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HARMONIC MAPS AND CURVATURE
COMPUTATIONS IN TEICHMUT,T,PN THEORY

Jiirgen Jost

Introduction

The purpose of this paper is to display harmonic maps as a computational
tool in Teichmtiller theory. Let E be a compact surface without boundary of genus

p) 2, and let g and 7 be (marked) conformal structures on E. Thus (E,g) and

(8, f ) define elements of Teichmiiller space To. Each such element carries a unique

hyperbolic metric, and in the sequel it will always be equipped with this metric.
It then follows from results of Al'ber, Eells-Sampson, Hartman, Schoen-Yau, and

Sampson that there exists a unique harmonic map u : u(r) from (E,9) to (8,7)
homotopic to the identity of E, and u is a diffeomorphism. Furthermore, if p2(u)

is the image metric, then
6 7 p2(u)u,u,dzz

is a holomorphic quadratic differential on (8,9), and this observation furnishes
the link between harmonic maps and Teichmiiller theory.

In order to explore this relation, one has to investigate the effect of variations
of the domain structure g and the image structure 7 on O. Variations of the
domain structures were first studied by Tromba [T2]. He in particular showed

that the second variation of the energy of the harmonic map u : u(9,7) w.r.t.
g at g - 7 yields the Weil-Petersson metric on To. Wolf [Wf] then undertook
a systematic investigation of variations of the image structure, and established
importa^nt formulae for the effect of variations of 7 on u. Incidentally, the second

variation of energy of. u(gr7) w.r.t. at g - 7 again yields the Weil-Petersson
metric, a result which can also be derived from Tromba's aforementioned result
because the energy of. u(g,7) is constant, i.e. independent of g. It was then
possible to develop Teichmiiller theory systematically in terms of harmonic maps,
as carried out by Wolf [Wf] and the present author (Chapter 6 in [J2]).

The Weil-Petersson metric was introduced by Weil, and it was established
by Weil and Ahlfors [A1] that it is a Kähler metric. Ahlfors [AZ] also started
to investigate its curvature properties and found that the Ricci and the holomor-
phic sectional curvature is negative. More recently, Tromba [T1] showed that
the sectional curvature is negative. Different proofs of this result were given by
Wolpert [WP] (in [Wp], such results are also independently attributed to Royden)
and Siu [Si].
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Here, we shall use harmonic maps to establish the curvature formula of the
preceding authors for the Weil-Petersson metric. While this is not a new result,
we believe that the computational technique introduced here will be important for
further computations in Teichmiiller theory. As an example of its potential, we
point out that on the way at certain points we get more precise information than
obtained in [Wpj.

In [Wp], Wolpert also studied the geometry of the universal Teichmiiller curve
Tn, with fibre over g being the marked conformal surface determined by 9. He
showed that the first Chern class c1(.8) of the vertical line bundle .E coming from
the projection zr: Tp - Tp is negative. On the basis of this result, he suggested
to use -q(L) as a Kähler metric on Tr. We shall use harmonic maps to study
this metric. Wolpert showed that integrating the square of -c1(.0) over the fibers
of 7, yields the Weil-Petersson metric ot Tp. Nevertheless, contrary to what one
might expect, it turns out that this metric is not negatively curved. NamelS the
holomorphic sectional curvature in the fibre direction fails to be negative, although
the intrinsic curvature of each fibre is -1. Of course, this is in accord with the
general principle in complex geometry that the intrinsic curvature of a submani-
fold is smaller than the curvature of the ambient manifold in the direction of this
submanifold, the difference being given by the second fundamental form. On the
basis of this result, there seems to be no point in presenting further computations
for the curvature tensor of this metric, although we have carried out such compu-
tations. Anyway, one can obtain a negatively curved metric oa T, by a different
method. Namely, there is a natural identification between T, aadthe Teichmiiller
space Tp,r of surfaces of genus p with one distinguished point, by just identifying
the distinguished point on (8, g) h Tpl with the corresponding point in the fibre
over (8, g) in Tr. In the same way as for Tp 1 or,e can define the Weil-Petersson
metric fot Tp,n (Teichmiiller space of surfaces with n punctures), and since for
example the computations in the present paper are purely formal, they also show
the negativity of the sectional curvature of this metric. However, this metric on
?p,r does not reflect the fiber space structure of Tp1 and this was our reason for
studying the above metric on To.

While the above curvature result also shows that the fibers of 7, cannot
be totally geodesic, it turns out that the images of certain sections s: Tn + To
are totally geodesic. This observation may be useful for further applications in
algebraic geometry along the line of [JY].

Let me also mention that a detailed study of Tp,n in terms of harmonic maps
has recently and independently been undertaken bv *v student Lohkamp in his
diplom thesis and by Wolf and Wolpert.

I want to express my gratitude to Michael Wolf for explaining his results to
me (some of his formulae are reproduced in Section 1, and they form the starting
point of our investigation), a.nd to Scott Wolpert for stimulating discussions, and
for pointing out to me that my original statement of Theorem 2 was not entirely
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correct.
I also want to thank the referee for his excellent refereeing and his detailed

suggestions.
I gratefully acknowledge the hospitality of MSRI (Berkeley) and IAS (Prince-

ton), as well as financial support from Stiftung Volkswagenwerk and DFG (through
its SFB program).

1. Variations of conformal structures and harmonic maps

1.1. Variations of the image structure

We let E be a compact oriented surface of genus p > 2. We denote con-

formal structures on E by g,7. Each conformal structure uniquely determines a

hyperbolic metric on E. In this paper we shall use the convention to equip each

conformal structure with this hyperbolic metric.
The hyperbolic metric in (8,9) will be denoted by

\2 (z) dz dz, z being a conformal parameter,

and the one on (E,T ) by

g21u1duda, u again being a conformal parameter.

subscripts denoting partial derivatives.
Critical points of. E arc called harmonic maps.
Harmonic maps satisfy the Euler-Lagrange equations for E, namely

(1.1) ,,, *2*u"1tz:0.
e

The following lemma summarizes results of Al'ber [Al 1,2], Eells-Sampson [ES],
Hartman [H], Schoen-Yau [SY] and Sampson [Sa]:

Lemma L. Given g 11 , there exists a unique harmonic map

u(g,t), (X , s) - (D, z)

homotopic to the identity of E. u(g,'y) is a diffeomorphism.

g drz :: p2 u ,11 , dz2

For a Cl-map u = u(z): (X, g) --+ (X, f ), w€ define the energy as

E (u): - * l rr ,n, 
n' ('(')) (' ,' , * u ,' r) d'z d'2 ,
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is a holomorphic quadratic differential on (», g).

g=0 <+ uisconformal <+ g:^1.

