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REMOVABILITY THEOREMS FOR
QUASIREGULAR MAPPINGS

P. Koskela and O. Martio

1. Introduction

A continuous mapping f of an open set G C R" into R™ is called K-
quasiregular, K > 1,if f is ACL", i.e. the coordinate functions of f belong to
the local Sobolev space loc W} (G), and if

(1.1) |f'()]" < K J(z, f)

a.e. in G. Here f'(z) is the (formal) derivative of f at z, J(z, f) is the jacobian
determinant of the matrix f'(z) and |f'(z)| stands for the supremum norm of the
linear mapping f'(z): R® - R™. For n = 2 and K = 1 these mappings reduce
to the class of analytic functions in G. Quasiregular mappings seem to form a
proper generalization of analytic functions to higher dimensional euclidean spaces.
For the theory of quasiregular mappings we refer to [MRV1-2] and [R].

Suppose that C is a relatively closed subset of G. The removability theorem
[CL, p. 5] of Painlevé and Besicovitch says that if the one dimensional Hausdorff
measure H(C) of C vanishes and if f: G\C — R? is a bounded analytic function,
then f extends to an analytic function of G. For general quasiregular mappings
f: G\ C — R" the following, much weaker result was proved in [MRV2]:

1.2. Theorem. Suppose that C is of zero n-capacity. Then every bounded
K -quasiregular mapping f: G\ C — R" extends to a K -quasiregular mapping
of G.

The proof for this result has potential theoretic character: For bounded har-
monic functions in the plane a set of zero 2-capacity is removable and there is a
similar result in R™, n > 2, for coordinate functions of a quasiregular mapping

f, see [HKM].

Rather precise removability theorems can be obtained in the plane.

1.3. Theorem. Suppose that H*(C) = 0 for all A > 0, i.e. the Hausdorff
dimension dimy of C is zero. Then every bounded plane K -quasiregular mapping
f: G\ C — R? has a K -quasiregular extension f* to G.
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The proof uses the representation theorem [LV, p. 247] for plane quasiregular
mappings: f = g o h where h is a quasiconformal mapping, i.e. a quasiregular
homeomorphism, and ¢ is analytic. Since H!(C) = 0, h extends to a quasi-
conformal mapping h* of G, see [LV, p. 206]. A K -quasiconformal mapping
is locally Hoélder continuous with exponent 1/K. Thus dimy(C) = 0 implies
dimy (h*(C)) = 0. Hence the aforementioned theorem of Painlevé and Besicov-
itch shows that ¢ has an analytic extension ¢*. Now f* = ¢g* o h* is the required
extension of f.

A look at the above proof gives the following result.

1.4. Theorem. Suppose that f: G\ C — R? is a bounded K -quasiregular
mapping. If H*/¥(C) =0, then f extends to a K -quasiregular mapping of G.

For n > 3 no results like Theorem 1.3 or 1.4 are known, except possibly for
K near 1. The method of the proof certainly fails.

Theorem 1.2 has a remarkable extension, see [MRV2]: It holds if the mapping
f omits a set of positive n-capacity—of course, the extended mapping may now
take the value oco. The proof for this result employs the geometric theory of
quasiregular mappings—modulus and capacity estimates.

The purpose of this paper is twofold. We prove a removability theorem,
Theorem 4.1, for general quasiregular mappings f: G\ C — R" which omit a
set of positive n-capacity. Our assumptions allow the set C to be of positive
n-capacity although C' is quite thin, for example dimy C = 0. The proof employs
the geometric theory as in [MRV2]. We first show that f can be extended to a
continuous mapping f* of G. Thus we are naturally led to study removability
questions for continuous mappings f: G — R™ which are quasiregular in G\ C—
this is done in Chapter 3. In Chapter 2 we introduce the conditions for the set C
used in the main theorem.

For locally Holder continuous functions f: G — R? analytic in G \ C the
removability of C' is determined in terms of the Holder exponent and the Hausdorff
dimension of C'. The following, very precise, result is due to L. Carleson, see e.g.
[G, p.78]: If HM(C) =0 and if f is locally Holder continuous in G with exponent
a > A —1 and analytic in G \ C, then f extends to an analytic function of G.
Reasoning as for Theorem 1.3 we obtain

1.5. Theorem. Suppose that f: G — R? is locally Hélder continuous
with exponent 0 < a < 1 and K -quasiregular in G\ C. If HNC) = 0, A =
min(1,1/K + a/K?), then f extends to a K -quasiregular mapping of G.

