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FREE QUASICONFORMALITY IN BANACH SPACES 1

Jussi Vaisala

1. Introduction

1.1. The idea of the paper. The concept of a quasiconformal map was intro-
duced in 1928 by H. Grotzsch [Gr], who considered maps in the plane R?. The
notion was later extended to maps in R™ by several authors. The purpose of this
article is to lay foundations of an analogous theory in general Banach spaces. The
main emphasis will be on the basic definitions and on relationships with various
known classes such as the quasisymmetric maps. The methods of this paper are
elementary. In a later paper [Va,] we shall consider the boundary behavior and
other more specific properties of these maps. Some of these results are announced
in Section 7.

Let E and E' be real Banach spaces, and let G C E and G' C E' be
domains, that is, open connected nonempty sets. Let ¢: [0,00) — [0,00) be a
homeomorphism with ¢(¢) > t. In Section 3 we shall define the class of freely ¢-
quasiconformal homeomorphisms f: G — G', abbreviated ¢-FQC. The definition
will be given in terms of the quasihyperbolic metric. Two alternative character-
izations are given: one is based on the §-mappings considered by F.W. Gehring
already in 1963; the other one makes use of local quasisymmetry. Earlier results
on f-mappings in normed spaces have been obtained by G. Porru [Po, ], [Pos]
and P. Caraman [Ca].

If E=R"=F', then f is ¢-FQC if and only if f is K -quasiconformal in
the usual sense. Here K depends only on ¢ and n,and ¢ depends only on K.
The word “free” refers to dimension-free. However, our theory differs essentially
from the results called dimension-free by Anderson, Vamanamurthy and Vuorinen
[AVV]. They consider K -quasiconformal maps in R™ and give various estimates
in terms of K. Their main tool is the modulus of a path family, which cannot
be used in the free quasiconformal theory in the sense of the present paper. Our
theory can also be called volume-free.

We assume that E and E' are Banach spaces for the sake of convenience.
However, the definitions are meaningful and several proofs are valid in arbitrary
normed vector spaces.
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1.2. Restrictions. In a Banach space E with dim E = co we must forgo
many luxuries of R™. These can be divided into four types:

(1) Topological. Firstly, E is not locally compact and its one-point extension
E = EU{co} is not compact. For example, we cannot use the Ascoli theorem on
normal families. Furthermore, the cluster set of a map at a boundary point can
be empty.

Secondly, we cannot use the pleasant topological properties of R™ related to
the Jordan-Brouwer theorem. For example, a ball B in the Hilbert space I is
homeomorphic to the annulus A between two spheres. However, it turns out that
the FQC condition often prevents strange topological phenomena. In particular,
there is no FQC homeomorphism between B and A.

(2) Metric. The space E is not homogeneously totally bounded (HTB) in the
sense of [TV;]. This means that packing arguments usually fail in E.

(3) Measure-theoretic. There is no Lebesgue measure in E. Hence we cannot
say “almost everywhere in G C E”. The modulus of a path family, which is an
important tool in the n-dimensional quasiconformal theory, seems to be useless in
the free theory.

(4) Cubes. We can no longer use cubes or other intervals and their subdivi-
sions. In particular, a domain has no Whitney decomposition.

1.3. What remains? The remarks in 1.2 look somewhat discouraging. How-
ever, we still have a number of useful tools. Of course, we have the norm, its
triangle inequality and convexity properties. We can join points by line segments
and other arcs. On the arcs we can use compactness and, in the rectifiable case,
linear measure and integration. It is therefore natural that various arcs play an
important role in the theory. The most useful tool turns out to be the quasihy-
perbolic (QH) metric of a domain. Section 2 will be devoted to this concept.

We shall also make use of the general theory of quasisymmetric and quasi-
mobius maps in metric spaces. In certain problems, especially when studying the
boundary behavior, the completeness of E plays an essential role.

1.4. Notation and terminology. Throughout the paper E and E' are Banach
spaces, and G C E and G' C E' are domains. We also assume that E # {0} # E'.
The norm of a vector z € E will be written as |z|, the diameter of aset A C E as
d(A), and the distance between nonempty sets A, B C E as d(A, B). For an open
ball with center z and radius r we use the notation B(z,r). The closed ball is
B(z,r) and the boundary sphere is S(z,7) = 0B(z,r). For z =0 we abbreviate

B(r) = B(0,r), S(r) = S(0,r).

The one-point extension of E is the Hausdorff space E = E U {co}, where the
neighborhoods of oo are the complements of closed bounded sets of E. The
boundary A and the closure A of a set A C E are taken in E. The closed
line segment with endpoints a,b € E is [a,b]; for a half open segment we use the



Free quasiconformality in Banach spaces I 357

obvious notation [a,b). To simplify expressions we often omit parentheses writing
fz instead of f(z) etc. The symbols X, ¥ will denote metric spaces with distance
written as |a — b|. We let {(y) denote the length of an arc ~. For real numbers
a, b we write

aV b = max(a,b), a A b= min (a,b).

2. Quasihyperbolic metric

2.1. Definitions. Let G # E be a domain. For z € G we let §g(z) denote
the distance d(z,0G). We shall usually abbreviate §(z) = 6g(z), §'(z) = b ().
If v C G is a rectifiable arc, the line integral

I(y) = %

~

is called the quasihyperbolic or QH length of . The quasihyperbolic distance of
points a,b € G is the number

kg(a,b) = inf lk(y)
v

over all rectifiable 4 joining a and b in G. In order to include the trivial case
a = b, we regard a singleton {a} as an arc of length zero. Alternatively, the
arcs can be replaced by paths, which leads to the same concept. We shall usually
abbreviate k = kg, k' = kg/. It is easy to show that %k is a metric in G and that
lk(7) is the length of 4 in this metric. For QH balls we use the notation

Bi(a,r) = {z € G: k(z,a) < r},

where a € G and r > 0.

In a half space of R™ the QH metric is the classical hyperbolic metric. For
other domains in R" the QH metric was introduced in the seventies by Gehring
and his students [GP], [GO].

Next we prove some basic inequalities between QH and norm distances. These
will be frequently used in the paper. Most of these are well known in R".

2.2. Lemma. Suppose that G # E.
(1) For all a,b € G we have

k(a,5) > In(1+ ,(js(_a )b') >1In % la—b] < (4D —1)6(a).

2)IfaeG,0<t<1 and z,y € F(a,t&(a)), then

1 |z —y]
< —_—
k(z,y) < 1-t é(a)
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(3) If, in addition, t < %, then

1 |z—yl
> .
k(#9) 2 195 o)

(4) If 0 < r < 1, then By(a,r) C B(a,ré(a)/(1 - 2r)).

Proof. Let v be a rectifiable arc joining a and b in G. Set A = I(v), and let
a: [0,\] — v be the arc-length parametrization of vy. Since 6 (a(t)) < 6(a)+1t,
we obtain

A A
dz| d d A la —b|
/ <|5(z) = 0/ 6(a€t)) = 0/ 5(a)t+t =mn(1+ E@) >In(1+ 5(a) )-

This proves the first and the third inequality of (1). The second one follows from
the elementary metric inequality §(b) < é(a)+ |a — b]|.

