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COMPACTNESS PROPERIIES OF
pr-rJOMEOMORPHISMS

Pekka T\rkia

1. Introduction

In the theory of 2-dimensional quasiconformal mappings one considers em-
beddings of a plane domain D which are ACL and satisfy the Beltrami equation

( 1") f, : Ff ,

where pr is a complex function of D such that llpll- < 1. Lehto [Lt, LZ] and
David [D] have considered the more general situation where IUQ)I < 1 almost
everywhere but it may be that llpll- : 1. These conditions do not guarantee
the solvability of (1a), and both Lehto and David had to make some additional
assumptions on p. David's condition was basically that the areal measure of the
set {z e D,luQ)l ,"}, c( t,has amajorant whichis anexponentialfunction
of (1 - c)-1 (see (2a) for the exact formula); he called this kind of solutions of
(1a) p-homeomorphisms.

We prefer to use the dilatation .I(1 of f at c instead of the complex dilatation
a^nd define that / is a p-h,omeomorphism if it is ACL and if there are o ) 0, C > 0
and Ko ) 1 such that, when rn is the areal measure,

(1b)

when K 2 I(0. Here KtQ) is defined if the differential Df(r) exists and is
non-zero; if. Df(z) exists and is singular but non-zero, KyQ) is defined with
I{tQ): oo. The numbers a, C, and Ks are the parameters for p-homeomor-
phisms (such as the number .I( for K-quasiconformal mappings) and if (1b) is
true we say that / is an (o,C,Ko)-homeomorphism.

We will extend the compactness properties of K-quasiconformal mappings to
p-homeomorphisms. Let fi, fr,... be p-homeomorphisms of a domain D of. C
into e with fixed parameters. If they converge towards a map, then the limit map
is either a p-homeomorphism or a map of D onto one or two points. If the maps

.fr' fi* three given points, then there is a subsequence which converges towards a
p-homeomorphism. These results follow from our theorems in Sections 3 and 5.

In addition to the compactness properties, we will also prove the so-called
good approximation theorem for p-homeomorphisms (Corollary 6C).
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Notations and conventions. For the definition of terms like ACL (absolute
continuity on lines) we refer to standard treatises on quasiconformal maps like [A]
or [LV]. As usual in the theory of guasiconformal mappings, the functions we
consider will often be only almost everywhere defined and so when we say that a
function is defined on a domain D we often mean that it is defined in D with the
exception of a set of measure zero.

We use the following notations:
We identify C and R2 , and Ö : C U {*}. We use the euclidean metric on

C and on Ö we may use the spherical metric denoted by ,t (obtained by means
of the stereographic projection).

m : the areal measure on C I

o : the areal measure of Ö with respect to the spherical metric;
,\ : the linear measure of an arc : the Hausdorff l-measurel
B(x,r) : the open euclidean ball with center z and radius r;
0A is the topological boundary of. A and I its closure, both taken in ö.

2. pr-horneomorphisms

We will now give more detailed definitions for the present situation. Let f
be an orientation preserving embedding of a domain D of. ö into ö. If / has a
non-singular differential at o, the complex dilatation of / at c is

r-rr@)

The dilatatiot K 1 of / at o is the ratio of the long and short axis of the dilatation
ellipsoid of / at c; that is, Ky(c) is defined whenever "f h* a non-singular
derivative at c and then /(y(r) is the number

Kv(r):ffi

_ f,
f,

where Kild: oo if lpr@)l = t.
David considered mappings f: D --+ C, D C C, which are ACL and hence

a.e. differentiable [Lv, III.3.2] and which satisfy (1a) a.e. in D for some p such
that llpll"" ( 1 and such that for some o ) 0, Co > O and e e (0,11,

(2") -a /c

whenever e 1 eo; such a map was called a p-homeomorphism. It is easy to see
that David's definition and the definition (1b) by means of. Kl give the same class
of mappings. The exponents in (1b) and (2a) are related in the following manner:

*({,



Compactness prop erties of p -homeomorpåisms 49

C and Ks.
and certain

If (2a) is true for a, C6 and es, then (1b) is true for af2 a.nd.certain
Converselg if (1b) is truefor o, C and Ks, then (2a) is truefor 2o
Co and eo.

