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REMOVABITITY THEOREMS FOR
QUASIREGUTAR MAPPINGS

P. Koskela and O. Martio

1. Introduction

A continuous mapping "f of an open set G C R" into R" is called K-
quasiregular, K ) L, if / is ACL", i.e. the coordinate functions of / belong to
the local Sobolev space loc Wi,G), and if

( 1.1)

a.e. in G. Here /'(c) is the (formal) derivativeof / at x, J(x,/) is the jacobian
determinant of the matrix /'(o) and l/'(r)l stands for the supremum norm of the
linear mapping /'(r): R' ---+ R'. For n : 2 and K = I these mappings reduce
to the class of analytic functions in G. Quasiregular mappings seem to form a
proper generalization of analytic functions to higher dimensional euclidean spaces.
For the theory of quasiregular mappings we refer to [MRV1-2] and [R].

Suppose that C is a relatively closed subset of G. The removability theorem

[CL, p. 5] of Painlev6 and Besicovitch says that if the one dimensional Hausdorff
measure 7{t(C) of C vanishes and if /: G\C -* R2 is a bounded analytic function,
then / extends to an analytic function of G. For general quasiregular mappings
/r G \ C + R" the following, much weaker result was proved in [MRV2]:

1.2. Theorem. Suppose that C is of zero n-capacity. Then every bounded
K-quasiregular mapping f: G \C r R" extends to a K-quasiregula,r mapping
of G.

The proof for this result has potential theoretic character: For bounded har-
monic functions in the plane a set of zero Z-capacity is removable and there is a
similar result in R" , n ) 2, for coordinate functions of a quasiregular mapping
/, see [HKM].

Rather precise removability theorems can be obtained in the plane.

1.3. Theorem. Supposethat ?{^@):0 foraII ) > 0, i.e. theHausdorff
dr'mension dimz of C is zero. Then every boundedplane K-quasiregular mapping
/, G \ C + R2 has a K -quasiregular extension f" to G.
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The proof uses the representation theorem [LV, p. 2471for plane quasiregular
mappings: f : g oä where å is aquasiconformalmapping,i.e. aquasiregular
homeomorphism, and g is a^nalytic. Since ?{t(C) : 0, h extends to a quasi-
conformal mapping h* of G, see [LV, p. 206]. A K-quasiconformal mapping
is locally Hölder continuous with exponent 1,f K. Thus dimT(C):0 implies
dimfl(ä.(C)) : 0. Hence the a,forementioned theorem of Painlevd and Besicov-
itch shows that g has an analytic extension g*. Now f* : g* o h* is the required
extension of .f .

A look at the above proof gives the following result.

1.4. Theorem. Suppose that /r G \ C -- R2 is a bounded K -quasiregular
mapping. If TtllK (C) :0, then f extends to a K -quasiregula.r mapping of G .

For n ) 3 no results like Theorem 1.3 or 1.4 are known, except possibly for
K near 1. The method of the proof certainly fails.

Theorem 1.2 has a remarkable extension, see [MRV2]: It holds if the mapping
/ omits a set of positive n-capa,city-of course, the extended mapping may now
take the value oo. The proof for this result employs the geometric theory of
quasiregular mappings-modulus and capacity estimates.

The purpose of this paper is twofold. We prove a removability theorem,
Theorem 4.1, for general quasiregular mappings /r G \ C -» R which omit a
set of positive n-capacity. Our assumptions allow the set C to be of positive
ra-capacity although C is quite thin, for example dirrlnC : 0. The proof employs
the geometric theory as in [MRV2]. We first show that / can be extended to a
continuous mapping f* of. G. Thus we are naturally led to study removability
questions for continuous mappings /: G --+ R' which are quasiregular in G \ C-
this is done in Chapter 3. In Chapter 2 we introduce the conditions for the set C
used in the main theorem.

For locally Hölder continuous functions f: G ---+ R2 analytic in G \ C the
removability of. C is determined in terms of the Hölder exponent and the Hausdorff
dimension of C. The following, very precise, result is due to L. Carleson, see e.g.

[G, p.78]: If V{^(q:0 and if / is locally Hölder continuous in G with exponent
a ) ) - 1 and analytic in G \ C, then / extends to an analytic function of G.
Reasoning as for Theorem 1.3 we obtain

1.5. Theorem. Suppose that f : G -. R2 is locally Hölder continuous
with exponent 0 ( o ( 1 and K-quasiregular in G\C. If ?t^Q):0, ,\:
min(l, L/K + olK2), then f extends to a K -quasiregular mapping of G .