If 2,y € B(a,t6(a)), then &(z) > (1 —t)é(a) for every z € [z,y]. Hence
(2) follows by integration along [z,y]. Next assume that ¢ < 3 and that v is a
rectifiable arc joining z and y in G. If v C B(a,2t6(a)), then 6(z) < (14 2t)8(a)
for every z € v, and hence

z
1
2

|z — 9l
(2.3) (v) 2 T +206(@)

If v ¢ B(a,2té(a)), then v has non-overlapping subarcs 71, v joining the bound-
ary components of the annulus A = {u : t6(a) < |u — a| < 2t6(a)} in A. For
z € v; we have 6§(z) < (1+ 2t)8(a). Since I(7;) > té(a), we again obtain (2.3).
This proves (3).

To prove (4) observe that r/(1 —2r) < 1 for r < . Hence (3) implies that
k(z,a) > r whenever |z — a| = ré(a)/(1 — 2r). Since Bi(a,r) is connected, this
yields (4). o

2.4. Remark. For a,b € G, the inner length distance Ag(a,b) is the infimum
of the lengths of all arcs joining a and b in G. The proof of 2.2 shows that one
can replace |a — b| by Ag(a,b) in (1).

2.5. Lemma. Suppose that a,b € G # E and that either |a — b| < $6(a) or
k(a,b) < 1. Then
1|a—b|
2 §(a)

Hence By(a,r) C B(a,2ré(a)) for r <1.

la — 8|
8(a) -

< k(a,5) < 2
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Proof. If |a—b| < 16(a), these inequalities follow from 2.2. If k(a,b)=r <1,
2.2 implies

el <e —1<2r,
6(a)

which is the first inequality. Finally, if |a —b| > 16(a) and k(a,b) < 1, the second
inequality holds trivially. o
2.6. Lemma. For every r > 0 there is M = M(r) > 1 such that

1 |z —y| |z —yl
7 5(a) < k(z,y) < MW

for all a € G and z,y € Bi(a,r).
Proof. Assume that z,y € By(a,r), z # y, and set

» = Haw)ia)

|z -yl
If k(z,y) <1, 2.5 and 2.2 (1) imply
26(a) é(a) 1
< < 2e” > —.
PS5 =% P25y 2 50
If k(z,y) > 1, 2.5 yields |z —y| > 36(z). Since k(z,y) < 2r, we obtain by 2.2 (1)
I () NS S
6] e—al+la—y] > 2"

2.7. Remarks. 1. The proof of 2.6 shows that we can always choose M (r) =
4e"(r v 1). For r < 1 we easily obtain from 2.2 the better bound M(r)=1+4r.

2. The QH metric and the norm metric are locally bilipschitz equivalent
in G, and hence induce the same topology in G. It is interesting to observe
that the identity map of Bi(a,r) from the norm metric to the QH metric is -
quasisymmetric with 7(¢t) = M?t with M = M(r) as in 2.6. The definition of
quasisymmetry will be recalled in 3.3.

2.8. Quasiconvexity. A metric space X is c-quasiconvex, ¢ > 1, if each pair
a,b of points in X can be joined by an arc v with I(v) < cla — b]. In particular,
an arc v is c-quasiconvex if

1(7lz,9]) < clz —y|
for all z,y € v; here y(z,y] is the subarc of v between z and y. In the literature
this is often called the chord-arc condition.

A domain G # E is obviously c-quasiconvex in the QH metric for every
c¢>1. If E= R", it is in fact convex, that is, l-quasiconvex. This means that
each pair a,b € G' can be joined by a QH geodesic v with k() = k(a,b) [GO,
Lemma 1]. We show in 2.9 that this is not true in an infinite-dimensional Hilbert
space. On the other hand, we shall prove in [Viy4] that for every ¢ > 1, each pair
a,b € G can be joined by an arc which is c-quasiconvex in the QH metric.
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2.9. Example. Let E be a separable Hilbert space with inner product written
as z-y. Choose an orthonormal base (e1, ez, . ..) and a strictly increasing sequence
1

ro,T3,... of positive numbers converging to %, for example, r, = (n—1) /2n. Set

F=S81)\U{B(en,rn):n> 2}.

We show that the points 0 and 2e; cannot be joined by a QH geodesic in the
domain G = E\ F.

Let A: E — E be the isometric linear map with Ae; = €1, Ae, = epqq for
n > 2. Then AG C G. We first show that

(2.10) 8(Az) > ()

for every z € G. We may assume that z # 0. Let y € F' = 0G. We must find
y' € F with |y’ —z| < |y — Az|. Set y; = Az/|Az| and

C={z€5’(1):z-62=0, |z —y1| < ly—wnl}

Then C meets F, since otherwise C as a connected set is contained in one of the
balls B(en,™n), n > 3, which easily implies y € B(en,"s).

Fix a point yp € C N F. Then there is y' € F with Ay’ =y;, and |y’ —z| =
|y — Az|. On the other hand, |y2 —y1| < |y —y1| implies y-y1 < y2 -4 and thus
y- Az <y, - Az, which gives |yo — Az| < |y — Az|. Hence |y' —z| < |y — Az, and
we have proved (2.10).

Let v be a rectifiable arc joining 0 and 2e; in G. Then also Ay joins these
points in G. There is a point z € v with |z| = 1. Then clearly §(Az) > 8(z).
Since A is an isometry, this and (2.10) imply lx(Ay) < lx(v). Hence v cannot be
a QH geodesic.

3. Basic concepts

3.1. Uniform continuity. A map f: X — Y is uniformly continuous if and
only if there is to € (0,00] and an embedding ¢ : [0,%0) — [0, 00) with ¢(0) =0
such that

|fz — fyl < v (e —yl)
whenever z,y € X and |z — y| < to. We then say that f is (p,to)-uniformly
continuous. If ty = co, we briefly say that f is y-uniformly continuous.

If a condition A with data v implies a condition A’ with data v’ so that o'
depends only on v and other given quantities, we say that A implies A' quantita-
tively. If also A’ implies A quantitatively, A and A’ are said to be quantitatively
equivalent. A symbol appearing in A and A’ need not have the same value in both
conditions. For example, in Lemma 3.2 below, (1) with given ¢ and #, implies
(2) with ¢ = ¢; depending on ¢, and c. The lemma is proved in [Va,, 2.5].
J. Luukkainen pointed out to the author that the function ¢; in the proof does
not necessarily satisfy the inequality ¢ < ¢;. Therefore one should redefine ¢1(t)
as o(t) + 2(p(to) — (3to))t/to for 0 <t < .
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3.2. Lemma. Let X be c-quasiconvex and let f: X — Y be a map. Then
the following conditions are quantitatively equivalent:
(1) f is (¢,t0)-uniformly continuous.
(2) f is ¢-uniformly continuous.
(3) f is ¢-uniformly continuous and there are M > 0 and C > 0 such that
p(t) < Mt + C forall t.