For n > 2 a different technique produces results which, in general, are better
than Theorem 1.5. It suffices to assume that A < min{l,a/n} and hence A
can be chosen independently of K, see Theorem 3.9. A careful analysis of a
special semilocal Hélder class leads to results which allow removable sets C' with
dimy(C) > 1. Such a result is Theorem 3.17 where the Minkowski dimension of
C and the Holder exponent of f are related.
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1.6. Remark. For each ¢ > 0 thereis a Cantor set C' C R? with dim(C) <
¢ and a K -quasiregular mapping f of R%\ C that is locally Holder continuous in
R? with some exponent « > 0 but f fails to extend to a quasiregular mapping of
R?. The mapping f can be constructed by composing a quasiconformal mapping
as in [GV, Theorem 5] with an appropriate analytic function. Of course, K and
a depend on €.

Since this work was completed, we have become aware of three other manu-
scripts dealing with removability questions for quasiregular mappings. T. Iwaniec
and G.J. Martin [IM] have proved that for each K and each n there is a
A = A(K,n) > 0 such that closed sets F of the even dimensional space R?"
with H*(F) = 0 are removable for bounded K-quasiregular mappings of R?".
Furthermore, P. Jarvi and M. Vuorinen [JV] have established that certain self-
similar Cantor sets are removable for quasiregular mappings omitting a finite but
sufficiently large number of points. Finally, S. Rickman [Ri] has constructed ex-
amples of non-removable Cantor sets for bounded quasiregular mappings in R3.

2. Modulus conditions

We consider two modulus conditions, the M -condition and the UM -condi- -
tion. The first was introduced in [M1] and further studied in [MS].

Let G be an open set in R™ and C a relatively closed subset of G. We say
that a point =g € G satisfies the M -condition with respect to C if there exists a
non-degenerate continuum K C G such that

(2.1) (K \{zo})NC =0, zo € K, and

(2.2) M(A(K,CUBG; G\ {z0})) < oo.

Here A(E, F; A) stands for the family of all paths which join E to F in A and
M(T) is the n-modulus of the path family T, see [V]. Note that in (2.2) we can
write R™ \ {zo} instead of G\ {zo} as well—G \ {zo} instead of G is just used
to avoid constant paths.

Clearly every point z¢ € G\ C satisfies the M -condition with respect to C'.
Hence only points ¢ € C are of interest in the M -condition. The M -condition
seems also to depend on the domain G. However, writing A = R" \ B™(z, 1),
z9 € G, we see that

Mo = M(A(K, 4 R™)) < wn-1 (log %‘1)1_" <o

whenever K C G is a continuum with

§ = dia(K) < ro
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and with zo € K. Since

M(A(K,CUBG; G\ {z0)))
< Mo+ M(A(K,(CUBG)\ 4G\ {20))),

the points in G U C' of distance ¢ > 0 from zo € G have no effect on the
M -condition. Especially for points ¢ € C the M -condition is independent of G.
We say that C satisfies the M -condition (with respect to G) if each xo € C
satisfies the M -condition.
Next we say that C satisfies the UM -condition (with respect to G) if for
each compact set F' C G and for each € > 0 there is § > 0 such that for every
zo € F there exists a continuum K C G with the property (2.1) and

(2.3) dia(K) > 6,

(2.4) M(A(K,C’U@G;G\{:co})) <e.

If C satisfies the UM -condition, then C clearly satisfies the M -condition. The
UM -condition (UM = uniform modulus) is a locally uniform version of the M -
condition.

We shall frequently employ the following lemma which is a modification of
a similar result in [M1] and [MS]. Note that the lemma will mostly be used for
C U OG instead of C.

2.5. Lemma. Let C' be a closed set in R®, zo € R and K a continuum
such that o € K and K\ {zo} C R"\ C. There are constants 8> 0 and b < oo
depending only on n such that if

m = M(A(K,C;R™ \ {z})) <8

then there are radii r; € (dia(K)/2'+!,dia(K)/2), i = 1,2,..., with

(2.6) S Yzo,r;) CR™\ C,
and
(2.7) M(A(K', C;R™\ {a:o})) < bm,

where K' = K UU;S™ Y (zq,7;).
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Proof. Let ¢; = dia(K)/2', i = 1,2,..., and 4y = R"\ B (20,t,), 4; =
B"(z0,t;) \ B (20, tixs), i = 1,2, .... Write

T = A(K,C; 4;).