For n ) 2 a" different technique produces results which, in general, are better
than Theorem 1.5. It suffices to assume that ,\ ( min{1, af n} and hence ,\
can be chosen independentty of K, see Theorem 3.9. A careful analysis of a
special semilocal Hölder class leads to results which allow removable sets C with
dirnla(C) > L. Such a result is Theorem 3.17 where the Minkowski dimension of
C and the Hölder exponent of / are related.
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1.6. Remark. For each e > 0 there is a Cantor set C c R2 with dimT(C) <
e and a .K-quasiregular mapping / of R2 \ C that is locally Hölder continuous in
R2 with some exponent a > 0 but / fails to extend to a quasiregular mapping of
R2. The mapping f can be constructed by composing a quasiconformal mapping
as in [GV, Theorem 5] with an appropriate analytic function. Of course, K and
o depend on e.

Since this work was completed, we have become aware of three other manu-
scripts dealing with removability questions for quasiregular mappings. T. Iwaniec
and G.J. Martin [IM] have proved that for each K and each n there is a

,\ : )(K, n) > 0 such that closed sets F of the even dimensional space R2'
with ?l^(F) : 0 are removable for bounded K-quasiregular mappings of R2".
Furthermore, P. Jåirvi and M. Vuorinen [JV] have established that certain self-
similar Cantor sets are removable for quasiregular mappings omitting a finite but
sufficiently large number of points. Finally S. Rickman [Ri] has constructed ex-
amples of non-removable Cantor sets for bounded quasiregular mappings in R3.

2. Modulus conditions

We consider two modulus conditions, the M-condition and the UM-condi-
tion. The first was introduced in [M1] and further studied in [MS].

Let G be an open set in R" and C a relatively closed subset of G. We say
that a point rs € G satisfies the M-condition with respect to C if there exists a

non-degenerate continuum y'( C G such that

(2.1)

(2.2)

(x \{"0}) )c -A, frs e K, and

Here A(.E, F;A) stands for the family of all paths which join .E to F in A and
M(t) is the n-modulus of the path family l, see [V]. Note that in (2.2) we can
write R" \ {rr} instead of G \ {es} as well-G \ {ro} instead of G is just used
to avoid constant paths.

Clearly every point rn e G \ C satisfies the M-condition with respect to C.
Hence only points xo € C are of interest in the M-condition. The M-condition
seems also to depend on the domain G. However, writing L: R'\.8"(o6,rs),
ro e G, we see that

Mo - [r[ (l(rr,A;R")) l wn-r (los

whenever I{ C G is a continuum with

ro \ r-n
T)
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andwith ns € K. Since
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u (t1N,c u oG;c \ t,,)))
1 Mo * u (t1x,@ u aq\ /; G 1 1,0 ))),

the points h ?GUC of. distance e > 0 from cs € G have no effect on the
M-condition. Especially for points ,o € C the M-condition is independent of G.

We say that C satisfies the M -condition (with respect to G) if each xo e C
satisfies the M-condition.

Next we say that C satisfies the UM-condition (witå respect to G) if for
each compact set f' C G and for each e > 0 there is 6 > 0 such that for every
h e F there exists a continuum K C G with the property (2.1) and

(2.3)

(2.4)

(2.6)

and

(2.7)

where

dia (I() ) 6,

* (o(N,c u oG;c \ {ro})) I e.

If C satisfiesthe UM-condilion, then C clearly satisfies the M-condition. The
U M -condilion (U M : uniform modulus) is a locally uniform version of the M-
condition.

We shaJl frequently employ the following lemma which is a modification of
a similar result in [M1] and [MS]. Note that the lemma will mostly be used for
C U AG instead of C.

2.5. Lemma. Let C be a closed set jn Rr, oo € R" a.nd K a continuum
suchthat xo e K and K\{ro} CR"\C. Thereareconstants §> 0 and 6< m
depending only on n such that if

spm--

then there are radii ri € ( dia(K)/2i+L,dia(K)/Zr) , i : !,2,. . ., with

Sn-'(ro, rr) C R' \ C,

*(o(x,c;k" \ {ro}))

\ {,0})) s*(o(K',c;R'

I{t - I{ UUisn-'(ro,r,).

b*,
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Proof. !9 tn : dia(I{)12i, i :7,2,..., and /o : R, \ B-(ro, t2), A; :
B"(*o,t;) \ B-(cs,t;+s),'i :' L,2,. . .. Write

First we prove that

(2'8) fu(r;)<BM(r);
i=0

here I : A(/(, C;R* \ {rr}) .

To this end, let p be an admissible function for M(l). Now p is admissible
for each M(t;) and no point o € R" belongs to more than three of the sets A;;
hence

oooo,

Drt.,l=t I n"d*ssI ondm.