3.3. Definitions. We say that a homeomorphism ¢: [0,00) — [0,00) is a
growth function if ¢(t) >t for all ¢. If ¢ is a growth function, a map f: X =Y
is said to be a y-quasi-isometry if

el —yl) < |fz— fyl < o(lz - yl)
for all z,y € X. If |fz — fy| < M|z — y| for all z,y € X, f is M-Lipschitz.
If also |fz — fy| > |t —y|/M and M > 1, f is M-bilipschitz. This means
that f is a @-quasi-isometry with ¢(t) = Mt. If n is a growth function, an
injective map f: X — Y is n-quasisymmetric or n-QS if |a —z| < t|b— z| implies
|fa — fz| < n(t)|fb— fz| for all z,a,b € X and ¢t > 0. A QS map is always an
embedding [TV, 2.21].

3.4. Six classes of maps. Let G # E, G' # E', and let f: G — G' be a
homeomorphism. We consider G and G’ as metric spaces with the QH metrics
k = kg and k' = kg. As in [TV;] we say that f is ¢-solid if it is a ¢-quasi-
isometry in these metrics, that is,

e (k(z,y)) < k' (fz, fy) < ¢(k(z,y))

for all z,y in G. Asin [TV3] we say that f is M -quasihyperbolic or M-QH if
f is M -bilipschitz in these metrics:

k(z,y)/M < K'(fz, fy) < Mk(z,y).

If f is n-QS in the QH metric, we say that f is n-QHQS.

For every subdomain D C G, f defines a homeomorphism fp:(D,kp) —
(fD,ksp). We say that f has fully a given property if each fp has this property.
We thus obtain the classes of fully ¢ -solid, fully M-QH and fully n-QHQS maps.
These properties are also defined in the case where G = E or G' = E'; the
property is then required to hold for all proper subdomains D C G.

The class of fully ¢-solid maps is the main object of this paper, and we shall
alternatively call them freely ¢-quasiconformal or ¢-FQC maps.

There are obvious relations between these six classes of maps. Firstly, a
fully ¢-solid, fully M -QH or fully n-QHQS map is ¢-solid, M-QH or n-QHQS,
respectively, provided G # E, G' # E'. Furthermore, an M-QH map is ¢-solid
with ¢(t) = Mt and n-QHQS with n(¢t) = M?%t, and similar implications hold
for the corresponding full properties. In later sections we shall also prove that
an M-QH map is fully 4M2-QH (Theorem 4.7) and that a ¢-FQC map is fully
n-QHQS with some n =7, (Theorem 5.14).
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3.5. Remark. Let us consider the special case E = R"* = E', n > 2. Then we
can compare the concepts of 3.4 with the quasiconformal (QC) maps. A K-QC
map is ¢-FQC with

p(t) = Cie(t v E1/5),

see [Vu, 12.20]. Conversely, a ¢-FQC map is K-QC with K = K(¢,n) by [TV,
6.12]. If f is n-QHQS, it follows easily from Lemma 2.2 and from the metric
definition of quasiconformality that f is K-QC with K = n(1)"~!. Conversely,
a K-QC map is n-QHQS with n = nx, which follows from Theorem 5.14 of the
present paper.

Hence in R™ the classes K-QC, ¢-FQC and n-QHQS are mutually equiva-
lent, and the quantities K, ¢,n depend only on each other and on n.

3.6. Definitions. Suppose that f: G — G' is a homeomorphism with G # E,
G' # E'. Let 0 <ty <1 and let 6: [0,¢9) — [0,00) be an embedding with
6(0) = 0. We say that f is (6,to)-relative if

fe—f T —
| 6’(fx)y| = g(l 6(a:)yl)

whenever z,y € G and |z — y| < tod(z). If to = 1, we simply say that f is
0-relative. This is a well-known concept, see 3.9.

If f is p-uniformly continuous in the QH metric, we say that f is ¢-semisolid.
Thus f is ¢-solid if and only if f and f~! are ¢-semisolid.

3.7. Theorem. If G # E, G' # E' and f: G —» G' is a homeomorphism,
then the following conditions are quantitatively equivalent:
(1) f is O-relative,
(2) f is (0,to)-relative
(3) f is p-semisolid.

Proof. We show that (1) = (2) = (3) = (1). The implication (1) = (2)
is trivial. Assume that (2) is true. Choose t; < ¢y such that 0 < #; < -;- and
0(t1) < % Let z,y € G with k(z,y) < %tl. Then 2.5 implies |z — y| < t16(z).
By (2) we obtain

|fz — fyl 1
R el < =,
5 =Sz

Again by 2.5 and (2) this yields

' (fz, fy) < 20(2k(=,v)),

and hence f is (¢, 3;)-uniformly continuous in the QH metric with ¢(t) = 26(2t),
and (3) follows from 3.2.

Assume that (3) holds. Suppose that z,y € G, |y — z| = t6(z), 0 < t <
1. Define the homeomorphisms 6g: [0,1) — [0,00) and to: [0,00) — [0,00) by
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6o(t) = t/(1 —t), ¥o(t) = €' — 1. By 2.2 (2) we have k(z,y) < 6o(t), and 2.2 (1)

implies " ful
r—Jy '
W < o (K'(fz, fy)).
Hence we obtain (1) with 8 = ¢opf,. O

3.8. Corollary. For a homeomorphism f: G — G' the following conditions
are quantitatively equivalent:
(1) f and f~! are §-relative,
(2) f and f~1 are (0,t)-relative,
(3) f is ¢-solid. o

3.9. Remarks. 1. Of course, the full versions of 3.7 and 3.8 are true.

2. The fully f-relative maps in R"™ were considered by Gehring [Ge, p. 14]
already in 1963. He called them briefly 8-mappings and showed that this condition
is equivalent to K -quasiconformality with § and K depending only on each other
and on n.

3. In general normed spaces, these maps have been studied in the late seventies
by G. Porru [Po;, Po;] and P. Caraman [Cal.

4. By 3.2, a solid map f: G — G' satisfies a coarse QH bilipschitz condition

(k(z,y) — C) /M < K'(fz, fy) < Mk(z,y) + C.

This means that f is QH bilipschitz for large distances.
5. The relations between semisolidity and solidity are discussed in 5.12.

3.10. Compositions and inverses. Suppose that f: G — G' and ¢: G' — G"
are homeomorphisms with G C E". It follows directly from the definitions that
all six classes of 3.4 are preserved under composition. For example, if f is ¢;-solid
and g po-solid, then gf: G — G" is p,¢p; -solid.

Similarly, the inverse f~!: G' — G of a ¢-solid map f is ¢-solid etc. The
inverse of an n-QHQS map is n’-QHQS with n'(t) = p~1(¢71)71.