Remark. We point out that Lemma 1 can be extended to surfaces with
punctures. g dz2 lhen may have simple poles at the punctures. This remark
justifies the claim about To,n in the introduction.

In this chapter, ,: u(g,7) will always denote a harmonic map.
We define functions

H(u):: lu,l' : ffiu,or,
L(u):= lurl' = e'@Q))

@-uzu''
In this notation

u*(s2 du da) : I dz2 + \2 (z)(H * L) dz dz + p dzz.

To g, we associate the harmonic Beltrami differential

(1.2) p(z) =pO #.
Then

(1.3) H(u)L(u) = ptr.

One also computes, using the equation (1.1) for a harmonic u, that

(1.4) alogä(u) - -2+2(H(u) - L(")),

where A is the Laplace-Beltrami operator on (E,g) (note that the curvatures of
p2(u) and \2(z) are both -1). References for the preceding facts are [J1] a,nd

[J2]. we observe that since u is a diffeomorphism, and H(") - Z(u) its Jacobian
that

(1.5) ä(u) > 0

so that log ä(u) is well defined.
We denote the space of harmonic Beltrami differentials on (8, S) bV ?t(S)

and identify ?l(9) with its ta^ngent space at the origin p:0.
Following M. Wolf [Wf], we shall now study the effect of variations of pr.
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We want to diferentiate (1.3) and (1.a) in the variable p at the origin p:0
in directions a, Fi subscripts will denote corresponding derivatives. Then, at

F:0,

(1.6) II : L,

(1.7) L:0,

(1.8) H,L+HL,-O,

and consequently

(1.9) Lo E 0,

(1.10) L+ - z(Ho - Lo),

and consequently

(1.11) Ho E 0,

(1.12) H,FL+ HoLp* HpL,* HLoF - dB,

and consequently

(1.13) Lo§ - qF,

(1.14) a (y #l -z(Ho§-Lop),

and consequently, definirrg

(1.15) D :: -2(A - 2)-1,

( 1.16)

Likewise

( 1.17)

Hos - D(ap).

Log - 0,
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(1.18) HoB :0.

For variations of the energy

(1.1e) E(u): + | fnOt + L(u))\2 dz dz,

we get

(1.20) Eo:o

from (1.9), (1.11). Moreover, since

(1.21) | ogpyx'z d,z d,z : I ," -2)(a - z)-tap\2 dz dz : I *B^, dz dz,

we get from (1.13), (1.16)

(t.22) EoF : 
| "B^' 

dz dz.

This means that the second variation of the energy w.r.t. the image structure
yields the Weil-Petersson metric on H(g). Of course, we can also look dually
at Qk), the space of holomorphic quadratic differentials on (E,9), and obtain,
putting

$r(z) = a(z)\-2(z)'

{tz(z) : p(z)\-z(z),

(1.23) E*,,0, : | +r,$rfr a, ar.

The following interpretation of the preceding discussion will be of use later
on. We fix (8,9). For my (D,T), we look at the harmonic map

u: u(g,Z): (E,C) - (E,f)

homotopic to the identity of E. This map yields the harmonic Beltrami differential
at (E,9)

pz(u) a

fiu'a'dz@ fu'
we thus obtain a map 

gs: T, - ?t(s).

The following result is due to Wolf ([Wf]; cf. also [J2] for a proof):
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Lemma 2. The map
8c: Tp - ?l(S).

ftom TeiehmäIler space to the space of hamonic Beltrami differentiaJs at (E,g)
is bijective, a,nd the transition maps

qc, o gl*r: ?t(g) - Tt(gz)

are smooth,

In Section 2, we shall use ?((g) as coordinates for Q. Actually, we shall need
these coordinates only locally, and this local property can already be deduced from
the injectivity of Qe obtained in [Sa] from (1.4) as a consequence of the maximum
principle.

We now represent (E,g) and (D,,f) by their fundamental regions in ä ::
{z:a*iy:y > 0}. Then sz(u): -21@-il)', \2(21: -zlQ-z)'.

We can furthermore normalize the situation so that the lift of u to H , u: H -+
ä, fixee 0, t, oo.

The point of the rest of this subsection is to compare a harmonic and a
quasiconformal homeomorphism between two conformal structures. We shall see

that expansions in terms of pr € 7{(g) at p : 0 agree up to second order. This will
be useful in the sequel, because we need to make computations for quasiconformal
maps a^nd we carr perform such computations for harmonic maps.

For p eH(g), with lpls-1g) < 1 we let fp: H + If be the homeomorphism
solution of

(L.22) f! - pfy

fixing 0, 1 , oo. Proofs of the existence and uniqueness of the quasiconformal
homeomorphism /rt can be found in [AB], [J1], U2].

We compare this with

(1.23) ur: fuu,:ffu".
With p :: Qy2 e H(g), we thus have

(L.24) ,r: fiu,.
Again,.we take derivatives at p:0, and denote derivatives in the direction a by
ri[a], /[a], etc.

Then, at y,:Q,

(1.25) ilo,lz = aI,,
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( 1.26)

Likewise,at p:0,

Jiirgen Jost

il", §1, - oilpj, + p ilol,.

(L.27) illal2: fiu,: ou,,

(1.28) ti[a, §12 : #rtp;, * firp1, : cli/,lill, + girl(ll,,

using (1.6) and (1.11).
Therefore, the differential equations for u and / agree to second order, and

hence, because both /l' and u are unique under the present normalizations, near
p : 0, "fp and u agree as well up to second order.

