other one makes use of local quasisymmetry. Earlier results
on d-mappings in normed spaces have been obtained by G.Porru [Po1], [Po2]
and P, Caraman [Ca].

If. E: Rn : E', then / is p-FQC if and only if / is K-quasiconformal in
the usual sense. Here .I( depends only on g and n, and g depends only on K.
The word "free" refers to dimension-free. However, our theory differs essentially
from the results called dimension-free by Anderson, Vamanamurthy and Vuorinen
[AVV]. They consider K-quasiconformal maps in .8" and give various estimates
in terms of. K. Their main tool is the modulus of a path family, which cannot
be used in the free quasiconformal theory in the sense of the present paper. Our
theory can also be called volume-free.

'We assume lhat E ar,d E' are Banach spaces for the sa.ke of convenience.
However, the definitions are meaningful and several proofs are valid in arbitrary
normed vector spaces.
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1.2. Restdctions. In a Banach space E with dim E : oo we must forgo

many luxuries of R. These can be divided into four types:

. (1) TopologicaJ. Firstly E is not locally compact and its one-point extension
E : E U {*} is not compact. For example, we cannot use the Ascoli theorem on

normal families. Furthermore, the cluster set of a map at a boundary point can

be empty.
Secondly, we cannot use the pleasant topological properties of. R related to

the Jordan-Brouwer theorem. For example, a ball B in the Hilbert space /2 is
homeomorphic to the annulus A between two spheres. However, it turns out that
the FQC condition often prevents strange topological phenomena. In particular,
there is no FQC homeomorphism between B and A.

(2) Metric. The space .E is not homogeneously totally bounded (HTB) in the
sense of [TVr ]. This means that packing arguments usually fail in E.

(3) Measure-theorctic. There is no Lebesgue measure in E. Hence we cannot
say "almost everywhere in G C 8". The modulus of a path family, which is an
important tool in the n-dimensional quasiconformal theorS seems to be useless in
the free theory.

(4) Cubes. We can no longer use cubes or other intervals a^nd their subdivi-
sions. In particular, a domain has no Whitney decomposition.

1.3. What rcmains? The remarks in 1.2 look somewhat discouraging. How-
ever, we still have a number of useful tools. Of course, we have the norm, its
triangle inequality and convexity properties. We ca.n join points by line segments

and other arcs. On the arcs we can use compactness and, in the rectifiable case,

linear measure and integration. It is therefore natural that various arcs play a^n

important role in the theory. The most useful tool turns out to be the quasihy-
perbolic (QH) metric of a domain. Section 2 will be devoted to this concept.

We shall also make use of the general theory of quasisymmetric and quasi-

möbius maps in metric spaces. In certain problems, especially when studying the
boundary behavior, the completeness of E plays an essential role.

L.4. Notation and terminology. Throughout the paper E and E' are Banach
spaces, and G C .E and G' C E' are domains. We also assume t}rat E * {0} + E' .

Thenormof avector r e E willbewrittenas lrl,the diameterof aset AC E as

d,(A), and the distance between nonempty sets A, B c E as d(A,B). For arr open
batl with center r and radius r we use the notation B(u,r). The closed ball is
B(r,r) and the boundary sphere is ^9(r, r):08(r,r). For r:0 we abbreviate

B(r) : B(0,r), ^9(r) : ,9(0, r).

The one-point extensionof. E is the Hausdorfftp."" å : EU {m}, where the
neighborhoods of oo are the complements of closed bounded sets of .8. The
boundary 0A and. the closure Ä of. a set Ä C E arc taken h b. The closed

line segment with endpoints a, b e E is [4, ö]1 for a half open segment we use the

Jussi Vd,isäLå
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obvious notation [o, å). To simplify expressions we often omit parentheses writing
/r instead of. f (u) etc. The symbols X , Y will denote metric spaces with distance
written as lo - å1. We let /(7) denote the length of an arc 7. For real numbers
a, å we write

aVb-max(o,b), aAb- min (o,,b).

2. Quasihyperbolic metric
2.7. Definiiions. Let G*E beadomain. For r€G welet 6c(r) denote

the distance d,(a,0G). We shall usually abbreviate 6(c) : 6c(r), 6'(*): 6c,(u).
If 7 C G is a rectifiable arc, the line integral

ld*l
6G)

is called the quasiåyperbolic or QH length of 7. The quasihyperbolic distance of.
points arb e G is the number

k6(a,b) : iyf I*(1)

over all rectifiable 7 joining a and b in G. In order to include the trivial case
a : b, we regard a singleton {a} as an arc of length zero. Alternatively the
arcs can be replaced by paths, which leads to the same concept. We shall usually
abbreviate lc : lcc , k' : k6, . It is easy to show that ,t is a metric in G and that
/7,(7) is the length of 7 in this metric. For QH balls we use the notation

Bx(o,r) : {u e G : k(x,o) < r},
where a € G and r ) 0.

In a half space of .8" the QH metric is the classical hyperbolic metric. For
other domains in -B' the QH metric was introduced in the seventies by Gehring
and his students [GP], [GO].

Next we prove some basic inequalities between QH and norm distances. These
will be frequently used in the paper. Most of these are well known in ,R".

t *(t) - I
.Y

2.2. Lemma. Srppose that G *
(1) For all a,b e G we have

k(a,b)zrn(,* #l )h

E.

6(ä) 
r
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k(*,y).#W
(4) If 0 < r ( f,, th., 81,(a,r) c B(a,r6(a)l$ - Zr)) .

Proof. Let 7 be a rectifiable arc joining o and ä in G' Set Å : /(7), and let
a: [0,Å] --+ 7 be the arc-length parametrization of 7. Since 6(a(t)) < 6(a) +t,
we obtain

^.\

{ W 
: 
i #' ! #*:m(r. #) > r"(r. 

"L#)70

This proves the first and the third inequality of (1). The second one follows from
the elementary metric inequality 6(å) < 6(a) + l" - ö1.

lf. r,y e B(a,t6(a)), then 6(r) > (1 - ,)6(c) for every I € l*,y). Hence

(2) fotlows by iniegration along [2, y]. Next assume that t < å urd that 7 is a
rectifiable arc joining r and y in G.If 7 C B(a,2t6(a)), then 6(r) < (1+2r)6(a)
for every z e 1, and hence

(2.s) rr(z)> iffib
If I G B(a,2t6(a)) , th"r, 7 has non-overlapping subarcs'yrt1.1z joining the bound-
ary componentsof the annulus A: {u:t6(a) <lu-al <2t6(a)} in A. For
z e .yj we have 6(") < (1+2t)6(a). Since l(ti)> t6(a), we again obtain (2.3).
This proves (3).

To prove (4) observe that r/(1 - 2r) < | for r < t. Hence (3) implies that
k(r,a) ) r whenever lc -al:r6(a)l$-2r).Since B1(o,r) is connected, this
yields (a). "

2.4. Remark For o, b e G, the inner length distance )6(4, Ö) is the infimum
of the lengths of all arcs joining o and å in G. The proof of.2.2 shows that one

can replace l" - äl by .\6(o, ö) in (f ).