4. Quasihyperbolic maps

4.1. Preliminary remarks. Recall that a homeomorphism f: G — G' with
G # E, G # E' is M-QH if it is M -bilipschitz in the QH metric. This class
has several pleasant properties. For example, we show in 4.7 that the concepts
M-QH and fully M-QH are quantitatively equivalent. From this we obtain the
quantitative implications M-QH = ¢-FQC = ¢-solid. Furthermore, the M -QH
maps have a local characterization (see 4.6), which is useful when proving that a
given map is M-QH.

The QH maps have turned out to be useful in the QC theory of R". For
example, the Beurling—Ahlfors extension [BA] of a QS map of R! to a half plane
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is QH. This property was used by Ahlfors [Ah] to obtain a bilipschitz reflection
across a quasicircle through oo.

If E=E'=R" and n # 4, the classes QH, QC and solid are rather close to
each other. Indeed, if f: G — G’ is p-solid and € > 0, there is M = M(yp,e,n) >
1 and an M-QH map ¢g: G — G’ such that the QH distance k'(f, g) is less than
e [TV2, 7.4]. The map g is also M2"~2-QC. In particular, two domains G and
G' in R™, n # 4, are QH equivalent if and only if they are solidly equivalent in
the natural sense.

4.2. Notation. Let f: X — Y be a map between metric spaces and let z € X
be non-isolated. Then we let L(z, f) and I(z, f) denote the upper and lower limit,
respectively, of the quotient |f(y) — f(:c)‘/ly —z| as y —» z. For maps f: G — G’
we use the notation Li(z, f), lk(z, f) when using the QH metric. The following
lemma is obvious:

4.3. Lemma. Assumethat f: X =Y, g: Y — Z are continuous maps be-
tween metric spaces and that ¢ and fz are not isolated in X and Y, respectively.
Then

L(z,9f) < L(f=,9)L(z, f),

provided that the product is not of the form 00 -0 or 0-00. If f: X - Y isa
homeomorphism, then

Lz, f)=Ufz, f~H) L. o

4.4. Lemma. Let f: X — Y be amap. If f is M -Lipschitz, then L(z, f) <
M for all non-isolated points z € X . Conversely, if X is c-quasiconvex and if
L(z,f) < M forall z € X, then f is cM-Lipschitz.

Proof. The first assertion is obvious. The converse part is well known in the
case where X is a line segment [Fe, p. 64]. In the general case, let z,y € X and
let v be an arc joining = and y with {(y) = A < c|z—y|. Let a: [0,\] — v be the
arc-length parametrization of 4. Then « is 1-Lipschitz, and hence L(t,a) < 1
for all ¢ € [0,)A]. By 4.3 we have L(¢, fa) < M for all ¢t. Hence the special case
gives

|fz — fyl <K MA < Mc|z —y|. 0
4.5. Lemma. Let f: G — G’ be a homeomorphism with G # E, G' # E'.

Then
L@ 6@ o g e D)
6’(f$) 9 lk( ) f) -

Lk(wa f) = 5'(f$)

forall z € G.

Proof. This follows easily from the estimates (2) and (3) of 2.2. o
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4.6. Theorem. Let f: G — G' be a homeomorphism with G # E, G' # E'.
Then f is M -Lipschitz in the QH metric if and only if

L(z, f)é(x)
—
() =M
for all x € G, and f is M -QH if and only if, in addition,

L(fe, f~D6(f2) _ 8(fz)
5@ K hi@ =

for all z € G.

Proof. Since a domain is c-quasiconvex for every ¢ > 1 in the QH metric,
the theorem follows from 4.4, 4.5 and 4.3. ©

4.7. Theorem. Suppose that G # E, G' # E' and that f: G — G’ is
M -QH. Then § is fully 4M?-QH.

Proof. Let D C G be a domain. By symmetry and by 4.6 it suffices to show
that

&'(fz)ép(z)

&(z)ésp(fz)

for all z € D. By auxiliary similarities we can normalize §(z) =1 = §'(fz), and
the assertion reduces to

<4M

ép(z)
a(z) = 5:0(/2) < 4M.

If §5p(fz) > 1M, we have a(z) < 2Mé(z) = 2M . Assume that §;p(fz) <
1/2M . Choose € < 1/2M 8¢p(fz) and then y' € 0fD with

ly' — fz| < 6sp(fx) +e < 1/2M.

Then
§y)>8(fz)—1/2M=1-1/2M > 0.

Hence y' = fy for some y € GNAD. Since f is M-QH and since |fz —y'| <
1 =16(fx), 2.5 gives

k(z,y) < MK'(fz,y") < 2M|fz —y'|/8'(fz) < 1.
Again by 2.5 this implies

6p(2) < | — y| < 2K(z,1)é(2) = 2k(z,y) < 2MF'(fa,y') < 4M|fz — ¥
< 4M(5fp(f$) + 6).

As € — 0, this gives a(z) <4M. o
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4.8. Theorem. If a homeomorphism f: G — G' is locally M -bilipschitz in
the norm metric, then f is fully M?*-QH.

Proof. Assume that D C G is a domain with D # E. We first show that
fD # E'. Fix a € D and choose b € D such that & = [a,b) C D. Then fl|a is
M -Lipschitz, for example, by 4.4. Since E' is complete, fz converges to a limit
b as z — b on a. Now b’ ¢ fD, since otherwise b = f~1(¥') € D.

By 4.6 it suffices to show that ép(z) < Mésp(fz) for an arbitrary z € D.
Let A > 1 and choose y' € fD with |y’ — fz| < Aésp(fz). Replacing y' by
a point in [fz,y'] we may assume that 8 = [fz,y’') liesin fD. Now f~1|3 is
M -Lipschitz. Arguing as above we conclude that f~!(z) converges to a point y
as 2z — y' on 3. Then y € 8D, since otherwise y' = fy € D. Consequently,

ép(z) < |y —z| < My’ — fz| < AMésp(fz).

As X — 1, this gives the desired result. o

4.9. Inversion. In the rest of this section we shall give various examples of
QH maps. Let G = E\ {0} and let u: G — G be the inversion u(z) = z/|z|?. If
dim E = 1, we let G be one of the components of E \ {0} in order that G be a
domain. We have
3|z — y|
|z|ly]

for all z,y € G [Véy, 1.6]. Thus L(z,u) < 3|z|~2 for all z € G. Since §(z) = |z|
and u = u~1, 4.6 implies that u is 3-QH. By 4.7, u is fully 36-QH.

If E is a Hilbert space, then |uz — uy| = |z — y||z|~}|y|™?, and u is a QH
isometry and fully 4-QH.

4.10. The radial power maps. Let a > 1 and define f: E — E by f(z) =
|z|*"'z. Let G be as in 4.9. We show that the homeomorphism fi: G — G
defined by f is «-QH.