In particular, with

Ht :: \'-')', r-f-.'- (f - I)r""',

Lr :: \r=- 
r)'= f,r..' ff - f)r""'

wehaveatp-Q

(1.2e) L{=o- fl[,

(1.30) Ll,-u = o-8,

(1.31) Ht -p: H,-e : D("F),

by (1.16), a,nd likewise, using (1.18)

(1.81) L{p=o=H{p.

For later applications, we point out that Hl - Lt represents the Jacobian of /,
i.e. the ratio of the /-pullback of the hyperbolic area element and the hyperbolie
area element of the domain.
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1.2. Variations of the domain structure

The groups I, It occurring in the sequel will be discrete subgroups of PL (2R)
(the automorphism group of the upper halfplane), homomorphic to zr1(E).

We continue to use the notations of 1.1.

We consider the energy E as a function of the conformal structure g by
always computing the energy of the harmonic map u = u(gr^l): (E,g) - (E,7)
(7 is fixed in this subsection). Thus E: E(u(g,t),gl)

We represent (E,9) by a quotieaf H ll of the upper half plane. The pla^n is to
represent variations of the conformal (: hyperbolic, by our convention) structure
by variations of I = I0. The elements of the new group l' (t * 0) differ from
those of I by an equirrariant (quasiconforrnal) diffeomorphism (, ((1.33) below).
If u is a map with domain H /f , uo(r-1 is a map with domaia H ltt. We compute
the energy of uo(r-'. If u is harmonic, uofll need nolongerbe harmonic. This
will not matter for first order computations al, t : 0, since the first derivative of
.E w.r.t. u va^nishes because u as a harmonic map is a critical point of E.

We now start by deriving the formula for the energy of u o (r-1.
We thus let (1: H + H be a family of diffeomorphisms, depending smoothly

on t, with (o : id. We requirefor every t that (1 is equivariant in the following
sense: There exists a group It, and for every o € I for some ot € I', with

(1.33)

We let

and as before,
compute from

and

(1.34) E(uo (t-r,gt,l) e' {(u,uz * u,u)«,e, + *er)

- 2u zu zez* - 2uzuzerer\ ffi

(roo-o'oer.

u:- * , (E,gt) i- Hll',' 0t lt:o' \ '

for a harmonic map u: (8, g) (», 1), ? _ e2(u)ur[t2. We
the chain rule, with e : er,

*r'*o(t 
r'st'^ilt=o

+ {tzuz)(rr(, * eraz * arez * wz*)

-Zurur(uzG * Czwz) -2u2uz(wr(, + erlr)#

:it
J Hlt

: * lr,rt{("u'
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- (r,(, * e,öz - u2* - Czw,).
. ((, ,uz 

.+ 
u zltzx(, * + Cr*) - 2u,u r(z* - 2uzuze ,(r).

'r'= t=,,=\araz
(e ,e, - e ,er)z )

: - lfg2ur?tzuz*g'uzuzur)drdz, 
(sinceat t-0,( -z)

Iir order to apply (1.35), we have to relate our two ways of varying (E,g), one
by varying the group r, the other by expressing variations through harmonic
Beltrami differentials. We now do this.

An element a eH(g) transforms via

( 1.36) (ooo)or-otoz for oef.

(1.35) : -2R" I euz d,z d,z.

We now equip ff with two hyperbolic metrics, y-2 d, d,z ar.d, V-rld" *tadZlz , ar.d
we let

(,, (r, io,o) -, (r/, ito, +tad,zl2)

be conformal, normalized with

( 1.37)

Then,

(1.38)

hence

(o : z.

er,, - taCt,z t

(1.39) ,r: 
*(r,rr,=o 

:0.

(1.36) implies that with (1, also (1oo solves (1.38) for o € l. Hence there exists
a conformal ot with

(1oo:o'oer, o'€f'.
we have thus related the two ways of varying (E,g). a e ?t(g) defines the

family of diffeomorphisms (t, md then a family of groups rt, and vice versa.
We are now ready to study variations of .E as a function of the domain structure
g in the direction a e H(g). We use the above correspondence between a and
the families (t , lt , and we denote the conformal structure of. H /lt by 91 . The
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dependence of E on g is twofold, because the harmonic map u : u(9 r7): (E' 9) --+

(E,f) also depends on 9.
Since u is harmonic, however,

*"''e'1) : o'

hence

(1.40) (*rrrr,.t),e,r),o)
a: 
*E((u(g,^i 

o (1r,9r,7)lr=o : -2Re I Vadzaz

from (1.35). Since kIp"dzdz is a nondegenerate pairing between Q(9) and

H(g), we see that g is a critical point of .E

e g: Q 1g u is conformal <==+ g : l.

We now want to study second variations of. E at g : 'f . We continue to
identify (E,g) with ä/I, and the map u: (E,c) * (8,7) is considered as a
normalized equivariant map u: H + H, and the energy then has to be evaluated
on a fundamental region. ff g: l, \rv€ have u: id. Since ä is a subset of the
linear space C, we can.write variations of u as u+lä. As always, t varies in a
small neighborhood of 0.

As u is a diffeomorphism, a variation u*th amounts to the same as studying
variations u o (1 (if ltl is sufficiently small).

We put

s1 ,: sz(u + th)(u + th),(a *th)2,

and since u is conformal
a
fivrr=o: pz(u)u,h,.

Thus

fitftr|*th,e,7),o)1t=o : -z ln pzu"h,adzd,2:, I*h,o1a,az
as in our setting, u, since conformal, is the identity

(see (2.7) for this point).

- 0, since a e H(g)
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This means that, at g : l t

(1.41) **rare,.y),e,1) :0.

A variation a of g induces a variation uo of u. As u(g,t) is harmonic

(1.42) *r@rn;t),e,7) = o

for all g. Hence

, : (&*E (u(g, t), e, r), o)

: (#, tu(g,.i, e,, 1)u,," ) * ( **, f"re,,t), g,r), o )

(1.48) : (#rfu(g,^i,s,t)uo,o)

by (1.41). Since (0210u2)E is strictly positive definite, because 7 has negative
curnature, we conclude, again at g :1,

(1.44) ua:O.