=6 
7^ J A, Jrcn

The inequality (2.8) follows.
Observe that by [GM2, 2.18] and [HK, 2.6]

M(l;): caP(E;),

where Ei : (C 11 A;, K nÄ;; A;) is a condenser whose capacity is defined as

(2.g) cap E;: inf I lVul dm;
JA

here the infimum is taken over all functions u e Ct(A;), continuous in .4; U(AAin
(C u K)) with zlK nÄ;> t, ulC nZr < o.

Next for each i = 0, 1, . . . choose an admissible function for cap.E6 such that

(2.10) t lVrrl" d.m I capE; + M(t)lzi+t;
JA;

note that we may assume M(l) > 0 since otherwise C is of zero capacity and the
existence of the required radii r;, i:1,2,..., follows easily. Consider the open
sets

t/; : {x e A;: u;(u) > t/Z}, i: L,2,....
If U; does not contain any .9"-1(oorr), r € (tt+r,t6), then each such ^g"-l(cs,r)meets both A; \Z( and .I( yielding by [V, 10.12]

(2.1,1) cup(A;@;, K nÄ;; A;)
: u (tQqXtA,, K nÄ;;a,)) 2 \ tos2,
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where fu depends only on n. Next, observe that

cap(7ffi , K rr4.;;.Ar) < ," lo lY u;l d,m

(2.12) ( 2"(cap E; + M(t)/2i+') : z"(M(ti) + M(t)lzi+l)
< 2" M(t),,

where we have used the definition of I.i and (2.9)-(2.10). Now (2.11) and (2.12)

yield a contradiction provided that

M(f) 1§:b12-"-2log2.

We have shown the existence of ,S"-1(no,ri) CU C R" \ C, t;41 ( ri 1t;.
It remains to prove that

(2.13) M(r') <bm,

where l': a(K', Civn\ {ro}) and K' : KuUplS'-l(ro,ri).
To this end., write Bo : R," \8"(c6,rt), B; : Bn(ao,r;) \ B"(rs,r;+r),

i:1,2,...,and let Il : A(K'fiB;,CftB;;B;), i:0,1,2,.... Since each 7 € f'
has a subpath lying in some ll we conclude that

(2.14) M(r')= i M(t';).
i=0

Now we estimate M(l).
For i : 0, 1,... the function 2 lVz;l is admissible for M(li)' Thus by (2.9)

and (2.10)

(2.15) M(ri) 
=r" l",LVr;l' 

d,m l-2n 
lo.lou,l" 

o*

<2"(cap&+ M(t)l2i+').

Since M(l;) : cap Ei, (2.14) and (2.15) together with (2.8) yield

M(r1= i M(r';)= ," (i MF) + M(t)lzt+t)
i=0 i=0

I 2n+3' M(f).

The claim follows with B - b1-z-n-2log 2 and b :2o*3 .

Next we produce a useful characterization for t}ne U M -condition.
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2.16. Lemma. Suppose that C is arelatively closed subset of an open set
G . Then C satisfies the U M -condition if and only if for every no e G a.nd every
e > 0 there is a neighborhood U of as such that for each pair of points nr , rz e l,l
there is a continuum K : Krrr" with the properties:

(2.17)

and

(2.18)

ntttz € K, /( \ {*r,xz} C G \ C,

Proof. It is immediate that the condition of the lemma implies the u M -
condition. To prove the converse assume that C satisfi.es lhe U M -condition. Let
ao € G and pick an r ) 0 such that .F' :f (*o,r) is a compact subset of G. By
the UM-condition for each e ) 0 there is 6 > 0 such that for each r € F there
is a continuum K: K, C G with properties (2.1), (2.8), and

here b is the constant of Lemma 2.5.
Next, fix e > 0. We may assume that e/(2b) S p, see Lemma 2.5. Write

ro : min(r,6/8)

atdU: B(ao,rs). Then l,l isa neighborhoodof 16. Lel x1, 02 eä andpick
continua Kt: K.r, K2: K,, as in (2.19). By Lemma 2.5we may replace 71;
with continua Kl containing the spheres Sn-l(ai,rxr), i:1,2,..., j :1,21note
that

(2.20)

cf. (2.7).
Since lo1 - *rl < 6/4, the continua .Kl and KI o,,eet each other. Hence

K : KIU K!, is a continuum with property (2.17). Furthermore,by (2.20)

*(o(N,c u oG;c \
2

s » u(t@,,,c u oG;c\ {,i})) < i, + le : e.
j=t

This is (2.18) and thus the continuum K has the desired properties.
For o > 0 and C CF-* we let 7{(C) denote the usual o-dimensional (outer)

Hausdorff measure of C. The Hausdorff dimension of. C is written as dim71(C).

u (o(x,c u oG;G \ {*r, r2})) I e.