First we prove that

(2.8) > M(Ty) < 3M(T);
i=0
here T' = A(K,C;R™ \ {z0}).
To this end, let ¢ be an admissible function for M(T'). Now p is admissible
for each M(T';) and no point « € R™ belongs to more than three of the sets A;:

hence - -
ZM(Pi)SZ/ g"dm§3/ o™ dm.
i=0 v Ai R”

1=0
The inequality (2.8) follows.
Observe that by [GM2, 2.18] and [HK, 2.6]

M(T;) = cap(E;),

where E; = (CNA;, K N4;; A;) is a condenser whose capacity is defined as
(2.9) capE; = inf/ [Vu|™ dm;
A

here the infimum is taken over all functions v € C 1(4;), continuous in A;U (6A,~ N
(CUK)) with u|[KN4; >1, u|CN4A; <O0.
Next for each ¢ = 0,1,... choose an admissible function for cap E; such that

(2.10) [Vu|™ dm < cap E; + M(T)/2+1;
A;

note that we may assume M(T') > 0 since otherwise C is of zero capacity and the
existence of the required radii r;, ¢ = 1,2,..., follows easily. Consider the open
sets

U = {z € A;: ui(z) > 1/2}, t=1,2,....

If U; does not contain any S™~!(zg,r), r € (ti+1,t:), then each such S$™~!(z,, T)
meets both A; \Y; and K yielding by [V, 10.12]

(2.11) Ca.p(A,‘ \Ui,I{ﬂA,’;Ai)
= M(A(A,’ \Ui, Kn Zi;Ai)) > b log2,
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where b; depends only on n. Next, observe that

cap(A; \U;, K N 4;; A;) <27 / |Vui|™ dm
A
(2.12) < 2" (cap Ei + M(I)/2+1) = 2™(M(T:) + M(T)/2"+")
< 2" M(T),

where we have used the definition of I'; and (2.9)-(2.10). Now (2.11) and (2.12)
yield a contradiction provided that

M) <8 =5b2"""2log2.

We have shown the existence of S"1(zg,r;) CU C R\ C, tiy1 <1 <t;.
It remains to prove that

(2.13) M(T') < bm,

where I' = A(K',C;R" \ {z0}) and K' = KU U, 8™z, 7).

To this end, write By = R® \ B"(z0,m1), Bi = B™(z0,7i) \ B"(z0,7i41),
i =1,2,...,and let T} = A(K'nB;,CNB;;B;),1=0,1,2,.... Since each y € I"
has a subpath lying in some I'; we conclude that

(2.14) M) < i M(TY).

Now we estimate M (T}).
For i = 0,1,... the function 2|Vu;| is admissible for M(I';). Thus by (2.9)
and (2.10)

(2.15) M(T}) < 2"/ |Vu;|™ dm < 2"/ |Vu;|™ dm
B; A;
< 2"(cap E; + M(T)/21).

Since M(T;) = cap E;, (2.14) and (2.15) together with (2.8) yield
M)y < 3 M) < 2 (30 M) + M(T)/2+)
=0 =0

< 2"t M(T).

The claim follows with 8= b; 27" 2log2 and b= 2""3.

Next we produce a useful characterization for the UM -condition.
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2.16. Lemma. Suppose that C is a relatively closed subset of an open set
G. Then C satisfies the UM -condition if and only if for every zo € G and every
€ > 0 there is a neighborhood U of o such that for each pair of points z;, z, € U
there is a continuum K = K,,,, with the properties:

(2.17) 1,29 € K, K\{xl,mz}CG\C,
and |
(2.18) M(A(K,CU@G;G\{xl,zg})) <e.

Proof. It is immediate that the condition of the lemma implies the UM -
condition. To prove the converse assume that C satisfies the UM -condition. Let
zo € G and pick an 7 > 0 such that F = En(xo,r) is a compact subset of G. By
the UM -condition for each € > 0 thereis § > 0 such that for each z € F there
is a continuum K = K, C G with properties (2.1), (2.3), and

(2.19) M(A(K,CU@G;G\{x})) < ;—b;

here b is the constant of Lemma 2.5.
Next, fix ¢ > 0. We may assume that ¢/(2b) < 3, see Lemma 2.5. Write

ro = min(r, §/8)

and U = B(zo,79). Then U is a neighborhood of zo. Let z;, =, € U and pick
continua Ky = K, , K; = K, as in (2.19). By Lemma 2.5 we may replace K

with continua K containing the spheres S"'l(:cj,r{), 1=1,2,..., 7 =1,2; note
that
(2.20) M(A(K},CUBGR™\ {z0))) < be _ e
I b 2
cf. (2.7).

Since |z; — z2| < §/4, the continua K| and Kj meet each other. Hence
K = K] UK, is a continuum with property (2.17). Furthermore, by (2.20)

M(A(K, C U 0G;G \ {z1, $2}))

2
<Y M(A(K},CUOGG\ {2;})) < Je+ de =c.
j=1

This is (2.18) and thus the continuum K has the desired properties.