The preceding result was obtained by Tbomb" ([2]) by a diferent method.
One can also use the present method to compute second variations of .E

w.r.t. the domain structure. Since we do not need the corresponding formula in
the present paper, we refer to [J2].

2. The Weil-Petersson metric
2.1. Preliminaries

Flom Section 1, (1.22), we recall that the Weil-Petersson metric can be com-
puted from the formula for the second variation of the energy of a harmonic map
w.r.t. the image metric, namely

(2.1) ho-e ,: [ _ ,Fx' dz d,z : E,F,' J (»,c)

for a, § e H(g), considered as a complex vector space.
Likewise, we get a,n induced metric on 8(g), e.g. for p,th e Qk)

(2.2) lp,rlic : Irr,ro|i dzdz.
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We now want to study derivatives of the Weil-Petersson metric at the origin
of our coordinate charts.

In the sequel, we shall use the fact that infinitesimal diffeomorphisms are
.L2-orthogonal to the harmonic Beltrami differentials in a similar way as Ahlfors
[A1], [42] and Wolpert [Wp], but otherwise our considerations will be conceptually
different from theirs.

Studying derivatives of. ho-p involves changing the base surface (E,g). We
recall that Lemma 2 allows us to use H(g) as global coordinates for Teichmiiller
space 2). In these coordinates, (E,g) corresponds to the origin. We shall now
employ these coordinates. Since 1l(g) is a linear space, we can identify it with its
tangent space at 0. Coordinate representations of points in Q shall be denoted
by p, ut Qt o,..., where as tangent vectors at the originwill be denoted by o,
§,,'t, ....

For p, u e H(g), we let
u: 11, 

-1 lt * u,

(:0 -+ P',

ui 0-» p+u
be harmonic maps.

We also put

(2.3) u i: 1,t, o (-1,

and z will denote a complex parameter on (D, g), the conformal structure repre-
sented by 0 € H(g).

We recall that in order to obtain h"p(t), we have to look at the harmonic
map ur: l.t -i tt * z and differentiate the y-dependence of its energy at u : 0
in the directions a and B. l" order to obtain derivatives hop,r(O) at the origin,
we then have to differentiate the p-dependence at p,= 0 in the direction 7, and
likewise for second derivatives. It is the main purpose of this section to compute
first and second derivatives of. hr-g1 at the origin.

I§ h(p,o): g -, o is a map, we shall denote differentiation w.r.t. the image
variable o by ', and w.r.t. the domain variable by '. The corresponding tangent
vectors will be give.n r1 brackets; the image direction always comes first.

F'or exampl",, h'l/lhl denotes differentiation of the a-dependence in the di-
rection F *rd of the p dependence in the direction 7.

We denote the hyperbolic metric on p by 8(Od.ed(. In this notation

ho.o1: |(ffi*eac)"lo,P)t'(o dcd( - l*'rlo)a'cl\r 
(O d,e d,e ,

where all quantities are evaluated on the surface corresponding to p.
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In the rest of this subsection, we derive the well-known fact that the harmonic
Beltrami differentials are .62 -orthogonal to the infinitesimal diffeomorphisms of the
base surface as well as some consequences.

We let d1z p + p be a family of diffeomorphisms, depending smoothly on
t, with do = id. As before, we look at the lifts d1: H + H which then are
f -equivariant, where p: HlI:
(2.5) d(x): xd,«)
forX€1,(eä.

The equation (2.5) implies

(2.6) *o,r*rr: r*o,fel.
(Of course, X here acts on a vector field on H , i.e. by pullback.)

The claim that the Beltrami differentials arc L2 -ofthogonal to the infinites!
mal diffeomorphisms, i.e.

(z.T) I "*rdr,ct'(C)de 
de :o for ot e?t(p)

now follows by integrating (2.7) by parts, namely

lftrn'«t4fta,aqaq
which is rralid because of (2.6), and this va,nishes since o e ?{(p).

We shall put this to use as follows:
We recall that

w'qloJ: a e?{(p,),

cf. (L.27), and we let now du: p, -- pr be a, family of diffeomorphisms depending
on u e 7{(p), again with do = id. We let

a
ualBl

be the y-derivativeof. d in the direction p at v:0. Then (2.2) yields

1 
,2wfidc{Ft86)d(d(:s.

This implies

(2.8) 
l,'al"J@lBlP«)d\de 

: 
l,'al.la,ctBltr(gded(

and in particular

(2.e) | ,2$r'rtiltp«)dcde : | ,2wlrttiltp«)de d,e ,

withu:uo(-r asabove.
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2.2. Differentiation of the harmonic map equation

In order to study derivatives of the energy, we have to study the variation
of a harmonic map in its dependence on the conformal structure of domain and
image. For this purpose, we have to differentiate the differential equation that
ID. lt --+ p * v as a harmonic map has to satisfy

(2.10)
2

wcc- 
@wcw-c: 

Q'

This is equivalent to, writing now ur(O = ar(z(O)

u zzCe * w(rq * (r,, - ;2r,r,) rqrq
(2.11)

* (r,, - *r,,,)zqzq * (r,, - *r*,)Qa4 * zqzl) : o

Flom the chain rule, one computes

*w(e"*Ge'
- (,,crer* - (rrer*e, *

and (2.11) becomes

* CrrCrC,e ,

((,re, - Cr,(rX(, * *(r(,))

(2.L2)

We recall that ro goes from p, to p*u; therefore the p-dependence of ur and
hence also of ar is two-fold.
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We now take the total p-derivative of. (2.L2) and evaluate at p: tt :0. We
recall (2 : pe", and hence, at p: O, ('llll:,ye, - 7 and (Lb|:0. We then
obtain, using that at, pr, - u = 0, u(z) - z

,,,
0 : -ez'tz + ;1 rr,u,'y * ör,hl - ftr"arhl + wL,Wl - #r,r'rltl.