(2.1e)

u(o@;,c U aG; R" \ {ro}))
. be e-r 2b z'

{*r, nz}))
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2,2L. Lernma. Supposethat C satisfiesthe M -condition. Then dimT(C) :
0. In particula,r, C is totally disconnected.

Proof. By [MS, 3.1] the n-capacity density of C is : 0 at each point r €
C. By [M2, 3.8] this implies lhat TI(C):0 for every a ) 0. Consequently
dim71(C) : 0 as required.

2.22. Rernarks. (a) If c satisfies the uM-condilion, then c satisfies the
M-condition as well. Hence Lemma 2.21 holds for sets C satisfyinglhe UM-
condition.

(b) In [M2] a set c satisfying the M-condition but of positive n-capacity
was constructed. A closer look at the construction shows that C also satisfies the
U M -condition. Thus there exist sets satisfying the U M -condition with positive
n-capacity.

3. Continuous removability

Throughout this chapter G is a domain in R' and C is a closed (relative to
G) subset of G. We are mainly interested in the following problem: Suppose that

f: G --+ R' is continuous and quasiregular in G\C. Under which conditions is

/ quasiregular in G?
The most difficult part in proving removability theorems for quasiregular map-

pings /: G \ C --+ R' is to show that / is ACL" in G. In most cases the ACL-
property is trivial a,nd hence it remains to show that l/'l belongs to loc L(G).
This fact is demonstrated in our first lemma.

3.1. Lemma. Suppose that 7{"-1(C) : O and that /' G \ C --r R" is a
I{ -quasiregular mapping. If each rs e C hx a neighborhood U such that

(3.2) t l/'ln dm ,-oo,
J u1c

then f extends to a K -quasiregular mapping f*: G --+ R .

Proof. Let o6 € C and pick a neighborhood U of cs as above. Since

H,-L(C) :0, f is ACL in ?l ard by (3.2), / is ACL" in U. On the other
hand, l/'{r)1" l KJ(x,"f) ".". in l,l, and these conditions imply that / has a
continuous extension f* to l,l, see for example [BI, 2.1, 5.2]. The lemma follows.

For the next lemma we recall that a mapping f: G -- R" is light if f-' (y)
is a totally disconnected set for each y € R".

3.3. Lemma. Let f: G + R" be continuous and light. If f is K-
quasiregular* G\ C and *(f(C)):0,theneach t e C has aneighborhoodU
with 

t ff,f d,m < x.
Ju\C
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Proof. Note first that / is discrete, open, and sense-preserving in each com-
ponent of G \ c-this follows from the quasiregularity, see [MRvl, 2.26], and the
lightness of /.

Fix cs € c, and pick a domain D such that re e D,D C G, and /-'(/(ro))
i?D : 0; this is possible because / is light and hence /-, (/(ro )) is of topologicj
dimension zero. Let v be the /(rs)-component of R'\/(aD) and let ?l bitne
o0-componentof f-'(V). Then l,l isanopenneighborhoodof re. If y e V\f(C),
then

(3.4) i(*, f) - p(y, f ,t/)
cel-1(s)nu

by the properties of the topological index p, see [MRVI, p.6 a,nd p. 11] for the
definitions of .lf , i, and pr. Next observe that f(1t/) c av, and hencä y arrd
/(rs) belong to the sarne component of R" \ f @r). but this means that

p(y, f ,tl) - p(f (*o),, f ,U) ,

N(y, f ,t/) S p(f("0), f,U) : m <oo

for all v ev \/(c). since *(f(c)):0, (3.5) holds for a.e. y inv. on the
other hand [MRV1, 2.14] yields

J(*, f) d,m - K 
l*^N(y, f ,?/ \ C) d,m

and hence by (3.4)

(3.5)

t v'ln dm S
J U\C

o lu*
t n(y , f ,t/) dm

/Rn

t .,^r( u, f ,u) dm
ry\f(c)

where (3.5) is used at the last step.

A mapping f : G -+ R' is said to be locally Hörder continuousif each h e G
has aneighborhoodc/ suchthatforsomeconstants 0(o( l and M <q

lf(r) - f(y)l s M l* - yl' for all x,y e u.

Further, / is said to be locally Hölder continuous with exponent a if the above
constant a is independent of cs.