2.5. Lemma. Suppose that a,b e G I E and that either lo - äl < |6(o) or
k(a,b) ( 1. ?åen

l,W.-k(a'o<'#
Hence B*(o,r) c B(a,2r6(a)) for r ( 1.
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Proof. lf la-Ul S l0("), these inequalities follow ftom2.2. If. k(a,b) : r .--t,
2.2 implies

la-bl
aD- s e'-

which is the first inequality. Finally, if l" - bl
inequality holds trivially. tr

1 12r,

2.6. Lemma. For every r > 0 tåere is M: M(r)> L suchthat

#W1h(*,0)<uE-a-
foraJI ae G and r,yeE1,(a,r).

Proof. Assume that r, y eEp(a,r), * * y, and set

^ _ k(r,y)6(")r- 1*-v1 '

lf k(x,y) < L, 2.5 and 2.2 (t) imply

,='#.ze', or-#.#.
If k(x,y) > 1, 2.5 yields l* - yl , lt(*). Since k(*,y) ! 2r , we obtain by 2.2 (t)

,=W,-4re,, e>w#,-.il.*."
2.7. Remarks. 1. The proof of 2.6 shows that we can always choose M(r) :

4e"(rY 1)' For. s å *easilyobtain ftorn2.2thebetterbound M(r):r+'4r.
2. The QH metric and the norm metric are locally bilipschiiz equivalent

in G, and hence induce the same topology in G. It is interesting to observe
that the identity *lp oI. Bp(a,r) from the norm metric to the eHäetric is 7-quasisymmetric with n(t) : M2t with tr4 : M(r) as in 2.6. The definition of
quasisymmetry will be recalled in B.B.

2.8. Quasiconvexity. A metric space x is c-quasiconvex, c 21, if each pair
a,b of points in x can be joined by un arc 7 with t(i s 

"1" - bl. In particular,
an arc 7 is c-quasiconvex if

t(tlr,yl)<clr-yl
for all &,u € 7;here lla,yl is the subarcof l between o and y. In the literature
this is often called the chord-arc condition.

A domain G + E is obviously c-quasiconvex in the eH metric for every
c > 1' Tf. E : Rn , il is in fact convex, that is, L-quasiconvex. This means that
each pair a,b e G can be joined by a eH geodesic 7 with tx(i: fr(o,ä) [GO,Lemma 1]. We show in 2.9 that this is not true in an infinite-dimensiorrA ifiiU"ri
space. on the other hand, we shall prove in [vria] that for every c ) l, each pair
a,b e G can be joined by ,,, arc which is c-quasiconvex in the eH metric.
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2.g. Example. Let .E be a separable Hilbert space with inner product written
as n.y. choose an orthonormal base ("r,"rr. . .) and a strictly increasing sequence

r2rrz:... of positive numbers converging to |, for example, rn : (n - L)l2n' Ser

r' : §(1) \ u{a(e,, r*) : n > 2\.

We show that the points 0 and 2e1 cannot be joined by a QH geodesic in the

domain G:E\F.
Let A: E-+E betheisometriclinearmapwith Ae1 :e1 , Aen:€n+l for

n ) 2. Then AG C G. We first show that

(2.10) 6(Ar) > 6(r)

for every a e G. We may assume that o 10. Let y e F:0G. We must find
y' e F with ly'- rl < ly - A*1. Set y1 : AallAtl and

C : {r€ S(1) : z' e2 -- 0, lr- yrl < lY - Yrl}.

Then C meets F, since otherwise C as a connected set is contained in one of the

balls B(e,,, rn), n 2 3, which easily implies y € B(en,rn).
Firapoint Uz€C flF. Thenthereis y'eF with Ay'-!2,,arrdly'-*l:

lyr- A"l. On the other hand,lyr-vrl Sly - y1l implies u'ur l az'Yt and thus

i. l* 1 y2. Aa, which gives ly2 - A*l (lv -Acl. Hence lv' - *l < lv -Arl, and

we have proved (2.10).
Let 1 be a rectifiable arc joining 0 and 2e1irr G. Then also A7 joins these

points in G. There is a point z e l with lzl : 1. Then clearly 6(Az) > 6(r).
since A is an isometry, this and (2.10) imply lx(Al) < I*(z). Hence 'y cannot be

a QH geodesic.

3. Basic concepts

3.1. TJniform continuity. A map f: x --+ Y is uniformly continuous if and

only if there is fo € (0,m] and an embedding 9: [0,tr) - [0,o") with 9(0):0
such that

lfr- fvlse(l*-vl)
whenever {,u e x and l* -yl ( to. we then say that / i. (p,ts)-uniformly
continuous. If to: oo, we briefly say that / is cp-uniformly continuous'

If a condition ,4 with data u implies a condition A' with data u' so that u'
depends only on u and other given quantities, we say that A implies A' quantita-

tively.If also L' implies ,4 quantitatively, .4 and A' are said to be quantitatively
equivaJent. A symbol appearing in A and A' need not have the same value in both
conditions. For example, in Lemma 3.2 below, (1) with given rp and ts implies
(2) with g : gt depending oa g,t6 and c. The lemma is proved in [Vä2, 2.5].

J. Luukkainen pointed out to the author that the function gt in the proof does

not necessarily satisfy the inequality V < 91. Therefore one should redefine g1(t)

as eQ) + z(e(ts) - e$to))tlr6 for o < t < rto.
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the
(1)
(2)
(3)

3.2. Lemma. Let X be c-quasiconvex and let f : X -'-+ Y be a map. Then
following conditions are qua"ntitatively equivaJent:

f it (p,ts)-uniformly continuous.

f is g-uniformly continuous.

f is g-uniformly continuous and there are M ) 0 and C > 0 such that
p(t) < Mt + C for aJl t.

3.3. Defrnitions. We say that a homeomorphism g: [0, oo) ---+ [0, oo) is a
growth functionif g(t) ) I for all t. If g is a growth function, a map f: X ---+ Y
is said to be a g-quasi-isometry if.

v-' (l*- vl) < lf" - fvl < e(1" - vl)
for all o,U € X. If lfr- fVl < Ml* -yl for all x,y e X, f is M-Lipschitz.
If also lf" - fyl > lo - yllM ar,d M > L, .f is M-bilipsehitz. This means
that / is a g-quasi-isometry with p(t) : Mt. If q is a growth function, an
injective map /: X ---+Y is r7-guasisymmetric or 7-QS if lo- rl < tlb-cl implies

lf" - frl < rl(t)lfb - fxl for all a,a,b e X and t > 0. A QS map is always an
embedding [TV1, 2.21].

3.4. Sjxclasses of maps. Let G * E, G'* E', andlet f:G -- G'bea
homeomorphism. We consider G and G' as metric spaces with the QH metrics
lc: lcc and ,t' - kc,. As in [TVzl we say that / is g-solid if it is a rp-quasi-

isometry in these metrics, that is,

v-l(k1r,y)) < h'(f *,fy) < p(k(*,y))

for all r,y ia G. As in [TVs] we say that / is M-quasihyperbolic or M-QH if
/ is M-bilipschitz in these metrics:

k(x,y)/M l kt(f a,fy) < Mk(r,y).

If / is Z-QS in the QH metric, we say that / is 7-QHQS.
For every subdomain D c G, / defines a homeomorphism lo:(D,ko) -

11 D , k y o). We say that f has fuily a given property if each /2 has this property.
We thus obtain the classes of fully g-solid, fully M-QH and fully ?-QHQS maps.
These properties are also defined in the case where G : E or G' : E'; the
property is then required to hold for all proper subdomains D C G.

The class of fully g-solid maps is the main object of this paper, and we shall
alternatively call them fueely g-quasiconformal or g-FQC maps.