We first show that f; is a-Lipschitz in the QH metric. Now §(z) = |z|. By
4.6 it is sufficient to show that

Juz — uy| <

L(z, f) < elfz|/|z| = efz|*~
for an arbitrary = € G. Let h € E with |h| < |z|. Then
(Il = [B)*7" < |z + A% < (o] + R
Using this, the formula

flz+h) = f(z) = (lz + ~[*7" = |o|* ") (2 + k) + |z|* A,
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and the derivative of the real function u(t) =t*~! we easily obtain
L(z, f) < (@ = Dz|*7[e] + |2]*7" = afz|*7"

Next observe that the inverse map g = fi! is of the same form g(z) = |z|f~ !z,
but now 8 =1/a < 1. Since

-1 _ B—1
(el + 1h)" < lz+ AP < (o] =[BT,
an obvious modification of the preceding argument gives
L(z,g) < (2= B)le|’7* < alel’™ = algz|/|z|.
Again by 4.6, g is a-Lipschitz in the QH metric. Hence f; is o-QH. o

4.11. The infinite tube. Let E be a Hilbert space of dimension at least 2 with
inner product written as z-y. Let e; € E be a fixed vector with |e;| = 1. The
domain

G={z:|z—(z-e1)e1]| < i}
is an infinite tube with axis v = spane; and radius %r. Let H be the half space
{z :z-e; > 0}. We define a homeomorphism f: G — H as follows:

Each € G has a representation z = se; +ry where s€ R, 0 <r < %w,

y-e; =0 and |y| = 1. The representation is unique if » > 0. We set

f(z) = €®(cosr)e; + e*(sinr)y.
Thus f is the exponential map of the strip 0 < Imz < %7‘(‘ rotated around the
line ~.

We show that f is M-QH with M = %ﬂ'. Let z = se; +ry € G with r > 0.
Then f has a Fréchet derivative f'(z) = A at . Let F; be the 2-dimensional
subspace of E spanned by e; and y, and let F3 be its orthogonal complement.
Then F; and F, are invarint under A. Moreover, the maps A; = A|F; and
A, = A|F, are linear similarities. It follows that

Al =141V 42|, U(A) = [A1] A 4],
where now |A| = L(z, f), I(A) = l(z, f). An easy computation gives |A;| = e°
and |A,| = e*(sinr)/r. Since r < 7, we obtain |A| = e°, I(A) > 2¢°/m. At
points = = se; the derivative also exists and is a similarity with |A| = I(A) = €®.
Furthermore, setting ¢ = ;-7r — r we have
é(z) =t, 8'(fz) = e’ sint,
and hence
Ko i) |ty UeE) | 22
8'(fz) sint 8'(fz) wsint = o«
By 4.6, f is %TI'-QH.
Observe that the argument is the same in finite- and infinite-dimensional
spaces. The next example illustrates a new phenomenon which does not occur

in R™.
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4.12. The broken tube. Let E be an infinite-dimensional separable Hilbert
space. Choose an orthonormal base (ej)jez of E indexed by the set Z of all
integers. Setting 7; = [e;j1,¢;] we obtain the infinite broken line

Y =Ut ez,

As in 4.11 we let v denote the line spanned by e;. We divide v to line segments
vj = [aj-1, a;] with a; = jv/2e;. Then there is a natural homeomorphism fo: v —
4" which maps each v, isometrically onto 7; . It is rather obvious that for small r,
say for r < 1/10, we can extend fy; to a homeomorphism f of the tube G =
v+ B(r) onto a neighborhood G’ of 4’ such that f is locally M -bilipschitz with
a universal M. The domain G’ is a broken tube. By 4.8 f is M?-QH. Using the
map of 4.11 and a similarity map we obtain a 7M?/2-QH map ¢g: H — G'. The
cluster sets of ¢ at 0 and at co are empty.

We conclude this section by some well-known inequalities and bilipschitz con-
structions which will be needed in Section 5.

4.13. Lemma. For every pair z,y € E \ {0} and for pz = z/|z| we have
lpz — py| < 2|z — y|/|z|.

Proof. |z||pz — py| < |z — |zly/lyl| < |z — y| + |lz] — |y|| < 2|z —y]. o

4.14. Radial bilipschitz maps. Suppose that g: [0,7;] — [0, 2] is an increasing
M -bilipschiz homeomorphism. Write again p(z) = z/|z| for z € E \ {0}. Setting

f(@) =g(lz])p(z),  f(0)=0
we obtain a homeomorphism f: B(r;) — B(ry). The possibility r; = ry = 0o is
allowed; then f: E — E. Since g(t) < Mt, Lemma 4.13 implies for all z,y €
B(r1) \ {0}
|fe = fyl < g(I=]) Ipz — pyl + |g(Iz]) — g(ly])| < 3M|z —y|.
By symmetry and continuity, f is 3M -bilipschitz.

5. Free quasiconformality

5.1. Summary. In this section we mainly consider various quasisymmetry
properties of FQC maps. We also show that these maps are Holder continuous
and that the distortion function ¢ of an FQC map can always be chosen to be of
the form ¢(t) = C(t* V1), a < 1.

5.2. Weak quasisymmetry. For H > 1, an embedding f: X — Y is weakly
H -quasisymmetric if |a — z| < |b — z| implies |fa — fz| < H|fb — fz| for all
a,b,z € X. Thus an 7-QS map is weakly H-QS with H = 5(1). The converse
result is true in some special cases. For example, if X C R™ is pathwise connected
and if f: X — R" is weakly H-QS, then f is n-QS with n = n(H,n); see
[Vas, 2.9]. The corresponding statement in arbitrary Banach spaces is not true.
However, we shall show that the ideas of [V&s, 2.9] can be used in the case where
X and fX are quasiconvex.
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5.3. Lemma. Suppose that X is c-quasiconvex, that f: X — Y is weakly
H-QS and that a,b,x € X with |a — z| =t|b— z|. Then
|fa— fz| < n(t)|fb -~ fzl,
where 7: [0,00) — [0,00) is an increasing function depending only on H and c.
Remark. Since n(t) is not required to tend to zero as ¢ — 0, f is not
necessarily QS.

Proof. For t <1 we can choose n(t) = H. Assume that ¢t > 1. By [TV,,
2.12] it suffices to show that X is C-pseudoconvex in the sense of [TV, 2.7] with
C' depending on c.

Let a,b € X and suppose 0 < r < |a —b|. Join a and b by an arc v with
I(v) < cla—b|. Set ag = a and choose inductively successive points a1,...,ay = b
of v such that ;4 is the last point of vy in B(aj,r). Then |a; — aj_1| =r for
1<y <s—-1and |as—as—1] < 7. Hence (s — 1)r < (y) < cla— b|. Thus X is
C-pseudoconvex with C(t) =1 +ct. o

5.4. Lemma. Suppose that f: X — Y is weakly H-QS and that fX is
c-quasiconvex. If z,a,b € X with |a—z| =t|b—z| and if 0 < ¢ < 1, then

|fa— fe| <n()|fb - fal,
where n: [0,1] — [0,00) is an embedding with n(0) = 0 depending only on H
and c.