3.6. Theorem. Supposethat ?{^(C):0 forsorne Å, 0 < ) <-n_1, and
Iet f : G -+ R' be light a,.d locally lrölder confinuous with exponent a z ),f n. rf
f is K -quasiregular in G \ C, then f is K -quasiregular in G .
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Proof. By Lemmas 3.1 and 3.3 it suffices to show that m(f (C)) : 0.

To this end, let F be a compact subset of. c. since / is locally Hölder

continuous with exponent a, there is a neighborhoodu of J7 such that

for all n, U e l,lrwhere M is independent of r and y.
Let e > 0. Since '|(.\(F):0, there is a covering of l7 by balls B"(t;',r;),

r; 1, such that B"(r;,rl) C U and

(3 7)

(3.8)

It@)- f(v)l s Mln-vl*

i'l .e .

i:t

I§ow f (B"(*t,r;)), i - L,2,..., it a covering of f (F)

*(f (r)) < c," i dia (tfon(*i,ri)))"
i:\ 

oo

i:L
<CInMn2one;

here (3.7) and (3.8) are also used. Letting e --+ 0 we obtain -(/(f)) : 0. Thus

*(f (c)): o as desired.

3.9. Theorem. Supposethat ?{^(C):0, 0 < ) < L, ,ndthat f: G --+ R"
is locdly Hölder continuous with exponent a> \ln. If f is K-quasiregula,r in
G\C, then f is K-quasiregularin G.

Proof. Since'tlt(C) : 0, G\ C is a domain. If flc \ C is constant, then the

claim is clear. Otherwise /lG \ C is discrete and since 'l-{'(C):0, C is totally
disconnected. Hence / is light. The proof now follows from Theorem 3.6.

3.1O. Remarks (a) For large va.lues of K Theorem 3.9 is better than
rem 1.5. Note that theinequality a ) )/n does not include K.

(b) Theorem 3.9 gives the following result: If dimT(C) : 0 and if. f : G
is locally Hölder continuous in G and K-quasiregular in G \ C, then /

and hence

zoni,l
i:1

Theo-

--+ R'
is K-

quasiregular in G.

The preceding results have their roots in [MRV2, 4.1]. Next we relax the

Hölder continuity condition of Theorem 3.6 slightly. If D is an open, proper

subset of R", we let w : {Q} denote the whitney decomposition of D into
cubes Q. This means that eaeh Q e W is a closed cube whose edges are of
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length 2-i for some integer i and parallel to the axes and. the diameter of Q is
approximately proportional to the distanc. d(Q,R" \ D), more precisely

dia(Q) < d(Q,R" \ D) < adia(Q).

Moreover, the interiors of Q are mutually disjoint and U e : D. For the construc-
tion of a Whitney decomposition W see [S, p. 16]. The Whitney decomposition
w of D is not unique but this fact has no importance in the following.

Suppose that /: D --+ R" and 0 ( o ( 1. We say that / belongs to
loclip.(D) if there is M < m such that

lf(,)-f(v)l s Ml,-yl
for each n, a e Q ""d for each Q e w where w : {e} is a whitney decompo-
sition of. D . For the properties of the class locl,ipo(D) see [GM1j. Note that the
class locLip"(D) is properly contained in the class of locJly Hölder continuous
mappings in D with exponent o.

Finally we recall the definition of the Minkowski dimension of a compact set
F c R". For .\ ) 0 and r ) 0 write

Ml(r): :F Bn (*;,r) )
inf {* r^

k

CU
i:1

anC let

The Minkowski dimension
sion as

dimna(f') : inf {Å > 0: M^(F) < -}.
Note that dimrel(r') > dimz(f')-for the properties of dim,6,1 see e.g. tMvl.

3.11. Lemrna. Let f : G \ c --+ R' be K -quasiregular. suppose that
a e c has a neighborhood l,l such that dimpllc nil1 - ) < n and- f lies in
locLip,(U \ C), o > \/n, Then there is a neighborhood V of a with

t ff'f d,m < oo.
JV\c

Proof. We may assume that ?,1 : Bn(x,r) a^nd thatil C G. Write F : Cil,l,
and let W be the Whitney decomposition of ?/ \ .F,.

For each Q e w let Qt denote the cube with the same center as e, sides
parallel to those of Q and edge length l(Q) : (g/z) l(q. Note that e, is tovered
with cubes I e W satisfying Qnq l0 and that

14x(r) _ 
"HreM.(r').

of r is then defined similarly to the Hausdorff dimen-

iqqlsqO<4r(e)
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for each such cube ö .