We shall now use this equation to conclude the vanishing of ö(7) a,nd likewise
å(6=). First ,Lltl:7, and since 7 is a harmonic Beltrami differential,

2t, - ;1=; :0.

Hence

(2.13) o: bz"(rl - *or1rr,
i.e. ö2fi1 is a harmonic Beltrami differential.

On the other hand, örlll represents an infinitesimal diffeomorphism of our
base surface 0, and is hence orthogonal to all harmonic Beltrami differentials, cf.
(2.7).

Consequently,

(2.14) örhl :0.

Likewise, we obtain at p, - u = 0 , by differentiating (2.L2) w.r.t. 5

o: öz,16l - *+t6l + uL,ll6l - *,,A.
Actually, wt16l: 0 as wL is holomorphic in 6; hence ör(6-) is harmonic, and thus
again

(2.15) ö116:) = s.

Of course, (2.L4) and (2.15) are equivalent to (7.44), as a consequence of the
Riemann-Rochtheorem. Namely, (2.L4) and (2.15) implythat å(6) and å(5=) are
holomorphic vector fields and thus have to vanish since p > 1.

We want to compute a'rla)(6| and a'rlpl(6) ur p : u = 0.
Corresponding differentiation of. (2.L2) yields, using ö(6-) :0,

(2.16) O: -uLla)62 - u'r,fal6 + ö'r,lall6) - *O;Wttl
,_: _(a6)2 +ö,r,lallll _ 

ftar1"1irty
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: d, and, using ,Llll - 0

We now investigate the transformation behaviour of. öt ; we have, for arbitrary
ttt v

(2.18) ,(xr) - x'r(r),

where X' is an element of the group I', the group of automorphisms of ä cor-
responding to u, as in 1.2.

Hence, at, p,: v: Q

(2.19) ,'(xr): x'öQ) + xö'Q): xö'Q),

since ö = 0. Therefore, ö' transforms as an infinitesimal diffeomorphism (as
in (2.6)), a,nd therefore, by (2.7), ,)L is .E2-orthogonal to the harmonic Beltrami
differentials . (2.L7) therefore implies

(2.20)

Similarly, we compute

ö11116l: Q.

since ,'r@l

(2.L7)

,
+ ö'2,["](z) *a'rl"lh)

since 1is harmonic, i.". 'yz - 21 lQ - Z).
Moreover, at p, - L/:0, from (1.11)

o - ö'z,tpl (6) 4a'rlill(6).

(2.2L)

o- ,',loi+irilol - ä(r'[o] -a'[o]),

yielding
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and upon differentation, since öllaj = Q,

o : r,,,l.,l _ ä",,t.,l + #(r,[*] _ a,[o]),

so that (2'21) gives 
öL,Lo*tr - *oxor(z) : 0

and then as before

(2.22) ötlo](il = s,

and with a similar derivation, using in addition aLlFl: p and

B, + )7F: o,

since B is harmonic, we also obtain

(2.23) aLlilh) : o.

We now want to compute ö!lo](6) from (2.16) and the fact that ci,![a](E) is
orthogonal to the harmonic Beltrami diferentials.

We write (2.16) as

(2.24) (z - 42öL,t"l(5) - 2(z - z)åLlal(6) : (z - 42@qz.
But

(2.25) (" - z), *r- Q - z), #, - r)
: -(Q - 4'* - 2Q - a) (*r, - 4'*),

arrd A : -(z - z)2(02/0202) is the Laplace-Beltrami operator so that we can
write (2.24) as

Q - 42öL,["](0-) - 2(z - z)ö'rlo|(E|
(2'26) : -({, - i'*, - 2(, - a) (*e - ,r *(ta - 2)-1(-a6-))).

Now (z -z)2(0l0zxA-2)-'(-a6') again transforms as a vector field, namely
with factor Xr, because a6- transforms as a function and A and hence (A - 2;-t
is a zero order operator. Therefore,

*(u - rf *«t- 2)-1(-a6-)))

again is .t2-orthogonal to the harmonic Beltrami difierentials.
Since, as remarked above, öLlo](61 is also orthogonal to the harmonic Bel-

trami differentials, we finally conclude

(2.27) ötzt(llls) : -*({, - z), *r"- 2)-1(-ar)).
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2.3. First derivatives of the metric. Kähler property

In order to compute derivatives of. h"p(1t) at, p, - 0, we pull formula Q.a)
back to the base surface 0, as in 1.2:

(2.28) h,p(ri: I #(e't4,,r,c,e, + s2(u)w2o,(,(2

- 92(u)u,a,erC, - p2(u)arwr("C,;J- dzdz.
e,Cz - e,ez

Since at p : 0, ((r) = z, and

(2.29)

we compute, using (2.L4) and (2.15),

(2'30) hoBa(,) 

=fä';:,ia,tst + u,,tatä',tBr(r))r, dz d,z : 0,

as ö' transforms as an infinitesimal diffeomorphism (cf. (2.19)), and u| is hence
orthogonal to the harmonic Beltrami differentials (cf. (2.7)).

SimilarlS

(2.31) ho1,6(o): Q'

This yields the following result of Ahlfors a.nd Weil, cf. [A1].

Theorem 1. Tåe Weil-Petersson metric is a Kähler metric.

Namely, we have found normal coordinates which are holomorphic at our
given point (but not elsewhere, actually), and this implies the Kähler property. In
this regards, cf. also [WpZ].

Remark. The complex structure of Teichmiiller space in terms of harmonic
maps is discussed in [J2].
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2.4. Second derivatives. The curvature

For the second derivatives, we let, as in 1.1

pz(u) - r ez(u)H : fii4u'il2' L: i41uzu'
for a harmonic map u, and denote complex derivatives at p * 0 by corresponding
subscripts: H"lo,F)(O): H,p, etc.