David showed that given p satisfying (2a), there is an ACL embedding /
satisfying (1a) a.e. and furthermore, / is uniquely determined in the sense that
if 9 is another such map, then it is of the form ä/ where ä is conformal. He
also showed that such a map "f h* a.e. a non-singular differential and hence the
complex dilatation pt of / is a.e. defined and it coincides a.e. with pr. One
important property is that / and "f-' *" absolutely continuous.

David's Theorem 1 in [D], containing the existence theorem and some dis-
tortion estimates, is our starting point. We will not make use of David's method
of proof which was a very complicated extension of the method in Ahlfors' book

[A], , real computational tour de force. Our approach is more geometric, with
much inspiration drawn from the monograph of Lehto-Virtanen [LV]. Some proofs
are modelled on the proof of the good approximation theorem for n-dimensional
quasiconformal mappings in [T].

'We reserve the word quasiconformal for maps which are quasiconformal in the
ordinary, non-extended sense, and the word pl-homeomorphism refers to the ex-

tended class we consider here. The notion corresponding to K-quasiconformality
is that / is an (o,C,Ks)-homeomorphism which mearls that it satisfies (1b) with
these constants. The number a is the most important of the three numbers a,
C and Ko, *d a p-homeomorphism / is said to be an (a)-homeomorphism,
and o an exponent of. f , if there are C and I(o such that / is an (a,C,Ks)-
homeomorphism. (Note that the exponent of a p-homeomorphism is not well-
defined but we call any such a that / is an (a)-homeomorphism an exponent

"f /).
The problem with the preceding definition is that the point m is in a special

position since every neighbourhood of oo has infinite measure. Thus, if m € D or
a e 0D , it might be advisable to change the definition. (Note that no problems
arise if 6 e f D.) The easiest way to handle this situation is to replace the eu-
clidean measure by the spherical measure in the definition of a pl-homeomorphism
a.nd we call such maps spåerical p.-homeomorphisms, and the words spherical
(a)-homeomorphism and sphericul (*,C,Ko)-homeomorphism will be used sim-
ilarly. Note that if m € D, then a euclidean ;"r-homeomorphism is a spherical
p-homeomorphism but not necessarily the other way round.

There are a few occasions when we use a normalized measure z such that a
certain set B, usually a disk, has measure one. If we use this normalized measure
v in the definition of a p-homeomorphism we indicate this by saying that / is a
p-homeomorphism with respect to u.

It is also useful to have a local definition. We say that / is a local p-
homeomorphism if every o € D has a neighbourhood U c D such that /lU is
a spherical pl-homeomorphism; if r I oo, then of course this is equivalent to the
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existence of a neighbourhood I/ such that flV is a euclidean pr-homeomorphism.
We will now extend David's theorem on the existence of solutions of the Bel-

trami equation (1a). David's theorem combined with the fact that topologically
planar Riemann surfaces are conformally planar gives the following general ex-
istence theorem. Let p, be a complex function of a domain D C Ö such that
luQ)l < 1 for a.e. z and set

(2b) K,(,):=]#3+,

if there is / such that p,1 : p, then Ku is the dilatation of /. We say that p
satisfies a local exponential condition if / would be a local pr-homeomorphism,
thatis,if forevery z€D thereisaneighbourhood U CD andnumbers a)0,
C > 0 and Ks ) 1 such that if a is the spherical measure, then

(2r)

Theorem 2A. Let p,: D --+ C satisfy a local exponential condition. Then
there is an ACL embedding f ; D -+ C satisfying fz : pf z a.e. in D. Any other
embedding g of D satisfying these condifions is of the form g : hf where h is
conformaJ.