There are obvious relations between these six classes of maps. Firstly a

fully g-solid,fully M-qH orfully ?-QHQSmapis rp-solid, M-qH or 4-QHQS,
respectively, provided G * E, G' *.8'. F\rrthermore, an M-QH map is rp-solid
with rp(t) : Mt and a-QHQS with ,l(t): Mzt,and similar implications hold
for the corresponding full properties. In later sections we shall also prove that
arr M-QH map is fulLy 4M2-QH (Theorem 4.7) and that a g-FQC map is fully
?-QHQS with some T: Tp (Theorem 5.1,4).
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3.5. Rema,rk Let us consider the special case -E : Rn : E' , n ) 2. Then we
can compa,re the concepts of 3.4 with the quasiconformal (QC) maps. A /{-QC
map is cp-FQC with

P(t): Cy(tv tl/K),
see [Vu, 12.201. Conversely, a 9-FQC map is ](-QC with -I( : K(p,r) by [TVr,
6.12]. If / is ?-QHQS, it follows easily from Lemma2.2 and from the metric
definition of quasiconformality that / is /(-QC with .I( : ?(1)"-1. Conversely,
a I(-QC map is ?-QHQS with 4 : rlK t which follows from Theorem 5.14 of the
present paper.

Hence in .8" the classes K-QC, 9-FQC and I7-QHQS are mutually equiva-
lent, and the quantities K,g,7 depend only on each other and on n.

3.6. Definitions. Suppose that f : G -- G' is a homeomorphism with G + E,
G' * E'. Let 0 ( to ( 1 and let 0: [0,t6) --, [0,*) be an embedding with
A(0) : 0. We say that / is (9, ts)-relative if.

lf"-fvl.r1lx-vl\
6'(f*) = "\ a1r; /

whenever o,U Q G and l* - yl < t66(r). If ,0 : 1, we simply say that / is
d-relative. This is a well-known concept, see 3.9.

If / is g-uniformly continuous in the QHmetric, we say that / is g-semisolid.
Thus / is g-solid if and only if "f and "f-' *" g-semisolid.

3.7. Theorem. If G + E, G' + E' and f: G -, G' is a homeomorphism,
then the following conditions are quantitatively equivalent:
(1) f is ?-relative,
(2) f is (0,ts)-relative
(3) f is g-semisolid.

Proof. We show that (1) + (2) =+ (3) =+ (1). The implication (1) + (2)
is trivial. Assume that (2) is true. Choose f1 ( fs such that 0 ( tr < | and
0(tr) < l. tet s,a e G'with k(*,y) S *tr. then 2.tr implies l" -vi Stit(*).
By (2) we obtain

lf:,=f,vl {d(tr)S å.6'(fr)
Again by 2.5 and (2) this yields

lr'(f *, fa) < z|(zk(x,y)),

and hence f is (p, |t1)-uniformly continuous in the QH metric with 9(t) : 20(2t),
and (3) follows from 3.2.

Assumethat (3)holds. Supposethat r,U e G, lV-*l:t6(t), 0 ( t (
1. Define the homeomorphisms d6: [0,1) -+ [0,oo) and rbo:l},,oo) * [0,oo) by
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1s(t) : tlT - t), ,bo(t) : et - 1. By 2.2 (2) we have k(*,y) < 0o(r), and 2.2 (1)
implies

lfr - ful

ffi 3'ho(k'(ft'fY))'

Hence we obtain (1) with 0 - $s90s. o

3.8. Corollary. For a homeomorphism f : G -- Gt the following conditions
are qua.ntit at ively equivalent :

(1) f alad f-' *" |-relative,
(2) f *rd f-' *" (0,ts)-relative,
(3) f is s-solid. a

3.9. RemarJrs. 1. Of course, the full versions of 3.7 and 3.8 are true.
2. The fully d-relative maps in -8" were considered by Gehring [Ge, p. 14]

already in 1963. He called them briefly 0-mappings and showed that this condition
is equivalent to K-quasiconformality with d and K depending only on each other
and on n.

3. In general normed spaces, these maps have been studied in the late seventies
by G. Porru [Po1,Po2] and P. Caraman [Ca].

4.By 3.2, a solid map f: G --+ G' satisfies a coa,rse QH bilipschitz condition

This means that / is QH bilipschitz for large distances.
5. The relations between semisolidity and solidity are discussed in 5.12.

3.10. Compositions and inverses. Suppose that /: G -- G' and g: Gt --+ G"
are homeomorphisms with G" C E" . It follows directly from the definitions that
all six classes of 3.4 are preserved under composition. For example, if / is 91-solid
and g 92 -solid, then 9/: G -- G" i, gzgr-solid.

Similarly, the inverse f-1: G' -+ G of a g-solid map .f is g-solid etc. The
inverse of an 7-QHQS map is r/'-QHQS with r7'(t) : ?-1(r-l)-1.

4. Quasihyperbolic maps

4.7. Prelimina.ry rema,rks. Recall that a homeomorphism /: G + G' with
G * E, G' + E' is M-QH if it is M-bilipschitz in the QH metric. This class
has several pleasant properties. For example, we show in 4.7 that the concepts
M-QH and fully M-QH are quantitatively equivalent. Flom this we obtain the
quantitative implications M-QH + 9-FQC + rp-solid. F\rrthermore, the M-QH
maps have a local characterization (see 4.6), which is useful when proving that a
given map is M-QH.

The QH maps have turned out to be useful in the QC theory of .8". For
example, the Beurling-Ahlfors extension [BA] of a QS map of .El to a half plane
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is QH. This property was used by Ahlfors [Ah] to obtain a bilipschitz reflection
across a quasicircle through oo.

If. E : E' : Rn and n + 4,the classes QH, QC and solid are rather close to
each other. Indeed, if. f : G --+ G' is rp-solid and e > 0, there is M : M(g,e,n) )
1 and aa M-QH map 9: G -- G' such that the QH distance b'(f ,g) is less tha^n

e ITY 2 , 7.4). The map g is also *z'-z -QC. In particular, two domains G and
G' in R, n * 4, are QH equivalent if and only if they are solidly equivalent in
the natural sense.

4.2. Notation. Let f:X + Y beamapbetweenmetricspacesandlet ae X
be non-isolated. Then we let L(*, f) and I(e, /) denote the upper and lower limit,
respectively, of the quotient lf(y) - f@)l/ly-rl as y ---+ n. For maps f: G ---+ G'
we use the notation Lp(r,f), lx(*,/) when using the QH metric. The following
lemma is obvious:

4.3. Lemma. Assumethat f :

tween metric spaces and that r and
Then

L(r, g f) < L(f *,s)L(*, f),
provided that the product is not of the form oo.0 or 0.oo. If f: X --+ Y is a
homeomorphism, then

L(*, f) : l(f a,/-t )-'. o

4.4.Lernrna, Let f:X +Y beamap. If f is M-Lipsehitz,then L(r,f)<
M for aJl non-isolated points r e X . Conversely, if X is c-quasiconvex and if
L(*,f) 1M for all r € X, then f is cM-Lipschitz.

Proof. The first assertion is obvious. The converse part is well known in the
case where X is a line segment [Fe, p.64]. In the general case, let o,U Q X and
Iet 7 be an arc joining r and y with l(l): ) ( clr -yl. Lef o: [0,,\] --+ 7 be the
arc-length parametrization of 7. Then a is 1-Lipschitz, and hence L(t,,a) < L

for all t € [0,Å]. By 4.3 we have L(t,f") < M for all t. Hence the special case
gives

lf*-fylSM^
4.5. Lemrna. Let f , G + G' be a

Then

f,x@,f)-W,
for all n € G.