Proof. Since the inequality is true with n(t) = H, we may assume that
0 <t< 3. Join fb and fz by an arc ¥ C fX with I(y) < ¢|fb— fz|. Choose
successive points b = b, by,...,bs of f~!4 such that |bj —z| =377|b—z| and s
is the least integer with 3¢ < ¢. Then
In(1/¢)

> —7 =
$2 -3 So(t) = oo

as t — 0. Since t < i—, we have s > 2.
For 1 <j <s—1 we have
|6 — al < 1bj — 2| + |z — o] < 2[b; — 2| < |bj — bj_,].
Moreover, |b; — z| < |b; — bj_1]|. Since f is weakly H-QS, we obtain
|[fa— fa| <|fa— fb;] + |fb; — fe| < 2H|fb; — fb;_,|.
Summing over 1 < j < s — 1 yields
(s~ 1)lfa — fo| < 2Hi(7) < 2He|fb — fal.
Hence we can choose
2Hc
n(t) = @1 o

5.5. Theorem. Suppose that f: X — Y is weakly H-QS and that X and
fX are c-quasiconvex. Then f is n-QS with n depending only on H and c.
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Proof. This follows directly from 5.3 and 5.4. o

5.6. Definition. Let 0 < ¢ < 1. A homeomorphism f: G — G' is g-locally
n-quasisymmetric if f|B(a,gqr) is n-QS whenever B(a,r) C G. If G # E, this
means that fIB(a,qé(a)) is -QS. If G = E, this means that f is 7-QS.

A K-QC map in R" is g-locally n-QS for every ¢ < 1 with n depending on
K and ¢ [AVV, 5.23]. Conversely, a g-locally 7-QS map in R" is K -QC with
K =n(1)""! by the metric definition of quasiconformality.

We shall next prove the corresponding free results.

5.7. Theorem. Suppose that f: G — G' is fully ¢-semisolid and that
0< q<1. Then f is g-locally n-QS with n depending only on ¢ and q.

Proof. We first show that f is 1/3-locally n-QS with n = n,. Let zo € G
and assume B(zo,r) C G. Let z,a,b € B = B(zo,7/3) with |a —z| = t[b— z].
We must find an estimate

|fa — fz| < n(t)|fo— fal

where 7(t) — 0 as t — 0. We consider three cases.
Case 1. t < 2/3. By the full version of 3.7, f is fully §-relative with some
6 = 6,. We apply relativity in the domain D = G\{b}. If dimE =1, welet D be
the z-component of G\ {b}. We have ép(z) = | —b| and hence |z —a| = tép(z).
Thus
|fa— fo| < 8(t)d(fz,dfD).

Since d(fz,dfD) < |fb— fz|, we can choose 7(t) = 6(t), which has the
desired behavior as t — 0.
Case 2. 2/3 <t < 1. Writing z = 2a/3 + /3 and applying Case 1 twice we
get
|fa— fz| < |fa— fz| +|fz — fzl
< (6(3) + 1)\f= — fal
< (8() + 1)8(R)Ifb - fal.

Case 3. t > 1. From the preceding cases it follows that f|B is weakly H-QS
with H = H(p). Since B is convex, the desired estimate follows from 5.3.

Next assume that 1/3 < ¢ < 1. We shall reduce this case to the case ¢ = 1/3
by an auxiliary map. Let g: [0,1] — [0,1] be the increasing homeomorphism with
g(1/3) = ¢ which is affine on [0,1/3] andon [1/3,1]. Then g is M -bilipschitz with
M = M(q). Suppose that B(zo,r) C G. Applying 4.14 and auxiliary similarities
we obtain a radial 3M -bilipschitz homeomorphism hq: B(zg,r) = B(zo,r) which
maps B(zo,r/3) onto B(zo,gr). Moreover, hy can be extended by identity to
a homeomorphism h: E — E, which is also 3M-bilipschitz. By 4.8 h defines a
fully 9M2-QH map hi: G — G. Then the homeomorphism f; = fhi: G — G'
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is fully ¢ -semisolid with ¢;(t) = ©(9M?t). Hence fi|B(zo,7/3) is n-QS with
n=n(e,q). Since h|B(zo,7/3) is a similarity map onto B(z¢,qr), f|B(zo,qr) is
n-QS. o

5.8. Remark. Related results were proved by G. Porru in the late seventies.
In particular, Theorem 2.1 of [Po;] states that a fully -relative map is locally
weakly QS.

5.9. Theorem. If a homeomorphism f: G — G' is q-locally n-QS, then f
is fully ¢ -semisolid with ¢ depending on 7 and q.

Proof. Let D C G be a domain with D # E, fD # E'. Then f defines a
g-locally 7-QS homeomorphism f;: D — fD. By 3.7 it suffices to show that f
is (6, q)-relative with 6(t) = n(t/q).

Suppose that a € D and b € B(a,¢ép(a)) = B. Let A > 1 and choose a
point z € 0f D with |2— fa| < X§sp(fa). Let y be the first point of [fa, z] which
isnot in fB. Since f is n-QS in B and since B is complete, fB is complete by
[TV1, 2.24], and hence y € fB. Writing « = f~(y) we have |z — a| = ¢6p(a),
and thus

\fb— fa| _ . |fb— fdl b—aly . (lb—adl
5000 < y=7ar < (i =ar) = (o))

Since A > 1 is arbitrary, this proves the (6, ¢)-relativity of f;. o

5.10. Theorem. For a homeomorphism f: G — G' the following conditions
are quantitatively equivalent:
(1) f is ¢-FQC.
(2) f and f~! are g-locally n-QS.
(3) For every q € (0,1) there is n, such that f and f~! are g-locally ng-QS.

Proof. Observe that the data for (1) is ¢, for (2) the pair (g,7) and for (3)
the function ¢ ~— n,. The implication (3) = (2) is trivial, (2) = (1) follows from
5.9, and (1) = (3) from 5.7. o

5.11. Summary. We have three characterizations for free quasiconformality:
(1) full solidity, (2) full relativity of f and f~!, (3) g-local quasisymmetry of
f and f~'. These are given in the original definition 3.4 and in Theorems 3.8
(cf. 3.9.1) and 5.10.

We also remark that the proof of 5.7 in the case dim E > 2 made only use of
domains D = G \ {a}, a € G. Consequently, if f is ¢-solid for every such D, f
is ¥-FQC with ¢ = ¢,,.

5.12. One-sided conditions. It is natural to ask whether a fully ¢-semisolid
map f: G — G' is ¥-FQC with ¢ = ¢,. In the one-dimensional case this is
not true, see 6.8. We do not know the answer in higher dimensions. However,
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if E=E = R", fis %-FQC with ¢ = 9(p,n). Indeed, by 3.7 and by [Ge,
Theorem 4], full ¢-semisolidity is equivalent to K -quasiconformality with ¢ and
K depending on each other and on n.

We next prove that the answer is positive if G is the whole space E. We also
show that fFE = E'.