The strategy is as follows:
We use (2.9), pulled back to the surface corresponding to the origin 0 by

a cha^nge of variables, to write h"p(tt) in two different forms. We differentiate
both expressions and compare the results. Using (2.27) then yields an expression
involving certain derivatives of If and .0. These have already been evaluated
in 1.1, and the desired formula for the second derivatives of ho-p will follow (cf.
(2.38), (2.40)).

We compute first, using

(z.sz) (#)"[r,5] : (#e)"tr,E):rE,
and (2.20), (2.22), (2.23) from (2.28)

(2.88) 
h,p,rs(o): #*o,u0): | (L.Bra * H,p15 * L,e1-6

+ ö'r[a1fi,6)B + b'rlallila',,l§l\ + oö"1§1h,0-))r,1(z) d,z d,z.

on the other hand, pulling (2.9) back to the surface 0 by a change of variables,
we also have

(2.s4) ho1: I #(e'@),,a,c,e, + s2(w)uva,(,(2

- p2 (w)w,a,Cr(, * 92 (a)w2a2(,e ,) fu a, a,

where, as before, u: 0 + p* v is harmonic.
Differentiating (2.34), we get

Comparing (2.33) and (2.35) yields

(2.35) hop,.,;(0) : I Q,,Ors * H,p16 * L,-875 + ö'rlal(1,61p)\r(z) dz d,z.

| @',tCIr (5)ö',rp)(r) + oå',r01(t,5)) Är(r) d, dz :0,



Harmonic maps and curvature computations in Teiehmiiller theory 33

alsohence

(2.36) I orloJ (r ,6lP)'( z)d,z d,z: - | ,'rlo)(51ö',1§j(tl\'Q)d, dz,

and inserting this into (2.35) and using (2.27), we obtain

(2.s7) ho-pna(o) : t (t.ur5 * H,p16 * L,p15

- *(u -,f *o- z)-1(a5y)*(a - 4,.

*,ro-z)-'@i))* a,az.

In order to evaluate (2.37), we recall from Section 1.1

Lo-P: aF'

H,F = -2(a -2)-'@B),
LoF$ = -H o-pLt5 - HrsLoF - H o6L$ - H$L.,a.

Also, when integrating the last term in (2.37) by parts, we obtain, since Å2(z) :
-2(, - z)-2 , lhe operator

- *, (u -,Y * (- ** *(u - 4, *)))
:2(z-ry#-4e-i#*4e-4#
: fita o a -2L)' since a : -('- 4'#,
: -.12(z)((a-2), +2(a -2)).

Since (A - 2) is selfadjoint, we obtain altogether

(2.88) hop,,6(0) : I {(z(a - z;-r170-;)a B + (z1d - 2)-,Ob)ot\»2p1a, az

and also

(2.39) ho6fi(0) = ho-8,$(0).

Since äo, :0 : Lo, etc., Lo$6 = Lr-pt', we obtain likewise

h,t,p;(O) : I t,Urr\z(z) dz dz
(2.40) ,: I {(+(a - \-t(75))a9 + (+1t - z)-'Qil;oa-}r'?(z) dz d,z,
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hp1or(o) - hat,-§l.

This enables us to evaluate the curvature tensor Ro-g$ of the Weil-Petersson
metric. The curvature of the Weil-Petersson metric has been computed by tomba
([T1]), Wolpert ("f. [Wp] where such results are also independently attributed to
Royden), and Siu ([Si]), by different methods.

Since, by (2.30), (2.31), first derivatives of the metric vanish, we have

(2.42) RoF$- *(h"p,rö-(0) + h.,q.E(O) - hat,f6(0) - hp1or(0)) .

(Note that the quantities hor,-p6 *d hp6,,o, appear, because our coordinate
system is not holomorphic.)

Fhom (2.38)-(2.42)

(2.43) Ro-B$

From this formula, it is not hard to show that the sectional curvature of the
Weil-Petersson metric is negative and that the holomorphic sectional and hence

also the Ricci curvature are bounded from above by -(Zn(p- 1))-'. See [T1],
[Wp], or [J2] for details.

3. The geometry of the Teichmtiller curve
3.1. The metric of the vertical line bundle

The Teichmiiller curve Tn is a fibre bundle r: Tn - Tp over Teichmiiller
space Q of surfaces of genus p, the fibre over a e To being the marked surface
of genus p represented by c. The universal cover of 7, is the Bers fibre space
Bf ,, wilh a quasi-halfplane as fibre. The group I of covering transformations is
isomorphic to the fundamental group of a surface of genus p. Bf p and the action
of the fundamental group can be described as follows. For a surface H /l : (8, g)
representing o € Tp, ard ,1, e Q(g), we put as before

P(z) := $Q)Y''

We assume lplp < 1. We let rpp be the homeomorphism C -+ C leaving 0, 1,
m fixed and satisfying

(3.1)

We put

tD2 : Pw, in f/, rD2-0 inC\H.

: I tGzta- 2)-'(25)) .,P+ ( -z(a- z)-'eb)"r)Å'( z)d,z dz.

ölo1:: fi*iL-r.
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Since, fory € f , 0, o l)12- p^1,) lDP o I also solves (3.1), for any
there exists a group fp with utP ol - lpowP, for some 'yp € fp.

We fix a neighborhood U of the origin in H(g) such that for p, e
Then, by a theorem of Bers [B], the map

^f € l; hence

is holomorphic in p
Then I acts on

(p,t(.)) and

(3.2)

F:U x H+Bfr,,jr,z) (p,*r(r))

(but not in z).
U x H by (p, r) + (p,{r)) and f acts on Bf o by (p,r) +

r(a,,,)::öW*. *

F (p, t(4) _ (p,tr (*r (r)))

i.e. the local trivialization .F, is I - I equivariant.
As .F is holomorphic in pt F + (p,.,(r)), is, for fixed z, a holomorphic

section of. Bf p which, because of the equivariance of F, descends to a holomorphic
section of, Tr. Af p - 0, a holomorphic tangent vector to this section is

(3.3)

This mea^ns that for a function O(U,rQ,/r)), *e hare

r(a,z)g:ri,@1#**.