Next pick a constant
satisfies Q n Bn (* ,, lbr) *
We complete the proof bY

P. Koskela and O. Martio

bz _ br(") so that Q' C Bn (*,')
0; this is possible by the properties
showing that

J V\C

whenever A € W
ofWsincefr€F.

whereV_Bn(*,,lb,).Clear1ywemayaSSumethat2r<
Notice first that

(3.12)

where each Q;i € I/7 satisfies l,(Q;):2-i,, Q';i CB"(*,')\F c G\C, and Ni
is the number of the cubes Q;i €W that inteisect I/. Since Qii c G\C and

/' G \ C '+ R" is K-quasiregular, [GLM, Lemma 4.2], see also [BI, 6'1], yields

(3.13)

where ä3 depends only on K and n and g;; is the center of Q;i. Note that
(8.18) follows from the standard estimate of [§LM, p. 5a]-since each coordinate

iorrction of f - f(yi) is an F-extremal, cf. [GLM, p. 71], with an appropriate

f' and "uprlQ;i,,int'Qi): 
co where c, depends only on n-here cap,, refers to

the n-capacity.
Next, since / e loc Lip.(U \ C), we obtain

lrfvl - l@,)l <5'fr'Mz-io - baz-i"

Q';;; here we have used the fact that every y e Qil \ Q;i is contained

e fu meetin1 Q;i and hence l(Q) 3 aL(Q;i). On the other hand, bv

N, S br}n\' , i - 7,2,. .

(3.15) we obtain
some bs independent of i. Combining (3.12)-

ä. i 2i(^'-dn)
i:l

J v1c åå t.,, lf'ln dm

IO,,

(3.14)

for each y €
in a cube A
[MV,3.g]

(3.15)

J V\C

where b6 =- btbTbt. Since a > \ln, the claim follows.
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3.16. Theorem. Let f : G\ C -- R" be K -quasiregula,r. Suppose that eaeh
r €C has aneighborhoodl,l suchthat dirnpl(C nil) - ) < n-l and f lies in
LocLip,(U \C) for some a> \ln. Then f extendstoa K-quasiregula,rmapping
f*, G ---+ R'.

Proof. The claim follows from Lemmas 3.1 and 3.1-1.

3.L7. Theorem. Suppose that dirny(.F) < \ < n - L for each compact
F CC andthat f: G --+ R" is locallyHöIdercontinuouswithexponent a> \fn.
If f is K -quasiregular in G \ C, then f is K -quasiregulat in G.

Proof. If / is locally Hölder continuous with exponent e in G, then ea,ch e €
C has a neighborhood U such that / e locLip,(U\C). Since dim.64(C nt/) < 

^,the claim follows from Theorem 3.1-7.

3.18. Rernark. It may happen that dim,p1(C) > dim71(C), hence Theo-
rem 3.17 does not imply Theorem 3.9. Note that there are countable closed sets
C with dim.l4(C) > 0.

4. A removability theorem for quasiregular mappings

Suppose that G is a domain in R' and C is a relatively closed subset of G.

4.1. Theorem. Suppose that /, G \ C --+ Rn is a K -quasiregular mapping
omitting a set of positive n-capacity. If C satisfies tåe UM-condition, then f
has a K -quasimeromorphic extension f*: G --+ R" U {m}.

The formulation of the theorem needs an explanation. First, the mapping

"f* *.y take the value oo. Hence, as in the classical analytic plane case, we
say that f*, G ---+ R'U {-} is K-quasimeromorphic if for each s € G either
/* is K-quasiregular or, in the case f*(*) : @, g o / is K-quasiregular at a
neighborhood of r; here g is a sense-preserving Möbius transformation such that
S@)* oo. Nextlet.F'beaclosedpropersubsetof R". If Fr CR"\tr'isanon-
degenerate continuum, then we write l(f'1) : A(f'r,f';R"). Now M(l(tr,l)) > 0
or U(f(fr)) : O for each such continuum .F,r. In the fi.rst case we say that .F' is
of. positive n-capacity and write capnP ) 0. In the second case F is said to be
of zero n-capacity; this we write cap,, f,: 0. Since

M(f(It)) - cap,,(Fr, R" \ f,),

this definition agrees with the usual definition of a set of zero n-capacitg see

[MRV2, p. 6] or [HKM].
Finally, note that if / is bounded, then / omits a set of positive n-capacity

and the mapping /* in Theorem 4.1 is K-quasiregular.
To prove Theorem 4.1 we need three lemmasl we assume thai /: G \ C -r R"

ar;.d C satisfy the conditions of the theorem.
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4,2, Lemma. The mapping f h* a continuous exfension f*, G --r R'U
{-i.