Proof. Let U;, i e I, be an open cover of D such that 4 I e and that
plU; satisfies (2c) for some q, C, and .Ks. By David's theorem, there is a pr-
homeomorphism fi: U; + C satisfying (1a) a.e. for / - fi and p: pi in 14; if
q e O;, we may have to use auxiliary conformal mappings. The uniqueness part
of David'stheoremimpliesthat ([/i, f;), i e.[, is aconformalatlas of D. Since D
is a planar surface, D is in this conformal structure equivalent to a planar domain
D'. This conformal equivalence gives the map /: D -. e solving the Beltrami
equation (1"a).

The essential uniqueness of / is a.n immediate consequence of David's theo-
rem.

There are situations where we need to assume that the exponent a of a p,-
homeomorphism is sufficiently big. This situation can always be obtained if we
allow the composition into a quasiconformal and pr-homeomorphic part. We can
achieve this by the next lemma which is our version of [D, Section 4].

Lemma 2F}. Let f be a euclidean or sphedcal (r,,C,Ks)-homeomorphism
of a domain D and let Kt ) 1. Then there is a Kt -quasiconforma) map g and a
(euclidean or spherical, respectively) (oK' ,C,max (KolK' ,,1))-åomeomorphism
h su& that f - gh and such that the dilatation of h is given a.e. in D by

(2d) Kn(r) - ma* (1 , Kt (r) lK').
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Proof. To obtain the decomposition f : gh we simply define the maps so

that 9 will take as much as possible of the dilatation of / while still being K'-
quasiconformal (so that h is conformal if / is K'-quasiconformal). We let ä be
a^ny map such that a.e. in D

Fn(z) : t(z)P'1Q)

where t(z) e [0,L) and t(z) :0 it KsQ) ( K' and if. K1Q) ) K', t(z) is
defined by the condition thar K{z) will be the number K1Q)lK'. By David's
theorem ä exists. Thus the formula for Kn is (2d) and hence ä is is indeed an
(oK', C, rnax(K s fK', 1)) -homeomorphism.

So we have the map å,. To define g,we first note that both "f and h are
pl-homeomorphisms and hence they, and their inverses, preserve null-sets and are
a.e. differentiable with non-singular derivative. It follows that f h-r is a.e. dif-
ferentiable with non-singular derivative and so p: l.t1n-l is defined a.e. One can
calculate as in the proof of [L3, Theorem 4.7] that llpll- < (K' - L)lQ{' + t)
and hence any ACL embedding with complex dilatation pr is K'-quasiconformal.
Let gs be such a map. Then gså is a pr-homeomorphism by [D, Section 9] and
has the same complex dilatation as .f . The uniqueness part of David's theorem
implies that / : g$oh where 91 is conformal. Setting g : gLgo we have found
K'-quasiconformal g such that / : gh.

3. Normal family properties of p-homeomorphisms

We now come to the normal family properties of pl-homeomorphisms which
are the sarne as the corresponding properties of quasiconformal mappings. This
section is the equivalent of [LV, II.5] for p-homeomorphisms. A family f of
continuous mappings of a domain D is normal if any sequence of elements of
f contains a subsequence converging uniformly on every compact subset of D
towards some mapping of D. In the situations we consider the maps are maps of
D into C and the uniform convergence is with respect to the spherical metric.

We need the following consequence of David's Theorem 1. Recall that a map
of a domain D C ö which contains 0, 1 and oo is norm alized if it fixes 0, 1 and
oo; if / is a homeomorphism of C, the extension of / to ö fixes in any case oo
and so in this case we say that / is normalized if it fixes 0 and 1.

Lemma 3A. Let fi: C -+ C be normalized (o,C,Ks)-homeomorpåisms.
Then there is a subsequence fn; such that fn, converge uniformly on compact
subsets of C towards an embedding C -» C.