For @ > 0 and C C R"™ welet H*(C) denote the usual a-dimensional (outer)
Hausdorff measure of C. The Hausdorff dimension of C is written as dimy(C).
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2.21. Lemma. Suppose that C satisfies the M -condition. Then dims/(C) =
0. In particular, C is totally disconnected.

Proof. By [MS, 3.1] the n-capacity density of C' is = 0 at each point z €
C. By [M2, 3.8] this implies that H*(C) = 0 for every > 0. Consequently
dimy(C) = 0 as required.

2.22. Remarks. (a) If C satisfies the UM -condition, then C satisfies the
M -condition as well. Hence Lemma 2.21 holds for sets C satisfying the UM -
condition.

(b) In [M2] a set C satisfying the M -condition but of positive n-capacity
was constructed. A closer look at the construction shows that C also satisfies the
UM -condition. Thus there exist sets satisfying the UM -condition with positive
n-capacity.

3. Continuous removability

Throughout this chapter G is a domain in R™ and C is a closed (relative to
G) subset of G. We are mainly interested in the following problem: Suppose that
f: G — R" is continuous and quasiregular in G \ C'. Under which conditions is
f quasiregular in G?

The most difficult part in proving removability theorems for quasiregular map-
pings f: G\ C — R" is to show that f is ACL™ in G. In most cases the ACL-
property is trivial and hence it remains to show that |f'| belongs to loc L™(G).
This fact is demonstrated in our first lemma.

3.1. Lemma. Suppose that H*}(C) = 0 and that f: G\ C — R" is a
K -quasiregular mapping. If each o € C has a neighborhood U such that

(3.2) / 1F']" dm < oo,
u\c

then f extends to a K -quasiregular mapping f* G — R".

Proof. Let zy € C and pick a neighborhood U of zo as above. Since
H*(C) = 0, f is ACL in U and by (3.2), f is ACL™ in /. On the other
hand, |f’(z)|n < KJ(z,f) ae. in U, and these conditions imply that f has a
continuous extension f* to U, see for example [BI, 2.1, 5.2]. The lemma follows.

For the next lemma we recall that a mapping f: G — R™ is light if f~1(y)
is a totally disconnected set for each y € R™.

3.3. Lemma. Let f: G — R" be continuous and light. If f is K-
quasiregular in G\ C and m(f(C)) =0, then each z € C' has a neighborhood U

with
/ [f|™ dm < oo.
u\c
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Proof. Note first that f is discrete, open, and sense-preserving in each com-
ponent of G\ C—this follows from the quasiregularity, see [MRV1, 2.26], and the
lightness of f.

Fix zo € C, and pick a domain D such that 2z € D, D C G, and f~! (f(a:o))
NOD = {; this is possible because f is light and hence f~1 ( I (a:o)) is of topological
dimension zero. Let V' be the f(zo)-component of R™\ f(8D) and let ¢ be the
o -component of f~1(V). Then ¥ is an open neighborhood of z,. If y € V\f(C),
then

(3.4) Ny, fLUu)< Y iz, f) = w(y, f,U)

z€f-1(y)NU

by the properties of the topological index y, see [MRV1, p. 6 and p. 11] for the
definitions of N, i, and p. Next observe that f(8U/) C 8V, and hence y and
f(zo) belong to the same component of R™ \ f(8). But this means that

w(y, £,U) = u(f(zo), f,U),
and hence by (3.4)
(35) N(y,f7u)su(f(x0)’f,u) =m < ©
for all y € V'\ f(C). Since m(f(C)) = 0, (3.5) holds for a.e. y in V. On the
other hand [MRV1, 2.14] yields
/ |f’|"dm§K/ J(z,f)dm:K/ N(y, f,U\ C)dm
u\c u\c R"
N
< /R (v, f,U)dm
= [ N fuyan <,
VAF(©)

where (3.5) is used at the last step.

A mapping f: G — R" is said to be locally Hélder continuous if each 29 € G
has a neighborhood ¢ such that for some constants 0 < « <land M <o

|f(a:)—f(y)| <Mz —y|? for all z,y € U.
Further, f is said to be locally Hélder continuous with exponent « if the above
constant o is independent of z,.

3.6. Theorem. Suppose that H*(C) = 0 for some A\, 0 < A < n —1, and
let f: G — R™ be light and locally Hélder continuous with exponent o > A/n. If
f is K -quasiregularin G\ C, then f is K -quasiregular in G.