X -+ Y , gi Y -) Z are continuous maps be-

f x are not isolated in X and Y , respectively.

homeomorphism with G + E, G' * E'

t(r, f)6(x)
6'(f ")

l*(n, f) -

Proof. This follows easily from the estimates (2) and (3) of 2.2. El
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4.6. Theorem. tref f: G -'-+ Gt be a homeomorphism with G * E, G' * E' .

Then f is M -Lipschitz in the QH metric if and only if
L(itD6!*) . u6',(f')

for all x e G, and f is M-QH if and only if, in addition,

L(fx, l-t)6'(fx) _ 6'(f*) < ur6(r) t(t, f)6(r) - ''-

foraJlreG.
Proof. Since a domain is c-quasiconvex for every c > 1 in the QH metric,

the theorem follows from 4.4, 4.5 and 4.3. o

4.7. Theorem. Suppose that G + E, G' I Et and that f: G --+ G' is
M -qH. Then f is fully 4M2-qfi.

Proof. Let D C G be a domain. By symmetry and by 4.6 it suffices to show

that
6t(fx)6olu) < 4Mo(*)ErU,t

for all r € D. By auxiliary similarities we can normalize 6(r):1:6'(,fc), and
the assertion reduces to 

^t_\ _ ,r!t). < 4M.a\x): 6v*l -
If 6yo(f r) >- trU, we have "(") < 2M6(r):2M. Assume that 61p(/r) <

LlzM. Choose e < tl2M - 6yo(f r) and then y' e 0f D with

ly' - f*l < 6yo(f*)* e < Ll2M.

Then
6'(y') 2 6'(f*) - 1,12M - 1 - L/zM > 0.

Hence y': ly forsome y eGnAD. Since / is M-QHandsince lf*-y'l<
f, : f,6t(f r), 2.5 gives

k(*,y) < Mk'(f a,,y') < zMlf o - y'll6'(f x) < 1.

Again by 2.5 this implies

6 o(*) < lc - yl < 2k(a, a)6(x) : 2lc(r, y) < 2M k' (f *, y' ) < aMlf r - y' 
I

a+M(61o(fu)+e).

As e --+ 0, this gives a(r) 14M. o
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4.8. Theorem. If a homeomorphism f : G -- G' is locaJly M -bilipschitz in
the norm metric, then f is fully M'-qH.

Proof. Assume that D C G is a domain with D I E. We first show that
fD+.8'. Fix a€D andchoose be 0D suchthat a:la,b)CD. Then /la is
M-Lipschitz, for example, by 4.4. Since E' is complete, f x converges to a Iimit
b' as x ---+ å on a. Now b' e f D, since otherwise 6: 7-1(b') e D.

By 4.6 it suffices to show that 62(c) < M61o(f a) for an arbitrary u € D.
Let Ä ) 1 and choose y' e AID with ly' - f"l < ),67o(f x). Replacing y' by
a point in [fx,y'7 we may assume that §: lf*,y') lies in f D. Now f-'10 i,
M-Lipschitz. Arguing as above we conclude that f-'(r) converges to a point y
as z ---+ y' on 0. Then y e AD, since otherwise y' : fy € D. Consequently,

6o@) < ly - *l < Mlv' - f"l < ),M6 yo(fr).

As Å ---+ 1, this gives the desired result. o

4.9. Inversion. In the rest of this section we shall give various examples of
QH maps. Let G:.8\ {0} and let u: G * G be the inversion u(r) : ollol2.lf
dimE : 1, we let G be one of the components of E \ {0} in order that G be a
domain. We have

lux-uYlfsl*-vl= lrllvl
forall a,a e G [Vär, 1.6]. Thus.L(o,u)<3lal-2 forall o € G. Since
and u : u.-r, 4.6 implies that u is 3-QH. By 4.7, u is fully 36-QH.

If .E is a Hilbert space, then lur - uyl : l* - Vll*l-' lyl-t, .rrd
isometry and fully 4-QH.

4.L0. Theradialpowermaps. Let a 21 anddefine f: E --+ E by f(x)
l*l'-'*. Let G be as in 4.9. We show that the homeomorphism fi: G --+

defined by / is o-QH.
We first show that fi is a-Lipschitz in the QH metric. Now 6(r) : lrl. By

4.6 it is sufficient to show that

L(*,f) ! alf alllrl: olrlo-1

for an arbitrary a e G. Let h € -E with llrl < lrl. Then

Using this, the formula

6(r) - l"l

u is a QH

:
G

Jussi Vd,isälä
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and the derivative of the real function u(t) - to-r we easily obtain

L(*, f) < (a - 1)lrl"-2lzl + lrl'-' - olrl"-'.
Next observe that the inverse map g: -fr 

t is of the same form S@): l*19-'*,
but now 0:|la ( l-. Since

(l,l+ läl)B-' < l, * hle-r . (l,l - lhl)B-',
an obvious modification of the preceding argument gives

L(*, il < Q - ill*lq-' S alr;n-t : algclllrl.
Again by 4.6, 9 is o-Lipschitz in the QH metric. Hence fi is a-QH. o

4.1L. The infinite iube. Let -E be a Hilbert space of dimension at least 2 with
inner product written as r.A. Let e1 € E be afixed vector with lell :1. The
domain

G : {*: lr - (r .er)erl < i"\
is an jnfinit e tube with axis 7 : span e1 and radius lr . Let ä be the half space

{a:r.", >0}. Wedefineahomeomorphism f:G---+ ä asfollows:
Each r € G has arepresentation s: sel*ry where s €.R1 , 0 ( r aLn,

U'at:0 and lyl : f . The representation is unique if r > 0. We set

f(*) : e'(cos r)et + e'(sin r)y.

Thus / is the exponential map of the strip 0 I lm z ( |zr rotated around the
line 7.

We show that / is M-QH with M : Lro. Let r : set +ry € G with r > 0.
Then / has a Fr6chet derivative f'(*) : A at r. Let It be the 2-dimensional
subspace of E spanned by e1 and U, md let Fz be its orthogonal complement.
Then .F-1 and F2 are invarint under ,4.. Moreover, the maps Ar : Äl.t.1 and
Az : AlFz are linear similarities. It follows that

lAl: l/{lv l,qrl, t(A) : lAtl 
^ 

lArl,
where now lAl : L(x,f), l(A): l(x,/). A" easy computation gives 1,4,11 : e'
and lA2l : e'(sinr)/r. Since r a in, we obtain lAl: e",l(A) > 2e"fr. At
points n : sel the derivative also exists and is a similarity with l,{l : l(A) : e" .

Furthermore, setting t:'zn -r wehave

and hence

By 4.6, / is |zr'-QH.
Observe that the argument is the same in finite- and infinite-dimensional

spaces. The next example illustrates a new phenomenon which does not occur
in rB".