Proof. The maps fn are equicontinuous (cf. [LV, II.4.1]) by [D, Eq. ( ) in
Theorem 1] and hence we can pass to a subsequence which converges uniformly on
compact subsets to a continuous function h as in [LV, II.5.1]. Since the numbers

lf,,(r) - f"(41have a uniform positive minora,nt [D, Eq. (5)], depending only on
a, C, Ko, lrl and lz- z'l (but not on n), lz is in fact injective.
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Note that at this stage we know only that the limit is injective but it will
Iater follow that it is a pl-homeomorphism, and hence a homeomorphism, of C
([D, Proposition ]. and Section 4] also imply that the limit is a homeomorphism).

In the next theorem, k(zrz') is the spherical distance of two points z, z' e C.

ofa
the

Theorem 3B. Let f, be af*nily of spherical (o,C,Ks)-homeomorpåisms
domain D of Ö. The f*rily f is normal if there is d, > 0 sucå that one of

following conditions is true.
L . Every f e f omits two points whose spherical distance is at least d.
2. There ä,re 21,22 € D and a € e sucå that k(f(zi),r) > d for every

f ef,.
3. There ärr- z1;Zztzs e D such that k(f(zi), f(rx)) ) d for aJl f e f and

j,k<3, j *k.
Proof. This is Theorem II.5.1 of [LV] for pr-homeomorphisms. We start from

the fact that the theorem is true if every element of f is conformal. 'We assume
firstthat D+e. Thuswecanassumethat m /D andthat / €f, areeuclidean
pl -homeomorphisms with uniform parameters.

Let f 1 € f . Let gi be the normalized pr-homeomorphism which is conformal
outside D and has the same complex dilatation as /i in D. By David's theorem
the maps gi exist and by the preceding lemma we can pass to a subsequence,
denoted in the same manner, in such a way that g; converge uniformly on compact
subset of D towards an embedding g: C --+ C.

It follows by the uniqueness part of David's theorem that /i : higilD where
hi: giD -r Ö is conformal. Let D' : gD. If D" is a domain such that D" C D' ,

lhen giD ) D" for big f . We note that the maps ä;lD" (f big) satisfy also the
same condition of the present theorem which fi satisfy. Since the theorem is true
for conformal maps, we can infer that there is a subsequence (again denoted in
the same manner) such that hilD" converge to some map of D" uniformly on
compact subsets. Considering bigger and bigger D" ,, we can find by the Cantor
diagonal process the subsequence such that hi@ilD): li converge uniformly on
compact subsets towards a map of D.

In the general case we express D as a union of two domains Dr and D2 such
lhat Di t' Ö; if condition 2 or 3 is true, then we assume lhat zi € Dr i Dz.
Applying the theorem first to the maps f1lD1 and then to filDr, we find the
desired subsequence.

The next theorem is the equivalent of [LV, Theorem II.5.3] and shows that
the convergence theory for p-homeomorphisms is much the same as the one for
quasiconformal mappings. It will follow from Theorem 5D that in case (c) the
limit map is in fact a pr-homeomorphism.

Theorem 3C. Let f i be an (o,C,Ks)-homeomorpåism of a domain D into
such that f i converge pointwise towards a function f . Then / is eitåer (a) aö
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constant, (b) a map of D onto two points, or (c) an embedding of D . In case (c)

the convergence is uniform on every compact subset of D artd in case (b) the limit
function takes one of its two yaJues in just one point a e D and the convergence

is unjform on compact subsets of D \ {o} '