390 P. Koskela and O. Martio

Proof. By Lemmas 3.1 and 3.3 it suffices to show that m(f(C)) = 0.
To this end, let F' be a compact subset of C. Since f is locally Holder
continuous with exponent «, there is a neighborhood U of F' such that

(3.7 |f(z) = fy)| S Mz —y|*

for all ¢, y € U, where M is independent of z and y.
Let ¢ > 0. Since HM(F) = 0, there is a covering of F' by balls B"(z;,:),
r; < 1, such that B™(z;,r;) CU and

(3.8) dori<e.

oo
=1

Now f(B"(mi,ri)) ,1=1,2,...,is a covering of f(F') and hence

m(f(F)) < Qn i dia (f(B"(wi,ri)))n

< QoM™ dia (B™(ei,r) ™" < Qn M™ 27 >ord
=1 =1

< Qu MT™2%" g

here (3.7) and (3.8) are also used. Letting ¢ — 0 we obtain m(f(F)) = 0. Thus
m(f(C)) =0 as desired.

3.9. Theorem. Suppose that H*(C) =0, 0 < A <1, and that f: G — R"
is locally Holder continuous with exponent a > A/n. If f is K-quasiregular in
G\ C, then f is K -quasiregular in G.

Proof. Since H'(C) =0, G\ C is a domain. If f|G\ C is constant, then the
claim is clear. Otherwise f|G \ C is discrete and since H'(C) = 0, C is totally
disconnected. Hence f is light. The proof now follows from Theorem 3.6.

3.10. Remarks (a) For large values of K Theorem 3.9 is better than Theo-
rem 1.5. Note that the inequality o > A/n does not include K.

(b) Theorem 3.9 gives the following result: If dimy(C) =0 and if f: G — R™
is locally Holder continuous in G and K-quasiregular in G \ C, then f is K-
quasiregular in G.

The preceding results have their roots in [MRV2, 4.1]. Next we relax the
Holder continuity condition of Theorem 3.6 slightly. If D is an open, proper
subset of R™, we let W = {Q} denote the Whitney decomposition of D into
cubes Q. This means that each @ € W is a closed cube whose edges are of
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length 2~* for some integer i and parallel to the axes and the diameter of Q is
approximately proportional to the distance d(Q,R™ \ D), more precisely

dia(Q) < d(@,R™\ D) < 4dia(Q).

Moreover, the interiors of @ are mutually disjoint and UQ = D. For the construc-
tion of a Whitney decomposition W see [S, p. 16]. The Whitney decomposition
W of D is not unique but this fact has no importance in the following.

Suppose that f: D — R™ and 0 < « < 1. We say that f belongs to
loc Lip, (D) if there is M < oo such that

|f(z) = fy)| < M|z —y|*

for each z, y € Q and for each Q € W where W = {Q} is a Whitney decompo-
sition of D. For the properties of the class locLip, (D) see [GM1]. Note that the
class locLip, (D) is properly contained in the class of locally Holder continuous
mappings in D with exponent «.

Finally we recall the definition of the Minkowski dimension of a compact set
FCR"™ For A>0 and r > 0 write

k
MMNF) = inf{k ™ FC U B"(:v,-,r)}
i=1
and let
M?*(F) = lim sup M2 (F).
r—0

The Minkowski dimension of F' is then defined similarly to the Hausdorff dimen-
sion as
dimp(F) = inf{A > 0: M}(F) < o0}.
Note that dima(F) > dimy(F)—for the properties of dima, see e.g. [MV].
3.11. Lemma. Let f: G\ C — R"™ be K -quasiregular. Suppose that

¢ € C has a neighborhood U such that dimm(C NU) = A < n and f lies in
locLip, (% \ C), a > A/n. Then there is a neighborhood V of z with

/ [f'|" dm < oo.
V\C

Proof. We may assume that & = B™(z,r) and that f C G. Write F = cnid,
and let W be the Whitney decomposition of U \ F.