Proof. We may assume that / is non-constant. It suffices to show that /
can be extended continuously to each point 16 € C. Fix xo e C and let e > 0.
Pick a neighborhood U c G of. rs such that the conditions (2.17) and (2.18) of
Lemma 2.16 hold. Let c1 , 02 e U\C and let Krrr, be a continuum with the
properties in Lemma 2.16. Write I for the family of paths joining f (K,r,r) to
R" \ /(G \ C) in R' U {m} I note that /(G \ C) is an open subset of R" because

/ is open. Let I* be the family of maximal lifts (under /) of the paths in I
starting a!, Krrr* see [MRV3, 3.11]. Then each T* € f* ends either in C or in
äG U {m}. By the fundamental modulus inequality for quasiregular mappings,
see [P],

(4.3)

note that the inner dilatation Kr(f) of / satisfies K7(/) < Kn-t, see [MRV1,
pp. 14-15]. On the other hand, condition (2.18) of Lemma 2.16 yields

(4.4)

Thus (4.3) and (4.4) imply

(4.5) M(f) S K"-1 €.

Next write t : q(f (K,r,r)) -the spherical diameter of. f (K,r,r), see [MRV2,
3.101. Since cap,,(n" \ /(G \ C)) > 0, [MRV2, Lemma 3.1] together with
(4.5)showsthat t ( 6 where 6-+ 0 as e + 0. Sincethesphericaldistance
s(f@r),f (o2)) of /(r1) and /(r2) satisfies

q(/(01), /(rr)) < q(f(K,,,,)) s 6,

the Cauchy criterion shows that / has a continuous extension to o6.

4.6. Remark. It was proved in [Vu] that if /t G \ C -» R' is quasiregular
and omits a set of positive n-capacity then / has a unique asymptotic limit at
rs e C provided that rs satisfies the M-condition with respect lo C . Lemma 4.2
shows that a slightly stronger assumption yields a continuous extension.

4.7. Lemma. The mapping f*, G -+ R'U {-} is either a constant or light
and open.

Proof. Suppose that /* is not a constant. Fix y € IL" U {m}. Then

f*-'(v) c f-'(v) uc
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and since f-'(y) is a discrete set of points in G \ C and since C is totally
disconnected, see Lemma 2.21. ar,d Remark 2.22 (a), f*-'(y) is a subset of a
totally disconnected set. Thus /. is light.

Next we show that /* is open. Note that / is open at any ro € G \ C.
Suppose that rs € C. Since /. is light and C is totally disconnected, there are
arbitrarily small connected neighborhoods D C G of cs such that

(4.8)

and

(4 e)

Fix such a
continuous,
of R".

Denote the /*(cs)-component of R"\/(aD) by D', and let V : D' \/.(D).
Since /.(D) is compact, I/ is open. We shall show that V :0.

Suppose not. Pick a connected component V' of.V.If.0V'f)D' :0, then
0V' c 0D' and hence Vt : Dt which is impossible because "f-(ro) € D' \ y'.
Thus there is y € AV' iD'. Now y e f.(D)\ /(AD), hence there is a point r
in D with f*(*): y. Pick a continuum K, as in the M-condition for r with
/(,\{r}cD\Cand

ru (n(N,,c u oG;c t t,l)) < r.

On the other hand, y: f*(a) is aboundary point of a domain I/', hencefor each
T > 0 there is a non-degenerate continuum K' C Vt such that

(4.10) u(t1r*1x,),K';*")) > r,
note that f*(Kr) is a non-degenerate continuum containing the point y.

Next, write I : A(/.(K,),K';R"), and let l* be the famity of all maximal
lifts (under /lD\ C) ot f starting at K, \ {r}. Since K'n f"(D):0, each

T* € f * ends either at C i D or at 0D. Thus

(4.11) M(r.) S M(L(I(",C;R" \ {r})) + M(A(K,,äD;R"))
<L+M<oo

where M is independent of K'; note that M < a because K, is a compact
subset of D. Since / is .I(-quasiregular, we conclude that

M(T) 3 r{"-r Me\ < K"-r(l + M).
Choosing 7 in (a.10) large enough we obtain a contradiction. Hence V :0.

Now D' \ /.(D) : v :0 and thus D' c f-(D). Since D' does not meet
f.@D), D' C f.(D) and since D' is an open neighborhood of /*(rs) in /.(D),
we have the desired conclusion "f.(ro) € int/.(D).