Proof. The argument in [LV, proof of Theorem II.5.2] proves the theorem

otherwise except that in case (c) one only knows that the limit is a continuous

function on D. We will show that if the limit is continuous and non-constant,

then it is an embedding. It suffices to prove this in the case fhat a / D.
As above, we compose each f1 as h/g1lD)_where åi is conformal and gi

is a normalized (a,C,I(s)-homeomorphism of C' We can assume by Lemma
3A, possibly by passing to a subsequence, that gj converge uniformly towards an

embedding g of Ö. By [LV, Theorem 11.5.21, äj converge towards a map ä of
gD which is either a constant, a map of. gD onto two points or an embedding

of. gD (the fact that äi are defined on giD which vary but "converge" to gD
causes some minor difficulties which we by-pass). F\rrthermore, the convergence

is uniform on compact subsets of. gD or of. gD \ {point}. Consequently h/g1lD)
converge to / locally uniformly either on D or on D \ {point}. It follows that if
/ is continuous but not an embedding, it must be a constant.

A particular instance of these theorems is the next lemma which is the form
in which we will make use of the compactness. Again, it will be later shown that
the limit map .f is actually a p-homeomorphism.

Lemma 3D. Let fi: D --, C, D a domain of C, be (o, C,Ko)-homeomor-
påisms which fix two distinct points a,b e D. Then there is a subsequence which
converges towa,rds an embedding f of D into C uniformly on compact subsets

of D.

Proof. By Case 1 of Theorem 38, there is a subsequence which converges

towards a map f of D uniformly on compact subsets of. D. By Theorem 3C,, f
is either a constant, a map of D onto two points or an embedding. Since every fi
fixes o and b, / cannot be a constant.

If / is a map of D onto two points, then /D : {a,b} and furthermore, we

know that the convergence is uniform on compact subsets of D \ {a} or of D \ {ö} .

Suppose that the first case occurs. Let ^9 C D be a topological circle separating a

from ä and from e \ D. Then for big L fi(S_) is in a given neighbourhood_U of å

and, as /i(.9) separates o from ä and from e \ /iA, it would follow that C \ /iD
is contained in an arbitrarily small neighbourhood of å. This is a contradiction
since oo ( fiD.

Finally, we will obtain a bound for the distortion of the measure by u p-
homeomorphism.

Lemma 38. Let f be an (o,C,Ks)-homeomorpåism of a domain D of C
into C. Suppose that0,L e D andthat f fixes 0 and 1. Let F C D be
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compact. Then there is a
Ct _ C'(a, C, Q, Ko, F, D)

Pekl<a Tukia

sucå that

for aJl measurable E C F such that *@) 3 i.
Proof. This is Eq. (6) of Theorem 1 of [D]. We need only to compose / as

h(glO) where h: gD + C is conformal and g: C -+ C is a pr-homeomorphism
which is conformal outside D and whose dilatation coincides with that of / a.e.
in D. 'We assume that both lz and 9 fix 0 and 1. By the preceding lemma the
set of p-homeomorphisms g: C -+ C fixing 0 and 1 is compact and so is the
set of conformal maps ä: D' + C fixing 0 and 1 for any domain D' containing
0 and 1. A normal family argument easily shows that there is M > O, M :
M(a,C,Q,Ko,.F,D) such that ln'Q)l 1 M for all z e g-F whenever g is a
norma.lized (o,C,.I(6)-homeomorphismof C and h: gD --+ C is conformal. Hence
m(hBt) 1 M2m(E') for all measurable E' C gF. The result now follows bV (6)
of Theorem 1 of [D].

Remark. Note that since the exponents may differ in our and David's defini-
tion of a p-homeomorphism (see Section 2), our number 0 is twice the number g

in David's theorem.

4. Some measure theoretic results

Our aim is to prove that limits of p-homeomorphisms with uniform parame-
ters are still p-homeomorphisms (unless degenerate). We will present this theorem
in the next section. Meanwhile we will prove some measure theoretic results needed
later.