5.13. Theorem. Suppose that f: E — G' C E' is fully ¢-semisolid. Then
(1) G'=E',
(2) f is n-QS with n =7y,
(3) f is ¥-FQC with ¢ =1,

Proof. By 5.7, f is 5 -locally n-QS with n =7, Since the domain G is now
E, fis n-QSin E. Smce QS maps preserve completeness, G' is closed in E',
and hence G' = E'. Since f~1: E' > E is 1'-QS with n'(t) = n~1(t71)7", (3)
follows from 5.10. o

5.14. Theorem. A ¢-FQC map f: G — G’ is fully n-QHQS with n =n,.

Proof. We may assume that G # E, G' # E'. It suffices to show that f is
n-QHQS. Since G and G' are c-quasiconvex in the QH metric for all ¢ > 1, it
suﬁices to show, by 5.5, that f is weakly H-QS in the QH metric with H = H (cp)
Suppose that z,a,b € G with k(a,z) < k(b,z) = r > 0. We must find an
upper bound p < H (go) for the ratio

_ ¥(fa, fa)
w(f5 fa)’

By 5.10, f is 1/3-locally 1-QS with n = n,. By 2.5, we have By(z,1/6) C
B(z,6(z)/3). Set ro = (1/6) A ¢~'(1). Then f is n-QS in Bx(z,ro), and
ka(x,ro) - Bk/(f:r, 1).

By 3.2 we may assume that there are M and C such that ¢(t) < Mt +C
for all t > 0. We consider three cases.

Case 1. 7 < ry. Now 2.5 yields

slfa—fol _, (4k(a,2)
pS 1 —7a < 4(aay ) S 40

Case 2. 7o <1 < 2C. Now p < ¢(2C) /¢~ (ro).
Case 3. r > 2C. Now ¢~ (r) > (r — C)/M > r/2M , and hence

Mr+C

<= 2 <oM? .
p < /20 <2M*+ M. o

5.15. Theorem. Suppose that f: G — G' is ¢-FQC, G # E. In each QH
ball Bx(z,r), f is n-QS with n depending on ¢ and r.
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Proof. By 5.14, f is n-QHQS with n = n,. Let M = M(¢(r)) be the
number given by Lemma 2.6. If z,a,b € Bi(z,r) with |a — z| < t|b— x|, then the
images of these points are in By (fz, ©(r)), and 2.6 easily implies

|fa — fz| < M2n(M>t)|fb — fa|.

Hence f is 71-QSin Bi(z,r) with n,(t) = M2p(M?t). o

5.16. Remark. For QC maps in R™, Theorem 5.15 is an unpublished result
of O. Martio.

5.17. Quasimdbius maps. Let n be a growth function. An injective map
f: X =Y is called n-quasimébius or n-QM if each cross ratio

_a=bljc—d]
T la—clp—d|

of distinct points a, b,¢,d in X satisfies the inequality fr < n(7) where fr is the
cross ratio of the points fa, fb, fc, fd. The basic QM theory is given in [V&;]. An
n-QS map is 7;-QM with n; = n;(n). Roughly speaking, the essential difference
between QS and QM maps is that a QM map need not fix the point at infinity.
However, we do not consider in this paper domains which contain co.

In R™ an n-QM homeomorphism f: G — G’ is K-QC with K = n(1)»~1.
We next prove the corresponding free result:

5.18. Theorem. If f: G — G’ is n-QM, f is ¢-FQC with ¢ = Pn-

Proof. Suppose that D C G is a domain with D # E, fD # E'. We apply
[V&;, 3.19] observing the misprint fA \ {co} which should be fA\ {o0}. Thus
f has a homeomorphic extension f: D — fD. By auxiliary translations we may
assume that 0 € 0D and that either f(0) = 0 or f(0) = co. Let u be the
inversion u(z) = «/|z|?. If f(0) =0, we define g: uD — ufD by 9(z) = ufu(z).
If f(0) = oo, we define g: uD — fD by g(z) = fu(z). In both cases g is 7, -QM
with 7, depending on 7; see [V&;, 1.6]. Since g(z) — 0o as z — 00, g is 1-QS.
By 5.10, g is ¢1-FQC with ¢; = ¢1(5). By 4.9, u is fully 36-QH, and hence f
is ¢-FQC with ¢ = ¢,. o

5.19. Theorem. Suppose that f: G — G' is ¢-FQC with G #E,G #FE'.
Then f satisfies the Hélder condition

|fa — fb] la — b\«
5(fa) <o 5(a) )

for all a € G and b € B(a, 36(a)). The constants C > 1 and a < 1 depend only
on .
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Proof. By 5.10, f is -;—-loca.lly n-QS with n = n,. Fix a € G and define a
homeomorphism g: B(}) —» Q C E' by

f(a+6(a)z)
5(fa)
Then g is n-QS. By [TV, 3.14], g satisfies a Holder condition
|9(2) = 9(0)] < clal®

with @ <1 and ¢ > 1 depending on ¢ and on the numbers d(Q) and d(B(3))
=1.If |a—b| < $6(a), then k(a,b) <1 by 2.5. Hence k'(fa, fb) < ¢(1). By 2.2
(1) this implies |fa — fb] < §'(fa)e*@ | and hence d(Q) < 2¢#() | Hence ¢ and
a depend only on ¢. Since

g(z) =

f(2) = '(a)e (7))
for z € B(a, +6(a)), we obtain

et = oo -o ()| = (i) o

5.20. Theorem. If f: G — G' is ¢-FQC, then f is ¢;-FQC with some ¢,
of the form @y(t) = C(t* V t), where C > 1 and o <1 depend only on ¢.

Proof. Let D C G be a domain with D # E, fD # E'. Let C and a be
the numbers given by 5.19. Set to = + A~ !(1). If 2,y € D and kp(z,y) < to,
then 2.5 gives |z — y| < 36p(z), and by 5.19 we have

|fz = fyl lz —yl\
dsp(fz) SC(&p(ac)) ’

Since kyp(fz, fy) <1, this and 2.5 yield
ksp(fe, fy) < 20 (2kp(z,y))".

Hence we can choose ¢;(t) = 2!1*Ct for t < to.
Next assume that kp(z,y) =t > to. By 3.2, we may assume that ¢(t) <
Mt + C; for some M > 1 and C; > 0 depending on ¢. Hence

ka(fx,fy) S Mt + Cl S (M + Cl/tg)t = Czt.

Hence we can choose ¢1(t) = Cat for t > t0. 0
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6. Finite-dimensional spaces

6.1. Preliminary remarks. In this section we briefly consider the case where
dimE = dimE' = n < co. If the norms of E and E' are induced by an inner
product, we can identify E = R™ = E'. In this case, assuming n > 2, the free
¢-quasiconformality is equivalent to ordinary K -quasiconformality, as explained
in 3.5. The case n = 1 will be considered in 6.7.

If E is a Banach space of dimension n, there is a V/n-bilipschitz linear map
T: E — R™ by a classical result of Banach space theory, recalled in 6.2 below.
This reduces the n-dimensional FQC theory to the case E = R" = E! , as far
as we are not interested in sharp quantitative results or the special features of
©-FQC maps with ¢ close to the identity.

6.2. Lemma. Suppose that dim E = dim E' = n. Then there is a linear map
T: E — E' such that

|z| < |Tz| < nlz|

forall z € E. Thus T is n-bilipschitz. There is also a homeomorphism h: E — E'
such that

(1) h(Az) = Ah(z) for all z € E and A € R!,

(2) |hz|=|z| forall z € E,

(3) h is M -bilipschitz with M = 2n + 1.