The vertical bundle of r; Tn -» Q defines a line bundle .f,, obtained as Ker(dr),
where

dr: Tr,oTp -- Tr,oTp.

The restriction of L to a fibre is isomorphic to the tangent bundle of this flbre.
F\rrthermore, because .t' is holomorphic ia pr, 0 f 0w provides a local holomorphic
section of L.

For p,e U, welet fP

(3.4)

be the homeomorphism solution of

furH+H, f! : Pf!,

fixing 0, 1, m.
Thus, there exists a conformal map g: ,P(H) + If with lP = g o urp. We

denote the hyperbolic metric in Il by O'U) dl dt and in wF (H) by o2 (w) dw dw .

Then
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Now,

*te'(g('))v!r 0 
;,:;ll,i:;ii,, - vtr) d,z A d,z = iis,(g(,)) d,t,, ^w

is the hyperbolic area element.
We write

(3.5) J(p) :: p'(g(.))lf !l'G - lpl').

Then

(30) ll#ll'=#n
We now compute the connection O and curvature O of the induced metric on .t
from the above formula for the length of the holomorphic section 010w, following
Wolpert [Wp].

We shall ernluate all expressions at the origin ot H(g). Then o is a tangent
vector at the origin. Observing that at the origin ,o(r) : z, hence, at the origin

(37) 
ll#ll 

:å,
we have, for the connection l-form

o:o,osll#ll'

at the origin

(88) ,(*)=-ä

In order to compute O(ro), writing rr:: r(ar.), we note at the origin

*,rru, = o

(cf. (1.29)), and, since rar(z) is holomorphic in Ftweobtain at the origin

(3.9) O(r") : -ö1a7,.
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We proceed to compute the curvature 2-form

o:äärosll*ll'

First of all, as before at the origin

(3.10) n(*,*):-&
Next

n(*,,") : *^*,*ll#ll'
: !***ll#ll' - *r*ll#ll'),ror,
: -il:lrrl,z + ftr;,t*1r.

From (3.1), at the origin

(3.11) d\al2 = a.

Since o is a harmonic Beltrami differential, i.e. o : -ik - z)'{, with holomor-
phic ry',

(3.12) o, - La :0,

and thus

(8.13) n(*,,.) : o.

FinallS

(3.14) e(ip,ro)=iLo*^*lla*ll'

Recalling (3.6), we note (always at the origin)

(3.15) #Log /(r,) = D(aP) - a-9,

with 
D@F):: -2(a -z\-'(o1)'



cf. (1.29), (1.30), (1.31),

4z(3.16) -ffilos l*!l'- 0,

since wtl is holomorphic in F,

(3.17) #ros (r - lrrl') - o,A,

hence altogether
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AGp,ro) - D(oB).

3.2. A metric on the Teichmiiller curve and its properties

As a consequence of (3.10), (3.13), (3.18), Wolpert [Wp] observed that the
first Chern class c1(.L) : -Ql2ri is negative. Moreover, we obtain a Kähler
metric on BFn ar.d To by using -"r(L) as Kähler form.

We now want to compute the curvature tensor of this Kähler metric, In order
to fix the notation, we may suppose that the point under consideration is in the
fibreover0eU.

We select a basis a, 0, .1, ... of H(g) and consider ra) Tp, ... &s holomor-
phic tangent vectors at the point under consideration. We then have as metric
tensor, at the considered point (0,2s),

(8.1e) ,rr:n(*,*):&,

(3.20)

(3.21) e .,-e - Q(iB,rs) - D(o-|).

We note that as a consequence of the maximum principle, D(p,il)(ze) is a
positive definite quadratic form. Therefore, we can choose a, § , L , . . in such a
way that

(3.22) D(pt)(zs) : 6p, (: 1 if F: u, : 0 otherwise),

for all elements of our basis.

ear-o(*,r,)-0,
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For simplicity of notation, we put

h(1t,w(r,tr)) :: * 
ll a* ll'

Furthermore, a subscript will always denote a partial derivative. Thus

(3.23) fin: h. a h.öla.,,

(g.24) $n: hB * h,,,li:lB),
drp

since ur depends holomorphically on p.
We saw already in the derivation of (3.13) that the vector fields ro and 0l0z

do not commute. As a consequence, also in our subsequent expressions, we always
have to subtract certain commutator terms.

We note, for g : O(U,w(2, U)) ,

(8.25) !2':2-odr.Us: Udr.g-g-wlalzt

(3.26)
da ad

ä*n:*orus-earitlo)"

(s.27) **t: 
!**, - s-öla),,

(s.28) !2r:L*n-s*awt-.dip Ar" 0z arp

Whenever the variable z occurs, it always refers to evaluation at the origin p : 0.
For reference, we also note

(8.2e) fio:*^rå:å,
a, 2

-rr
.1 -' -,oz z-z(3.30)
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(3.31) err:s-uh:&,

(8.s2) So:fi|=&,
(B.ss) e,r,,=*&=å»,

(8.s4) elr,r:*&:-#,

(s.45) eri,rr: #&:å+,

(8.s6) fin: -ölal,,

cf. (3.9),

(3.37) O, = *^u - h,tbfal: **b1- ri,lo),,

cf. (3.23), (3.36), (3.2e),

(3.38) hqz = *öfal,z * fi*@+ *d:f,,lp = f -,y*t"1,

cf. (3.25), (3.26), (3.31), (3.29), (3.11), (3.12),

(3.3e) hp,:fiaa,

(s.40) fin, : -,i[a!,, + ]ri,[o),,
cf. (3.27), (3.36), (3.29),

(3.41) fin,- -öla),,+*öb),-0,
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cf. (3.18),

(s.42) fi;,: o,

(s.48) f,n,: -lblll,, - *fW-,

(3.44) ho7 = D("F),

cf. (3.18),

(3.45) ho,: -ölal,, - -J-',i,tol + -a d:lal,,
\z - zr z - z

cf. (3.27), (3.36), (3.32), (3.2e),

(s.46) hp,: -ö191,, - fiaffi- *,i,1§1..
We proceed to compute

eti,a: *#r^: *r*u- #^'öla)2,
by (3.25)

: -ölal,,z * fY*[o], + ]*p1", - åTiltla)2,

(3.47) : l-,;,1o1,,(z - z)'

by (3.11), (3.12). AlternativelS

e,t,a : *f+ @ffi) : 6+i:ral,
since (d,f d,r,)J(a) :0, by (1.29).