6'(f *) - ee sinf,

t(x, f)6(x) \ 2t 2
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4.12. The broken tube. Let, .D be an infinite-dimensional separable Hilbert
space. Choose an orthonormal base (.)ie, of E indexed by the set Z of all,
integers. Setting 7'i : lei;.,eil we obtain the infinite broken line

,,:l)b,i: j e zj.
As in 4.11 we let 7 denote the line spanned by "r. We divide 7 to line segments
'li : loi-r,,a7] with ai : jJ1et. Then there is a natural homeomorphism /s: 7 ---+

7' which maps each 1 isometrically onto .yi. lt is rather obvious that for small r,
say for r 11,f'1,0, we can extend /6 to a homeomorphism / of the tube G :
'y + B(r) onto a neighborhood G' of 7' such that / is locally M-bilipschitz with
a universal M . The domain G' is a broken tube. By 4.8 / is M, -qH.Using the
map of 4.11 and a similarity map we obtain a rM2/Z-QH map g: H --+ G,. The
cluster sets of g at 0 and at oo are empty.

We conclude this section by some well-known inequalities and bilipschitz con-
structions which will be needed in Section 5.

4.13. Lemma. .Fbr every pair o,A e E \ {0} and for pa : r/lal we have
lp*-pal<21*-yl/l*|.

Proof. l*llp* - nal < lr - l"lyllyll< lr - yl + llol - tyll S 2lr - yl. o

4.1,4. Radial bilipschitz maps. Suppose that g: [0, 11] --, [0, 12] is an increasing
M-bilipschiz homeomorphism. Write again p(c) : r/lrl for c € E \ {0}. Setting

"f(*) : g(lcl)p(r), /(0) : 0

we obtain a homeomorphism f: B(r1) + B(r2). The possibility rL : 12 : oo
allowed; then /: E --+ E. Since g(t) I Mt, Lemma 4.18 implies for all c,y
B(r1) \ {0i

lf" - fyls g(l,l)lp* - pyl+ lo(l,l) - s(lyl)l s eu1* - 11.

By symmetry and continuity / is 3M-bilipschitz.

5. Flee quasiconformality
5.1. Summary. In this section we mainly consider various quasisymmetry

properties of FQC maps. We also show that these maps are Hölder continuous
and that the distortion function g of an FQC map can always be chosen to be of
the form p(t) : C(t' V t), a ( 1.

5.2. Weak quasisymmetry. For H > 1,, an embedding /: X -+ Y is weakly
H-quasisymmetric if lo-rl < lö-cl implies l"f"- f*l < nlfU- /rl for atl
a,b,x e X. Thus an ?-QS map is weakly Ii-QS with ä: ?(1). The converse
result is true in some special cases. For example, if X C .8" is pathwise connected
and if f: X + .R" is weakly ä-QS, then / is 7-QS with 7 : q(H,n); see

[Vä3, 2'9]. The corresponding statement in arbitrary Banach spaces is not true.
However, we shall show that the ideas of [Väs, 2.g] ca,n be used in the case where
X and fX are quasiconvex.

is

€
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5'3. Lemma. suppose that x is c-guasiconvex, that f : x --+ y is weakly
ä-QS and that a,b,r e X with l" - ,l : tlb - al. Then

ll"- f*l<n(t)lfb- f*1,
where 7: [0,oo) --+ [0,oo) is an increasing function depending only on H a.nd c.

Rema.rk. Since 7(f) is not reguired to tend to zero as I ---+ 0, / is not
necessarily QS.

Proof. For t ( 1 we can choose rl(t) = ä. Assume that t > t. By [TV1,
2.72) it suffices to show that x is C-pseudoconvex in the sense of [TVr , i.z] *itr,
C depending on c.

Let a,bex andsuppose 0< rlla-ö1. Join a and å byanarc 7 with
t(l) S cla-bl. Set ae : a and choose inductively successive points r,tt... tee : b
of 7 such that aial is the Iast point of 7 in B(ai,r). Then lai - ai rl :, fo,
1-< j <s- L and lo"- o"_r.l ( r. Hence (s- 1)r < /(7) I cla_å1. Thus X is
C-pseudoconvex with C(t) : 1 + ct. a

5.4. Lemma. suppose that f:x + y is weakry f/-es and that f x is
c-quasiconvex. If u,a,be X with la- xl:tlb-rl andif 0 S, < l, then

lf"*f*l<n(t)lfb-fxl,
whele 7: [0,1] ---+ [0, m) is an embedding with q (0) : 0 depending only on H
and c.

Proof. Since the inequality is true with 7(l) - H , we may assume that
0 <, < |. .loin fb and f* by an arc 1c fX' *itt 1171 < clfb_ f*l.Choose
successivepoints b:b0,br,...,å, of /-17 suchthat låi -cl:g-ilb_cl and s
is the least integer with 3-s < f . Then

, > '",('{') = so(t) -» mInS
as f --+0. Since t<L,wehave s)2.

Forl(r<s-lwehave
lbi - "lS läi - rl+ p - al < zlbi - al 3 lbi - bi_|.

Moreover, lbi - *l S låi - b1-tl.since / is weakly rr-es, we obtain

lf" _ f*l < lf" _ fbil + lfbi _ f*l < zvlfbj _ fbi_rl"
Summingover 1< j <s-l yields

(s - 1)l/a - f*l < 2ut(f < 2Hclfb - f"l.
Hence we carr choose

,tG):#a"
5.5. Theorem. suppose that f:x --+y is weaWy r/-es and that x and

f x a're c-quasiconvex. Then / r's 7-QS with r7 depending only on H and c.
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Proof. This follows directly from 5.3 and 5.4. o

5.6. Definition. Let 0 < g < 1. A homeomorphism /: G --+ G' is q-locally

r1-quasisymmetric if /lB(a,gr) is ?-QS whenever B(a,r) c G. It G * E, this

means that /lB(4,q6(")) is A-QS. If G: E, this means that f is A-QS'
A I(-eC map in .R; is g-locally a-QS for every q < L with 17 depending on

y'( and q [AW, 5.23]. Conversely, a g-locally ?-QS map in .R" is K-QC with
I{ : rt(7)"-1 by the metric definition of quasiconformality.

We shall next prove the corresponding free results.

5.7. Theorem. suppose that f : G -- G', is fully g-semisolid a,nd that

0 < g < 7. Then f is q-tocally f -QS witå r7 dependingonly on I and q'

Proof. We first show that / is 1/3-locally r7-QS with 7 : Tp'Let as e G
and assume B(*o,r) c G . Lel, x, a,b e B : B(so,r/3) with l" - *l : tlb - rl '

We must find an estimate

lf"- f*l<q(t)lfb- f0l

where ,l(r) - 0 as f -+ 0. We consider three cases.

case L. t < 213. By the full version of 3.7, / is fully a-relative with some

0:0v. WeapplyrelativityinthedomainD: G\{åi' If dim E:L,welet D be

the r-componentof G\{b}. Wehave 6p(r) :la-öl andhence l"-"1:t6o(r)'
Thus

lf " - f"l < o(t)d(f a',Af D).

Since d(/r,OID) S l/å - f*1, we can choose q(t) : d(t), which has the

desired behavior as f -+ Q.

case 2. 213 < ä < 1. writing z :2a13 * xlT and applying case 1 twice we

get

lf"- fxl S lf"- frl+lf, - f*l

case 3. t > 1. From the preceding cases it follows thar f lB is weakly fl-QS
with ä : H(d. since B is convex, the desired estimate follows from 5.3.