For each Q € W let Q' denote the cube with the same center as @, sides
parallel to those of @ and edge length £(Q') = (3/2)£(Q). Note that Q' is covered
with cubes Q € W satisfying Q N Q # 0 and that

H(Q) < UQ) <44Q)
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for each such cube @

Next pick a constant by = by(n) so that Q' C B"(z,r) whenever Q € W
satisfies Q N B™(z,7/by) # 0; this is possible by the properties of W since z € F'.
We complete the proof by showing that

/ 1" dm < oo,
v\C

where V = B™(z,r/by). Clearly we may assume that 2r < 1.
Notice first that

o N;

(3.12) /V\C |f'|"dng§:/Q“ \£']" dm

i=1 j=1

where each Q;; € W satisfles £(Qj) = 2-%, ; € B™(a,r) \FCG\C, and N;
is the number of the cubes Q;; € W that intersect V. Since Q;,; CG \ C and
f: G\ C — R" is K -quasiregular, [GLM, Lemma 4.2], see also [BI, 6.1], yields

(3.13) / AfTdm < by yrggflf(y) — Fyi)|"

i)

where b; depends only on K and n and y;; is the center of Qij. Note that
(3.13) follows from the standard estimate of [GLM, p. 54] since each coordinate
function of f — f(yi;) is an F-extremal, cf. [GLM, p. 71], with an appropriate
F and cap,(Qij,int Q;;) = c, where ¢y depends only on n—here cap,, refers to
the n-capacity.

Next, since f € loc Lip,(U \ C), we obtain

(3.14) |f(v) = F(yij)| S 5VAM27 = b 277

for each y € Q;;; here we have used the fact that every y € Q;; \ Qi is contained
in a cube Q € W meeting Q;; and hence £(Q) < 4£(Q;;). On the other hand, by
MV, 3.9]

(3.15) N; < b5 211, i=1,2,...

for any A, > A = dima(F) for some bs independent of ¢. Combining (3.12)-

(3.15) we obtain
)
flln dm < b 2i()\1—an)
Jogbmam <t

i=1

where bg = b3 b} bs. Since a > A/n, the claim follows.
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3.16. Theorem. Let f: G\C — R" be K -quasiregular. Suppose that each
z € C has a neighborhood U such that dimpm(C NU) =A< n—1 and f lies in

loc Lip, (U \ C) for some o > A/n. Then f extends to a K -quasiregular mapping
#*. G - R".

Proof. The claim follows from Lemmas 3.1 and 3.11.

3.17. Theorem. Suppose that dimap(F) < A < n — 1 for each compact
F C C and that f: G — R" is locally Holder continuous with exponent a > A/n.
If f is K-quasiregularin G\ C, then f is K -quasiregular in G.

Proof. If f islocally Holder continuous with exponent « in G, then each z €
C has a neighborhood U such that f € locLip (U \C). Smce dima(CNU) < A,

the claim follows from Theorem 3.17.

3.18. Remark. It may happen that dima(C) > dim#(C), hence Theo-
rem 3.17 does not imply Theorem 3.9. Note that there are countable closed sets
C with dima(C) > 0.

4. A removability theorem for quasiregular mappings
Suppose that G is a domain in R™ and C is a relatively closed subset of G.

4.1. Theorem. Suppose that f: G\ C — R" is a K -quasiregular mapping
omitting a set of positive n-capacity. If C satisfies the UM -condition, then f
has a K -quasimeromorphic extension f* G — R"™ U {oco}.

The formulation of the theorem needs an explanation. First, the mapping
f* may take the value co. Hence, as in the classical analytic plane case, we
say that f*: G — R™ U {0} is K-quasimeromorphic if for each z € G either
f* is K-quasiregular or, in the case f*(z) = oo, go f is K-quasiregular at a
neighborhood of x; here ¢ is a sense-preserving Mobius transformation such that
g(o0) # oo. Next let F be a closed proper subset of R*. If F; C R™\ F is a non-
degenerate continuum, then we write I'(F) = A(Fy, F;R™). Now M(T(Fy)) >0
or M(T'(Fy)) =0 for each such continuum F}. In the first case we say that F is
of positive n-capacity and write cap, F' > 0. In the second case F is said to be
of zero n-capacity; this we write cap, F' = 0. Since

M(I(Fy)) = cap,(Fy,R™ \ F),

this definition agrees with the usual definition of a set of zero n-capacity, see
[MRV2, p. 6] or [HKM].

Finally, note that if f is bounded, then f omits a set of positive n-capacity
and the mapping f* in Theorem 4.1 is K-quasiregular.

To prove Theorem 4.1 we need three lemmas; we assume that f: G\ C — R"
and C satisfy the conditions of the theorem.
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4.2. Lemma. The mapping f has a continuous extension f*: G — R"™ U
{oo}.