0D c c\C

.f*-'(ro) noD:0.
domain D. It suffices to show that /.(16) e int/.(D). Since /* is
we may assume that /.(rs) f oo and that /.(D) is a compact subset
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4.L2, Lernma. ?åe mapping f* is locally Hölder continuousin G\/.-l(m).
Proof. Since /: G \ C --+ R' is locally Hölder continuous as a quasiregular

mapping, see [MRV2, 3.2], it suffices to show that any xs e C with /*(rs) * *
has a neighborhood l,l with l/.(r) - /.(y)l < Ml, - ylo for all r, y et/, where
a > 0 a.nd M ( oo are independent of the points r and y.

To this end, fix such a point rs € C and pick a ball B"(rs,8 r) c G such that
@ / f*(ff@0,6r)) and for any a e B"(as,r) there is a continuum .K, with
x € K,, K,\{r} c G\C, 8r < dia(K,) ( 9r, and M(K,CU1G;R"\{r}) < 0,
where B is the constant of Lemma 2.5. This is possible because C satisfies the
[/M-condition and /* is continuous. Let n e B"(xs,r) and pick a continuum K,
as above. Let 11 ) 12 ) ... be the sequence of radii given by Lemma 2.5. From
this sequence we select every second and still denote this new sequence by ("1).
Write

(4.13)

Since f *

L;- 
,.8ä,,1/. 

(y) - /.(r)1,

is open by Lemma 4.7,

i-1r2r....

(4.14) trr : 
,.rpt,,,.,1/{u) - /-(r)l;

note that S"-'(r, r;) C G \ C.
For each i - 1,2, . . . let l; be the family of paths which connect

,f(,9"-'1r,"r+r)) to /(S"-1(*,rr)) in R". Let li be the family of maximal
lifts under flB"(*,tn) \ C of I; starting at Sn-'(r,rl+r). Each path 7* in li
ends either in C or in ^9"-1(r,r;). Thus

M(fi)

(4.15) < b§ + tr,"-1(log,;/r;+r)'-"

<bg+,,-,(rog ffi)'-"
: b§ * ar,"-1(log 2)'-" : br;

used the fact that we had chosen every second of the original radii of
2.5. On the other hand, (4.15), [V, 6.4], and the quasiregularity of /

here we
Lemma
imply

(4.16)
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Let ys e S"-t(x,r;11) be such that L;+r : l/(yo) - /(r)l and write z6 :
L,(f (yo) - f (*)) + /(r). Since /* is open, for each s e (L; - L;+t,.L;) the sphere

Sn-'(ro,s) meets both /(S"-'(r,rr)) a"nd /(S"-'(r,r;+r)). Hence [V, 10.12]
yields

(4.17) M(T;) ) b2 rog TJ-tJi - tJ;+l

Here b2 depends only on n. Now (4.16) and (4.17) give

(4.18) L;q1 I bs L;, i :1,2,. . .,

where bs : (et - L)1"', t : Kn-Lbr/bz,is independent of r and i.
From (4.18) we obtain by iteration

(4.19) L; 1bi1\, i :1,2,....

Finally, lel y € B"(*o,r). Note that 11 > dia(K,)14) 2r > lr - yl; hence we

may pick an integer i such that

r;+rIl*-Vl<r;.

Now (4.13) and (a.19) imply

(4.20) l/.(") - /-(y)l I Lr 1bi-'t'..

On the other hand,

l* - yl) r;+t > dia(K,)/22i+2 > 2r12;;

hence

i>b*(hr1r/(zr"sz).

By (4.20) this yields (observe that fu < L)

l/.(r) - f.@)l < Ml* - alo,

where ot: -logbsl2log2 > 0 and

M : bel Lt(2r;(t"s bs)/(2ros2)

< 2b;1 (zr1(rog ö3 ) /(2 rog rr, 
r#?:r,u,, I /{r) I . o"

are independent of r and y. The lemma follows.
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Proof for Theorem 4.1. Since the definition of quasimeromorphic mappings
is local, it suffices to show that any rs Q C has a neighborhood U wilt. f*lU
?(-quasimeromorphicl here /* is the mapping given by Lemma 4.2. Fix as € C 1

and pick a sense-preserving Möbius transformation g with 9(m) I x. Assume
first that "f.(o") f m; then Lemmas 4.2 and 4.12 imply that /* is locally Hölder
continuous in a neighborhood U of rs. Thus /* is I(-quasiregular in U by
Lemma 2.27 and Remark 3.10 (b).

Suppose finally that /*(rs) : oo. Now gol* is bounded in a neighborhoodU
of ca and K-quasiregular in U\C . Hence Lemma 4.2 yields a continuous extension

G"f)*,U ---+R U{*}. Moreover, (S"f)*: gof* and (gol).(ro) f oo;hence
the proof follows by applying the above reasoning to (9 o /). .
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