Next assume that 7/3 < q < 7. we shaJl reduce this case to the case g : 713

by an auxiliary map. Let g: [0,1] + [0,1] be the increasing homeomorphism with

SOle): g which is a.ffine on [0, 1/3] andon [1/3, 1]. Then g is M-bilipschitz with
M : M(q). Suppose that B(rs,r) c G. Applying 4.14 and auxiliary similarities
we obtain a radial 3M-bilipschitz homeomorphism hs: B(xs,,r) --+ B(us, r) which

maps B(rs,r/3) onto B(rs,qr). Moreover, hs can be extended by identity to
a homeomorphism h: E ---+.E, which is also 3M-bilipschitz. By 4.8 lz defines a

fully 9M2-QH map ht: G -+ G. Then the homeomorphism f, : f ht: G -' G'
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is fully cp1-semisolid with p{t):9(0M2t). Hence frlB(*o,r/B) is Z-eS with
,l: q(p,q). Since hlB(rs,,r/3) is a similarity map onto B(*o,qr), flB(as,qr) is
,l-QS."

5.8. Remark. Related results were proved by G. Porru in the late seventies.
In particular, Theorem 2.7 of. [Po2] states that a fully d-relative map is locally
weakly QS.

5.9. Theorem. If a homeomorphism f :G -, G, is q-locally ?-QS, then f
is fully g-semisolid with 9 depending on r7 and q.

Proof. Let D C G be a domain with D * E, f D + 8,. Then / defines a
g-locally ?-QS homeomorphism f; D --+ f D. By 3.7 it suffices to show that fi
is (9, q) -relative with 0(t) : q(t / il .

Suppose that o € D and b e B(a,S6o@)) : B. Let .\ > 1 and choose a
point z e Af D with lz - f"l < Ä6yo(fa). Let y be the first point of. ffa,z] which
is not in f B. since / i. ry-Qsjn B andsince B is complete, JB is complete by
[TVr, 2.24], andhence y e fE. Writing * : f-,(y) we have l, - "l 

: q6o(a),
and thus

W"i#<^m=^,(Hl) :^,#8)
Since Å ) 1 is arbitrary this provesthe (d,g)-relativity of fi. o

5.10. Theorem. For a homeomorphism f : G -- G' the foliowing conditions
are quantit at ively equivalent :

(1) / is rp-FQC.
(2) f ur,d f -' *" q-locally ?-QS.
(3) For every q € (0,1) thereis Tq suchthat f and 7-r are q-locally ?c-eS.

Proof. Observe that the data for (1) is 9, for (2) the pair (q,r?) u,,d for (B)
the function q å qr. The implication (3) + (2) is trivial, (2) + (1) follows from
5.9, and (1) + (3) from 5.7. o

5.11' Summary. We have three characterizations for free quasiconformality:
(1) full solidity, (2) full relativity of / and "f-', (B) g-local quasisymmetry of
/ and /-1. These are given in the original definition 3.4 and in Theorems 3.8
(cf. 3.9.1) and 5.10.

we also remark that the proof of 5.7 in the case dim,o ) 2 made only use of
domains D:G \{o}, a€G. Consequentlg if / is g-solidforeverysuch D, /
is I/-FQC with r/ : tbv.

5.L2. One-sided conditions. Il is natural to ask whether a fully g-semisolid
map /: G + G' is I/-FQC with $:lbc. In the one-dimensional case this is
not true, see 6.8. We do not know the answer in higher dimensions. However,
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if. E : Et : Rn, .f is ,/-FQC with t/ = rb(p,,n). Indeed, by 3.7 and by [Ge,
Theorem 4], futt g-semisolidity is equivalent to K-quasiconformality with I and

K depending on each other and on n.
We next-prove that the answer is positive if G is the whole space .E' We also

show that f E: Et.

5.13. Theorem. suppose that f: E -+ G', c Et is fully g-semisolid. Then

(1) G' : E"
(2) / is r7-QS with r7: Tle,

(3) / is r/-FQC with r!:rhc.
Proof. By 5.7, / is |-localty ,l-QS with 7 : Tv. Since the domain G is now

E, f is rl-QS in .8. Sirice QS maps preserve completeness, G' is closed in Et ,

and-hence C' : E'. Since f -r: E' --+ E is ?'-QS with 4'(t) : 4-t(t-t;-', (3)

follows from 5.10. o

5.14. Theorem. A P-FQC map f z G - G' is fully ?-QHQS with 11: \c'
Proof. We may assume that G * E, G' * E' . It suffices to show that / is

?-QHQS.Since G and G' are c-quasiconvex in the QH metric for all c ) 1, it
suffices to show, by 5.5, that / is weakly H-QS in the QH metric with ä : H(p).

Suppose that r, a,b € G with lc(a, x) < k(b,n) : r > 0. We must find an

upper bound p < H(p) for the ratio

k'(fo,f*)
P - k, (fb, f n).

By 5.10, f is L1}-locally ?-QS with rl -
B (",6(n) ft). Set rs - (1 16) A e-t (1) .

f Bx(r,ro) c Bn,(f *, 1).
By 3.2 we may assume that there are

\?. By 2.5, w€ have Bx(frrlll) C

Then f is ? -QS in B x(n, ro ) , and

,sff#<-,(ffi*) s+a1+1

Case 2. rs ( r <2C. Now p 3 e!C)le-'(ro).
Case 3. r ) 2C . Now tp-l(r) > (. - C)lM > rl2M, and hence

Mr*CPs'ffi<2M2 *M'o

5.15. Theorem. Supposethat f: G'+ G' is g-FQC, G + E. In each QH
ball Bp(z,r), f is r1-QS with r7 dependingon g attd r.
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Proof. By 5.14, / is r1-QHQS with \ : 0v. Let U : M(p(r)) be the
number given by Lemma 2.6. lf. r,a,b e Bp(z,r) with l" - *l < tlb rl, then the
images of these points are in B*,(f ,,p(r)), and 2.6 easily implies

lf"- f"l< M'rt(M't)lfb- fal.

Hence f i" ,tt-QS in Bp(z,r) with 41(t) : Mzrt(M2t). o

5.16. RemarJ<. For QC maps in -B', Theorem 5.15 is an unpublished result
of O. Martio.

5.17. Quasimöbius maps. Let q be a growth function. An injective map
f : X ---+ Y is called r1-quasimöbius or ?-QM if each cross ratio

la-bllc-dlr: la-cllb-l
of distinct points a,b,c,d h x satisfies the inequality fr < tl?) where /r is the
cross ratio of the points f o, f b, f ", f 

d. The basic QM theory is given in [vä1]. An
7-QS map is 71-QM with 71 : rlr}l). Roughly speaking, the essential-difference
between QS and QM maps is that a QM map need not fix the point at infinity.
However, we do not consider in this paper domains which contain oo.