Proof. We may assume that f is non-constant. It suffices to show that f
can be extended continuously to each point z¢o € C. Fix z¢o € C and let € > 0.
Pick a neighborhood U C G of zo such that the conditions (2.17) and (2.18) of
Lemma 2.16 hold. Let z;, zo € Y \ C and let K,,,, be a continuum with the
properties in Lemma 2.16. Write I’ for the family of paths joining f(K;,z,) to
R™\ f(G\C) in R*U{co}; note that f(G\C) is an open subset of R because
f is open. Let I'* be the family of maximal lifts (under f) of the paths in T’
starting at K;,,,, see [MRV3, 3.11]. Then each v* € I'* ends either in C or in
0G U {o0}. By the fundamental modulus inequality for quasiregular mappings,
see [P],

(4.3) M(T) < K™ M(T™*);

note that the inner dilatation K;(f) of f satisfies K;(f) < K"~ !, see [MRV1,
pp. 14-15]. On the other hand, condition (2.18) of Lemma 2.16 yields

(4.4) MIT*)<e.
Thus (4.3) and (4.4) imply
(4.5) MI) < K" le

Next write ¢ = q(f(Kz,z,)) —the spherical diameter of f(Ks,,), see MRV2,
3.10]. Since cap,(R™\ f(G\ C)) > 0, [MRV2, Lemma 3.1] together with
(4.5) shows that ¢ < § where § — 0 as € — 0. Since the spherical distance

‘Z(f(ml), f(xz)) of f(zy) and f(z;) satisfies
Q(f($1)> f(.’l,‘g)) < Q(f(I{zlzz)) S 5,

the Cauchy criterion shows that f has a continuous extension to zg.

4.6. Remark. It was proved in [Vu] that if f: G\ C — R" is quasiregular
and omits a set of positive n-capacity, then f has a unique asymptotic limit at
zo9 € C provided that z, satisfies the M -condition with respect to C'. Lemma 4.2
shows that a slightly stronger assumption yields a continuous extension.

4.7. Lemma. The mapping f*: G — R"U {00} is either a constant or light
and open.

Proof. Suppose that f* is not a constant. Fix y € R® U {co}. Then

Ty wyuc
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and since f~!(y) is a discrete set of points in G \ C and since C is totally
disconnected, see Lemma 2.21 and Remark 2.22 (a), f*~!(y) is a subset of a
totally disconnected set. Thus f* is light.

Next we show that f* is open. Note that f is open at any zo € G\ C.
Suppose that zo € C'. Since f* is light and C is totally disconnected, there are
arbitrarily small connected neighborhoods D C G of z¢ such that

(4.8) 0D c G\ C
and
(4.9) f*(zo)NOD = .

Fix such a domain D. It suffices to show that f*(z) € int f*(D). Since f* is
continuous, we may assume that f*(z¢) # oo and that f*(D) is a compact subset
of R".

Denote the f*(zo)-component of R™\ f(8D) by D', andlet V = D'\ f*(D).
Since f*(D) is compact, V is open. We shall show that V = 0.

Suppose not. Pick a connected component V' of V. If V' N D' = @, then
OV' C 0D' and hence V' = D' which is impossible because f*(zo) € D'\ V'.
Thus there is y € 8V' N D'. Now y € f*(D)\ f(8D), hence there is a point z
in D with f*(z) = y. Pick a continuum K, as in the M -condition for = with
K, \{z}C D\ C and

M(A(Kx,CUBG;G\ {z})) <1.

On the other hand, y = f*(z) is a boundary point of a domain V', hence for each
T > 0 there is a non-degenerate continuum K’ C V' such that

(4.10) M(A(f*(K2), K'iR™)) 2 T
note that f*(K) is a non-degenerate continuum containing the point y.

Next, write I' = A(f*(K,),K’; R") , and let I'* be the family of all maximal
lifts (under f|D\ C') of T starting at K, \ {z}. Since K' N f*(D) = §, each
v* €T'* ends either at CN D or at 8D. Thus
(4.11) M(I*) < M(A(K,,C;R"™\ {z})) + M (A(K,,0D; R™))

<14+ M< o

where M is independent of K'; note that M < oo because K, is a compact
subset of D. Since f is K -quasiregular, we conclude that

M(T) < K" M(T*) S K™7'(1+ M).
Choosing T in (4.10) large enough we obtain a contradiction. Hence V = 0.
Now D'\ f*(D) =V = 0 and thus D' C f*(D). Since D' does not meet
f*(0D), D' C f*(D) and since D' is an open neighborhood of f*(z¢) in f*(D),
we have the desired conclusion f*(z¢) € int f*(D).
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4.12. Lemma. The mapping f* is locally Hélder continuousin G\ f*~1(o0).

Proof. Since f: G\ C — R" is locally Holder continuous as a quasiregular
mapping, see [MRV2, 3.2], it suffices to show that any zo € C' with f*(zq) # oo
has a neighborhood U with |f*(z) — f*(y)l < M|z —y|® for all z, y € U, where
a >0 and M < oo are independent of the points = and y.