Proof. The first part of the lemma was proved by F. John in 1948, see [MS,
3.3]. The second part follows from this with

_ |z|Tz

hzx ITa]

for z # 0. The properties (1) and (2) are clear, and (3) follows by elementary
estimates with 4.13. o

6.3. Applications. Suppose that dim E = dim E' = n. We first observe that
any linear bijection T: E — R™ is bilipschitz, and hence the qualitative results of
the QC theory of R™ are readily extended to FQC maps between domains in E
and E'. For example, an FQC map f: G — G' is ACL and a.e. differentiable; in
E we use any translation-invariant Haar measure.

For quantitative results we use 6.2. As an example we give the local metric
definition for FQC maps. We let H(z, f) denote the metric (or linear) dilatation
of f at z; see e.g. [Va;, p. 231].

6.4. Theorem. Suppose that dimE = dimE' =n, 2 < n < oo, and that
f: G — G" is ¢-FQC. Then H(z,f) < Hy = Hy(y) for all z € G. Conversely, if
f is a homeomorphism with H(z,f) < Hy for all x € G, then f is ¢-FQC with
¢ depending on Hy and n.
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Proof. Suppose that f is ¢-FQC. By 5.10, f is %-locally n,-QS. Hence
H(z, f) < ny(1) = Ho(p). This part is valid without dimensional restrictions.

Next suppose that H(z, f) < Ho for all € G. Choose linear maps T: E —
R", T': E' — R™ as in 6.2. Setting fi(z) = T'fT~'(z) we obtain a homeomor-
phism fi: TG — T'G'. With the customary notation [V&;, p. 231] we have

. L(a:,fl,'r‘/n)
1 — 22 > <nH
i N R

for all z € TG. By [Cr, Theorem 1] this implies that f; is K-QC with K =
K(Hp,n). Hence f is ¢1-FQC with ¢1 = @1(Hg,n), see 3.5. Since T and T'
are n-bilipschitz, the theorem follows by 4.8. o

6.5. The radial power map. Theorem 6.2 can sometimes be also applied in
infinite-dimensional spaces. Let E be a Banach space, let o > 1, and define
f: E — E by f(z) = |z|* *z. This map is 7-QS with n = 74, but a direct proof
seems awkward. However, since each triple is contained in a linear subspace Eo
with dim Eq < 3 and since fE; = Ey, we may assume that dim E = dim E' =3.
Using the map h of 6.2 we reduce the problem to the case f: R® — R3, where
the result follows from the quasiconformality of f.

An alternative proof is based on 4.10. Indeed, in the domain E \ {0} f is
a-QH and hence ¢,-FQC. By a removability result in [Va4], f is Ya-FQCin E
and hence 1,-QS by 5.13.

6.6. The case n = 1. Suppose that dimE = dimE’' = 1. Then we can
identify E = R! = E'. A domain in R! is an open interval (a,b), where possibly
a = —oo or b= co. The following result identifies the FQC maps in R':

6.7. Theorem. Suppose that G and G' are domains in R' and that
f: G — G' is a homeomorphism. Then the following conditions are quantita-
tively equivalent:
(1) f is ¢-FQC,
(2) f is n-QM.

Proof. By 5.18, the implication (2) = (1) is true in all Banach spaces.
Assume that f is ¢-FQC. We may assume that G # R', G' # R'. By 4.9, the
Mbbius map u(z) = z/|z|? is fully 4-QH in R'\ {0}. Using this and similarity
maps we can normalize the situation to the case where G = G' = (0, 0) and f is
increasing. It suffices to show that f is weakly H-QS, which means the classical
Beurling—Ahlfors condition.

Suppose that ¢ € G and t > 0 with z —t € G. We apply solidity in the
domains D = (z —t,00) and fD = (f(z —t),00). We have

kp(z,z+t)=1n2,
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flz+1t) - flz 1)
f@)=flz—1t) ’

ka(f(x),f(a: + t)) =In

which imply

_ fle+t) = f(=) (#(in2)
e P e I

To obtain a lower bound for p we may assume p < % Then 2.5 yields

ko (f(2), f(z +1)) < 2p,
and hence p > ¢'11n2. o

6.8. Remark. The one-dimensional case differs in many ways from the higher-
dimensional case. For example, if f is a real C!-function with positive derivative,
then H(z,f)=1 for all z. Since f need not be QM, Theorem 6.4 is not valid for
n = 1. We next give an example which shows that a fully ¢-semisolid map need
not be ¥-FQC with ¢ = .

Let 0 < a < %, let G =(-1,1), and let f: G — G be the homeomorphism
which sends —1,0, % to —a, 0, @ and is Mdbius on the intervals (—1,0) and (0,1).
Since k(—a,a) — 0 as o — 0, f is not ¢-solid with a universal . However,
with the aid of 4.6 one can show that f is fully 4-Lipschitz in the QH metric.

The reason for the special properties of the case dim E = 1 seems to be the
fact that balls have nonconnected boundaries and complements.

7. Further results and open problems

7.1. Announcements. In the second part [V&,] of this investigation we shall
mainly consider the boundary behavior of FQC and solid maps. For example, an
isolated boundary point is removable for these classes. We shall also develop the
theory of uniform domains in Banach spaces. If G and G' are c-uniform and
f: G = G' is ¢-FQC, then f is n-quasimobius with n = n(¢,c). In particular,
f extends to a homeomorphism f: G — G.If f is only p-solid, f still has this
homeomorphic extension, and the induced map G — 9G' is n-quasimébius. We
also prove a reflection principle for FQC maps.

7.2. Open problems. We list some open questions.

1. Is a fully ¢-semisolid map ¢1-FQC with ¢1 = ¢1(p)?

2. Suppose that f: G — G’ is a homeomorphism and that each point in G
has a neighborhood in which f is ¢-FQC.Is f ¢1-FQC with ¢ = ¢1(¢)?

3. Suppose that H(z, f) < Hg forall z € G. Is f ¢-FQC with ¢ = ¢(Hy)?

4. Is an FQC map somewhere differentiable? See 7.3.

5. Is an FQC map absolutely continuous on some line segment?

In the problems 1, 2, 3, 5 we assume that dimE > 2, since in the one-
dimensional case the answer is known to be negative. The problems 1, 2, 3 are
also open in the case dim E = n > 2, since the known bounds depend on n.
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7.3. Addendum. An FQC map need not be differentiable anywhere. In
fact, a bilipschitz map of the separable Hilbert space E = l; onto itself need not
be differentiable anywhere. The following example was given to the author by

D. Preiss: Define g: E — E by

gT = (|~"31|>|$2|,---)-
Then the map f: E — E defined by

fr=z+4gz/2

is 2-bilipschitz but nowhere differentiable.
On the other hand, Preiss [Pr] has recently proved that a Lipschitz map
f: 1y = R' is differentiable in a dense set.
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