In -8" an ?-QM homeomorphism /: G -+ G, is K-eC with I( : ?(1),-r.
We next prove the qorresponding free result:

5.18. Theorem. If f : G -» Gt is r1-QM, "f is g-FeC with 9 : p,t.

Proof. Suppose that D C G is a domain with D * E, f D + E,.We apply
[Vä1, 3.19] observing the misprint /4 \ {-} which should befÄ\ {*}. .ih";
/ has a homeomorphic extension /: D 

=TD. 
By au4liary translaiiårrr-*" *.y

assume that 0 e AD -and that either RO) : O or /-(0) : oo. Let u be the
il":l:i"" u(r)::/!.1'. If 7(0) : 0, we define s: uD .--+ uf D bv s@): ufu(a).
If /(0) : oo, we define g: uD -. f D by g(r) : f u(x). In both "*"" g i, ;, -öM
with r71 dependingon ?; see [Vär, 1.0]. Since g(e) ---+ oo as s --] oo, 9 is 41_eS.
By 5.L0, g is pt-FQC with gr : p{n). By 4.9, u is fully B6-eH, u',a hånc" /is g-FQC with 9 :g,r.o

5.19. Theorem. Supposethat f : G -- G, is g-FeC with G * E, G, * E, .
Then f safisfies the Hölder condition

6'(fa) \

forallae G and å€B(o,å0(")) The
on g.

c(#) "

constants C> 1 ar.d ot< 1 dependonly
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Proof. By 5.10, / is |-locally ry-QSwith 4 :\s'Fix o e G and define a

homeomorphism g: E('t) - Q c E' by

g(r) _ f (" + 6(o)r)
6'(f ") 

'

Then g is A-QS. By [TV1, 3.t41, g satisfies a Hölder conditron

lg(*)-e(o)l <clrl'

with a ( 1 and c ) L depending on g and on the numbers d(Q) and d,(B(r))
:1,. If lo-bl. åa(r), then k(a,,b) < 1 bv 2.5. Hence k'(f o,fb) <eG)' Bv 2'2

(1) this implies li"- fOl < 6t(fQev(r), and hence d,(q <2"r0). Hence c and

a depend only on g. Since

f(r):6'(lo)s(G)

for z e B(a,trA@\, we obtain

ryc#: lo(o) -'(W)l = "(':oi')"'
5.20. Theorem. If f : G -+ Gt is 4-FQC, then f i" pr-FQC with some 91

of theform 91(t):C(t'Y t), where C > I and a3L depend only on 9'
Proof. Let D C G be a domain with D + E, fD * E'. Let C arrd a be

the numbers given by 5.19. Set ls: å A p-t(t). If x,Y e D arrd lcp(x,Y) 1to,
then 2.5 gives lr - yl < L6"(*), and by 5.19 we have

ffi=,(w)"
Since &yo( f ", f V) ( 1, this and 2.5 yield

kyo(f x, f il 3 zC (zkp(t,Y))" '

Hence we can choose p{t) :27*agp for t ( 16.

Next assume that l'o(*,u) : t 2 to' By 3'2, we may assume that g(t) 3
Mt + Ct for some M ) L and Cr ) 0 depending on ?. Hence

kyo(fr, fv) 3 Mt * Ct < @ + Ctlto)t : Czt'

Hence we can choose pr(t) : Czt for t ) ts. o
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6. Finite-dimensional spaces

6.7. Pteliminary remarks. In this section we briefly consid.er the case where
dimE:dimE':n 1oo. If thenormsof .E and E'ateinducedbyaninner
product, we can identify E = Rn : E'. In this case, assuming n > i, th" fr""
rp-quasiconformality is equivalent to ordinary K-quasiconformality, as explained.
in 3.5. The case n : 1 will be considered in 6.2.

If E is a Banach space of dimension n, there is a 1fr-bilipschitz linear map
T: E --+ E" by a classical result of Banach space theory, recalled in 6.2 below.
This reduces the n-dimensional FQC theory to the case .E : Rn - E, , as far
as we are not interested in sharp quantitative results or the special features of
9-FQC maps with g close to the identity.

6'2. Lemma. suppose tåat dim.E : dim.E' : n. Then there is a linear map
T: E ---+ Et such that

lal!lTrl<nl*l
for aJl x € E. Thus T is n-bilipschitz. Thereis aJso ahomeomorphism h: E --+ Et
such that
(1) å()r):Åå(z) foraJlxe E and)€ä1,
(2) lhal: lal for ill r e E,
(3) h is M -bilipschitz with M :2n * t.

Proof. The first part of the lemma was proved by F. John in 194g, see [MS,3.3]. The second part follows from this with

h* : l?lT!
lTrl

for a { 0. The properties (1) and (2) are clear, and (B) follows by elementary
estimates with 4.13. o

6.3. Applications. suppose that dim.E: dim.E, : n. we first observe that
arry linear bijection T: E --» A" is bilipschitz, and hence the qualitative results of
the QC theory of R are readily extend.ed to Fec maps between d.omains in .E
Td E'. For example,.an FQC map f: G ---+ G, is ACL and a.e. differentiable;in
E we use any translation-invariant Haar measure.

For quantitative results we use 6.2. As an example we give the loca,l metric
definition for FQC m_aps. we let H(*, f) denote the metric (or [near) dilatation
of / at 0; see e.g. [Vä1, p. 281].

6.4. Theorern. Supposethat dim.E: dimE, : fr,2.-n .-oo, a,nd. that
f: G --+ G' is rp-FQC ?hen H(r,f) ( Ilo : Ho(p) for a[l a e G. Conversely, if
f is a homeomorphism with H(*, f) I Hs for il a e G, then f is g-Fee iithg dependingon Hs and n.
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Proof. Suppose that / is ,-FQC. By 5.10, / is |-local1v 4r-QS' Hence

H(r,f) < ?r(1) : Ho(p). This part is valid without dimensional restrictions.

Next suppose that ä(r, f) I Ho for all x e G. Choose linear maps ?a: .E --+

Rn, T': E' -- Rn as in 6.2. Setting å("): T'fT-r(r) we obtain a homeomor-

phism fi: TG ---+ TtG'. With the customary notation [Vä1, p. 231] we have

for all r € TG. By [Cr, Theorem 1] this implies that fi is K-QC with K :
K(Ho,n). Hence h is gt-FQC with 91 :qr(Ho,n), see 3.5. Since T andTt
are n-bilipschitz, the theorem follows by 4.8' o

6.5. The radial power map. Theorem 6.2 can sometimes be also applied in
infinite-dimensional spaces. Lel E be a Banach space, let a ) 1, and define

f : E --+ E by f (*) - lxlo-r*. This map is 4-QS with T: \a, but a direct proof
seems awkward. However, since each triple is contained in a linear subspace Es

with dim Eo 13 and since f Eo : '86, we may assume that dim'E : dim'E' : 3'
Using the map h of. 6.2 we reduce the problem to the case /: .l13 -- .i73, where

the result follows from the quasiconformality of /.
An alternative proof is based on 4.10. Indeed, in the domain .E \ {0} / is

a-QH and hence 9,-FQC. By a removability result in [Väa], / is r/.-FQC in E
and hence ?.-QS by 5.13.

6.6. The case n:1. Suppose that dimE : dim-E' : 1' Then we can

identify E : Rl : E, . A domain in .81 is an open interval (orb), where possibly

o : -oo or b : oo. The following result identifies the FQC maps in l?1 :

6.7. Theorem. Suppose that G and G' aJje domains jn ftl and that

f : G -- G' is a homeomorphism. Then the following conditions are quantita-

tively equivalent:
(1) / is e-FQC,
(2) / is q-QM.