Moreover,

srp,r = h#^: #å^ -2h,,ölril, - h,,ilol",,
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by (3.26)

:-&ll)r,,+ #{i,wl, *ö1P1,,,
by (3.36), (3.31), (3.30),

(3.48) -48,(z - z)''- '

by using {r[P), - P and differentiating the relation

(3.4e) 0z * +B: o--
-k

'w.r.t. z .

d2
9 rp,a : 

Oo uOnO, 
: h,o F + h,"zlblBl * h,p 

"öfal + h,, zö[olöfBl.

Since

(8.50) *#,^ : h,,-e * h,p,öfal * h,pöl.,), + h,z,{blp) + h,za,l4l,

* h,2ö[al,r;,lBl + h,rrbla){b[gl" * h,"2å1"]li,lBl,

we obtain, from (3.44), (3.38), (3.39), (3.31)

grp,a : *or"u, - O\rlsl,i,[ol, - å*.@)ölp;
* 6fi *@),t;,tpt * fi *bt;ltpl,

A(3.51) : *o(.p)
and likewise

(3.52) eip,a: *rorrrrr.
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by (3.25). Now

(s.5s) #,^ : #^t6ffi : -öla,1l, + dtfal,öl1i,

from (1.29), (1.32). Thus, using (3.40), (3.29)

9oi,1: -ölo,llz, * ilalz,ö11\, + ölal,öfu12, * ö[1]",ölal2

* i:[a1,,ö111, - *d:111,ölal, - ],;,t"1,ö1r1, + ]a@,4,.
Now, since u! : p,w,, we have öflaj: aw! I lni:tlal, hence, at p, - Q,

(3.54) örlo,l): ai;h), * lwla),,

and of course,
ölo), -- es, ui)W), : t,

and one computes

(3.55) gatl - 0.

Then

4t 4t

from (3.6), since wp is holomorphic in lt. Thus

eo;,t_ *D@F)

by (3 .44).
We now draw some consequences of the preceding formulae.
First recall that for each surface (», g) - H ll ,

p - (u,.'(r)) for p e?t(g)

yields a holomorphic section of Bf,p and Tr. At p: 0, which corresponds to the
surface (D, g) itself, holomorphic tangent vectors are given by

r(a, z) : ,i,W* * lu @ e'tt(g)),
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cf. (3.3). We can construct an envelope of these sections with a holomorphic
tangent plane at each (8, g): HlI spanned by the vectors r(a,z). Namely, the
vectors r(a,,2) and r(7, z) or r(p,,2) commute; e.g.

**t tr,-Q, p)) : (*t t* . *) $i,to)s-+ g.)

= ölo,tls. + ö1iölals.. * ölall., * rb[l)so. * lot,
and this is symmetric in a and 7 (note that no to-derivative of ö[o] occurs as
ur[o] is a function of the variable z arrd not of to).

Likewise
dd

d,oB d^s 
:D[Plöldlewa * ölols--P + öl1lg.,* I sop'

since to is holomorphic in p.
ConsequentlS the vectors r(a,r), r(P,z) for o and B varying holomorphi-

cally form an integrable distribution. The integral manifolds then are the desired
envelopes.

Theorem 2. This enveloping section with tangent vectors r(a,z) in Bfo
(o, To ) is totally geodesic.

Proof, A submanifold trf of a Riemannian manifold M is totally geodesic if
any geodesic in N (w.r.t. its intrinsic metric) is also a geodesic in M .

We use indices i, j, k for .l[ and p, g, r for M. Let c= c(t) be a geodesic
in .lf . Then, a dot denoting a derivative w.r.t. f ,

öi +l'r*öiök:o
for all i. If. c is also geodesic in M, then

öp +I.f,,ötö, = o
for all p.

We choose the indices p : L,...rn1. (= dim M) h such a way that the
indices 1,...,n (= dimN) < m represent directions tangent to y'f , and the ones
n*tr...rm directions transversal to .l[. If c is geodesic ia M,, we then infer

lpo.öq ö' : o

for p - n* 1,...)rn. Returning to the present situation, we have to verify that
the section p - (p,*p(r)) is totally geodesic at p, - 0. Therefore, it suffices to
show lf, : 0 for all a, B. We have

rlp : ig'[(ga,p * g Br,o - 9.,B,t),

since the metric tensor is diagonal (at p:0), cf. (3.20).
Now goi,p arrd g81,, vanish by (3.55), uid, g.,'8,1*,rri.h", since goB va,nishes

identically for pt,: 0, as a consequence of (1.32) (one just has to repeat the
arguments leading to (3.21)). This concludes the proof. QED.

Concerning the curvature, we have the following negative result:
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Theorem 3, T, does not have nonpositive holomorphic sectional curvature
in the directions of its fibers.

Proof. The general formula for the curvature tensor of a Kähler metric is

(3.57) Rrjrl: gii,kl -19'igrt,og"i,t'
art

Since the metric tensor is diagonal ((3.20)), 9aa -- 1 ((3.21), (3.22)), and g11 :
.zlQ - z)2 (@.19)), we obtain

(3.58) ftrrrr = 9ri,rr* iQ-z)'grt,r9rr,r -Dnru,rnal,I : 6+(r-T"r)
from (3.35), (3.34), (3.48).

The holomorphic sectional curvature in the fiber direction, i.e. the sectional
curvature of the tangent plane spanned,by 0l0z ar,d i?l0z, is then given as

(3.59) -(r-T",) eil

Since, at zs, we have normalized the tangent vectors o in such a way that
D(aa)(zs): 1 for all basis vectors a, cf. (3.22), we infer from the maximum
principle that (3.59) cannot be nonpositive. QED.
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