To this end, fix such a point zo € C and pick a ball B™(z¢,87) C G such that
oo & f* (Fn(:co,ﬁr)) and for any z € B"(z,r) there is a continuum K, with
z€ K., K;\{z} CG\C, 8r < dia(K,;) < 9r, and M(K,CUIG;R"\{z}) < 8,
where (3 is the constant of Lemma 2.5. This is possible because C satisfies the
UM -condition and f* is continuous. Let z € B"(z¢,r) and pick a continuum K,
as above. Let r; > ry > ... be the sequence of radii given by Lemma 2.5. From
this sequence we select every second and still denote this new sequence by (r;).

Write
(4.13) Li= max )If*(y)_f*(x)|’ 1=1,2,....

yEB(z,r,-
Since f* is open by Lemma 4.7,

(4.14) Li= [f() = £*(2)];

max
yeS™—1(z,mi)

note that S*~1(z,r;) Cc G\ C.

For each 7 = 1,2,... let T; be the family of paths which connect
f(S™ Y (z,rit1)) to f(S™!(z,ri)) in R™. Let I'} be the family of maximal
lifts under f|B™(z,r;)\ C of T; starting at S"~!(z,r;4+1). Each path v* in T}
ends either in C or in S"~!(z,r;). Thus

M(T) < M(A(S" 1 (2,7i41), G R™) )
+ M(A(S"“l(m,riﬂ), Sz, r;); R"))

(4.15) < b8 + wp—1(logri/riz1)t ™
dia (K,)/2%+2 \1-n
< -
= b,H + wp—1 (].Og dia.(Kz)/22('+1)+1)

= b + wn—1(log2)! ™" = by;

here we used the fact that we had chosen every second of the original radii of
Lemma 2.5. On the other hand, (4.15), [V, 6.4], and the quasiregularity of f
imply

(4.16) M(T3) < M(A(F(5" (2, ri11)),

F(5™ (e, m) UBS(G\ C); F(G\ C)))
< K"'MITH < K" by.
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Let yo € S™ Y(z,ri41) be such that Liy; = |f(y) — f(z)| and write 2z, =
L (f(yo) — f(z)) + f(z). Since f* is open, for each s € (Li — Li41, L;) the sphere
S™1(z,s) meets both f(S”_l(x,r,-)) and f(S“_l(:v,riH)). Hence [V, 10.12]
yields

. D> =
(4.17) ML) 2 by log 7—7—

Here by depends only on n. Now (4.16) and (4.17) give
(418) L,‘+1 S b3 Li, 1= 1,2,...,

where b3 = (e —1)/e', t = K™ 1b, /b,, is independent of z and i.
From (4.18) we obtain by iteration

(4.19) L <Ly,  i=1,2,....

Finally, let y € B™(zq,r). Note that ry > dia(K;)/4 > 2r > |z — y|; hence we
may pick an integer ¢ such that

riv1 < |z —y| <ri.
Now (4.13) and (4.19) imply
(4.20) |£*(2) - f*()] < Li <87 L.
On the other hand,
|z —y| > riyg1 > dia(K,)/2%%2 > 2r /27,

hence

) 2r \1/(2log2)
i > g =7)

By (4.20) this yields (observe that b3 < 1)
|f*(2) = f*(»)] < Mz —y|*,
where a = —logbs/2log2 > 0 and

M = b1 L, (2r)(08 ba)/(21082)

< 2b31(2r)0e8ba)/ (21082 max  |f(z)| < o0
2EB" (z0,67)

are independent of z and y. The lemma follows.
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Proof for Theorem 4.1. Since the definition of quasimeromorphic mappings
is local, it suffices to show that any zo € C has a neighborhood U with f*|U
K -quasimeromorphic; here f* is the mapping given by Lemma 4.2. Fix z¢ € C,
and pick a sense-preserving Mobius transformation g with g(oo) # oco. Assume
first that f*(co0) # oo; then Lemmas 4.2 and 4.12 imply that f* is locally Holder
continuous in a neighborhood U of zg. Thus f* is K-quasiregular in U by
Lemma 2.21 and Remark 3.10 (b).

Suppose finally that f*(z9) = co. Now go f* is bounded in a neighborhood ¢/
of o and K -quasiregularin #/\C'. Hence Lemma 4.2 yields a continuous extension
(gof)*: U —» R*U{oo}. Moreover, (go f)* = go f* and (go f)*(z¢) # oo; hence
the proof follows by applying the above reasoning to (g o f)*.
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