Proof' By 5'18, the implication (2) =) (1) is true in all Banach spaces'

Assume that / is 9-FQC. We may assume that G * R', Gt I P,t. By 4'9, the

Möbius map u(z) : r/lxl2 is fully 4-QH in ,tt \ {0}. using this and similarity
maps we can normalize the situation to the case where G : G': (0, oo) and / is

increasing. It suffices to show that / is weakly ä-QS, which mea,ns the classical

Beurling-Ahlfors condition.
suppose that u € G and, > 0 with c -t e G. we apply solidity in the

domains D : (r-J,m) and fD : (f(x-t),*). We have

ko(r,n+t):1n2,
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kro(ff q, f(r + t)) f(*+f)-f(*-t)
f(") - f(* - t) )

f(* +t) - f(*)
f(*)- f(*-t)
for p we may assume p < * . Then 2.5 yields

te yo(f (r),, f (* + t)) < zp,

and hence p )- p-'ltnZ. "
6.8. Remark. The one-dimensional case differs in many ways from the higher-

dimensional case. For example, if / is a real Cl-function with positive derivative,
then ä(r,.f) : f for all o. Since / need not be QM, Theorem 6.4 is not valid for
n: L. We next give an example which shows that a fully g-semisolid map need

not be ,/-FQC with t/ : rlrp.

Let 0< a<f,, let G:(-1,1),andlet /: G--»G bethehomeomorphism
which sends -f , 0, I to -o,0,e a.nd is Möbius on the intervals (-1, 0) and (0, 1).
Since ,b(-o,o) - 0 as a - 0, .f is not g-solid with a universal g. However,

with the aid of 4.6 one can show that / is fully 4-Lipschitz in the QH metric.
The reason for the special properties of the case dimE : 1 seems to be the

fact that balls have nonconnected boundaries and complements.

7. Further results and open problems

7.'J.. Announcements. In the second part [Viia] of this investigation we shall
mainly consider the boundary behavior of FQC and solid maps. For example, an
isolated boundary point is removable for these classes. We shall also develop the
theory of uniform domains in Banach spaces. If G and Gt are c-uniform and

f: G ---+ G' is g-FQC, then / is 7-quasimöbius with 4:\(p,c). In particular,

/ extends to a homeomorphism l,G -.d .lt / is only p-solid, / still has this
homeomorphic extension, and the induced map äG '- 0G' is q-quasimöbius. We
also prove a reflection principle for FQC maps.

7.2. Open problems. We list some open questions.
1. Is a fully g-semisolid map pr-FQC with 91 : pr(p)?
2. Suppose that /: G --+ G' is a homeomorphism and that each point in G

hasaneighborhoodinwhich /is g-FQC.I" f pt-FQCwith 91 :pr(p)?
3. Suppose that ff(r, f) 3 Ho for all t e G. Is / g-FQC with I : g(Hs)?
4. Is an FQC map somewhere differentiable? See 7.3.
5. Is an FQC map absolutely continuous on some line segment?
In the problems 1, 2, 3, 5 we assume that dim.E ) 2, since in the one-

dimensional case the answer is known to be negative. The problems 1, 2, 3 are
also open in the case dimE : n ) 2, since the known bounds depend on n.

1n

which imply

p-

To obtain a lower bound
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7.3. Addendum. An FQC map need not be differentiable anywhere. In
fact, a bilipschitz map of the separable Hilbert space E : Iz onto itself need not
be differentiable anywhere. The following example was given to the author by
D. Preiss: Define g: E --+ E by

Then the map f: E + E defined by

fa:x+5012
is 2-bilipschitz but nowhere differentiable.

On the other hand, Preiss [Pr] has recently proved that a Lipschitz map

f : 12 --+.Bl is differentiable in a dense set.

References

[Ah] AulroRs, L.V.: Quasiconformal reflections. - Acta Math. 109, 1963, 291-301.

[AVV] ANnERsoN, G.D., M.K. Vluluauunruy and M. VuoRtNsN: Dimension-free quasicon-
formal distortion in n-space. - tans. Amer. Math. Soc. 297, 1986, 687-706.

[BA] BnuRr,wc, A., and L. Anr,roRs: The boundary correspondence under quasiconformal
mappings. - Acta Math. 96, 1956, 125-1.42.

tC"] CaRlM.a,N, P.: Quasiconformal mappings in real normed spaces. - Rev. Roumaine Math.
Pures Appl. 24, L979,33-78.

[C.] CRtsrEe, M.: Some conditions for quasiconformality. - Ann. Acad. Sci. Fenn. Ser. A I
Math. 14, 1989, 345-350.

tF"l FEDERER, H.: Geometric mea,aure theory. - Springer-Verlag, Berlin, 1969.

[Gu] GeuRtttc, F.W.: The Carathdodory convergence theorem for quasiconformal mappings in
space. - Ann. Acad. Sci. Fenn. Ser. A I Math. 336/11, 1963, 1-21..

[GO] GEIIRING, F.W., and B.G. Oscoop: Uniform domains and the quasi-hyperbolicmetric.
- J. Analyse Math. 36, L979,50-74.

[GP] GeuntNc, F.W., and B.P. P.q,Lx.A,: Quasiconformally homogeneous domains. - J. Änalyse
Math. 30, 1976, 172-199.

tcd Gnötzscn, H.: iiber die Verzerrung bei schlichten nichtkonformen Abbildungen und iiber
eine damit zusammenhängende Erweiterung des Picardschen Satzes. - Ber. Verh.
Sächs. Akad. Wiss. Leipzig 80, 1928, 503-507.

[MS] MILur,tl, V.D., and G. Scnscxtu.l,N: Asymptotic theory of finite dimensional normed
spaces. - Lecture Notes in Mathematics 1200. Springer-Verlag, 1986.

[Por] PoRRU, G.: 0-mappings and quasiconformal mappings in normed spaces. - Rend. Sem.
Mat. Univ. Padova 57, L977, 173-182.

[Poz] PoRRU, G.: The boundary correspondence under mappings with bounded triangular di-
latation in real normed spaces. - Analytic functions, Kozubnik 1979, Lecture Notes
in Mathematics 798. Springer-Verlag, 1.980, 392-401.

tPd PRetss, D.: Differentiability of Lipsctritz functions on Banach spaces. - J. Funct. Anal. 91,
1990, 312-345.

[TVr ] TuKI.o., P., and J . VÅrsÄrÄ: Quasisymmetric embeddings of metric spaces. - Ann. Acad.
Sci. Fenn. Ser. A I Math. 5, 1980,97-114.

gn: (l"r l,l*rl, . . .) .



Free quasiconformality in Banach spaces I 379

[TVzJ TuKr.l, P., a.nd J. VÅrsÅr,Ä: Lipschitz and quasiconformal approximation and extension.

- Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981, 303-342.

[TVal TuKr.a., P., and J. VÅrsÅrÄ: Bilipschitz extensions of maps having quasiconformal exten-
sions. - Math. Ann. 269, 1984, 561-572.

IVär] VÅtsÄlÄ, J.: Quasimöbius maps. - J. Analyse Math' 44, L984185,218-234.

[Vär] VÄtsÅr,Ä, J.: Quasiconformal concordance. - Monatsh' Math. 107, 1989, 155-168.

[Väg] VÅrsÄtÄ, J.: Quasiconformal maps of cylindrical domains. - Acta Math. 162, 1989, 201-
225.

[Vän] VÅrsÅlÅ, J.: Free quasiconformality in Banach spaces II. - Preprint, University of Helsinki,
1990.

[Vu] VuoRlNEN, M.: Conformal geometry and quasiregular mappings. - Lecture Notes in Math-
ematics 1319. Springer-Verlag, Berlin-Ileidelberg, 1988.

Helsingin yliopisto
Matematiikan laitos
Hallituskatu 15

SF-00100 Helsinki
Finland

Received 13 March 1990
Revised 1 October 1990