Let A be a metric measure space with measure rn and metric d. lf. h:,4 -» R
is measurable, we say that h is exponential if. there are numbers o ) 0, C > O

and Ks ) 1 such that h satisfies the growth condition

C' (los *(E)-')-n

for all K 2 Ko; if we want to be more specific we say that ä is (a, C,Ko)-
exponential or a-exponential (if (+a) is true with this a for some C and .Ks ).
Let B(z,r) be the open ball with center z andradius r, and denote by m,, for
each z € A and r > 0 the measure

(a")

(4b) trlzr(E) : Y(,8)@
on B(z,r) if rn(B( ,,r)) > 0. A point z e A is an expon ential point of. ä if there
are o, C and Ks such that one can find arbitrarily small r for which hlB(z,r)



Compactness prop erties of p -homeomorphisms CD

is (a, C, Ko)-exponential with respect Lo mr"1 when referring to this particular o
we say lhat z is an a-point of. h. Thus C and Ko may depend on z.

We formulate the following theorems for the case at hand so that ,4 will be a
subset of C : R2 . The metric will be the euclidean metric and the measure either
the areal measure on C or the linear measure on an interval but it is obvious that
they can be generalized at least to subsets of R".

If lz is exponential, then it will turn out that a.e. point is an exponential point
of ä with an exponent not depending on the point. We will give two lemmas on
this, the first one for single maps and the second for sequences.

Lemma 4A. Let A C C and supposethat h: A + R is (o, C,Ks)-exponen-
tiaJ. Let B be anurnber sueh that 0 < P I q. Then a.e. point of A is a B-point
of h. Moreprecisely, a.e. r e A is u (0,7,I(r(r)) -point of h wherc I{1 satisfies

(a.)

(a - §, C' , Ko) -exponential.
In other words, Kt is

Lemma 4H_. Let hpz A --+ R be a sequence of (arC,Ks)-exponential maps.
Let 0 < B < a. Then for a.e. point x e A it is true that there are K1 ) 7, a
sequence r; ) 0 suchthat r; -r 0 as i-+ x, and asequence jt <jz (.'. sucå
that the maps h1lB@,ro) are (8,1, Kr) -exponential with respect to m*o for all
i > q. Here K1 : Kla) is (a - 0,eFC',Ks)-exponential with C' as above.

Remark. ActuallS the proof shows that, at least if A is bounded, there
are numbers j1 ( jz < ... independent of x € A such that for a.e. c there
is a sequence r; ) 0 such that lim;-oo ?"i : 0 and that the maps äi,lB@rrr)
*" (§,1,K1(c))-exponential with respect to n't.,,, if.2-i ( ro. However, in the
situations where we apply Lemma 48, it is no restriction to let the subsequence
hi' h jr, . . ., of ä;'s to depend on r.

Proof. We will first consider the case for fixed ä, that is, we will prove Lemma
4A. It is clear that we can assume firstly that .4 is bounded and secondly that
A is a square of integral sidelength (extend ä by 0 the points where it was not
defined).

In order to facilitate the proof of Lemma 48, we can clearly assume that ä is
one of the maps in the sequence hr , hz, . . . of Lemma 48 and so we will relabel ä
as äi though in the first part of the proof j will be fixed. We will, however, aim to
estimates depending only on the parameters (a, C,Ko) and not on the particular
map ä - hi.

DefineforK)Ks

92 C eP ["(r eP-')] -t
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and let Kn be the set of squares which are obtained by subdividing the square A
into equal squares of sidelength 2-" . Tf Q € f,, let

Q*:U{P €Kn;PnQ*0},

set cs - Tg-te-?, and define

Kx,.i : {Q e K", *(Q* n Ay)/m(Q) > coe-qK1,

Axni:UKxni'
Now every r € A is in the interior of at most nine cubes Q* , Q E Kn. Hence

Ce-dK>m(Ax)>9-1 » *(Q*nAxi)
QeK*",

Q€Kxni

> 9-t.o e-PK *(Axni),
QeKx"i

if K > Ko and consequently

(4d) *(Ax*j) < 9"0 'C "(l-o)K

6

BKnj : U Ax+o,n,i.
g=0

By (ad) we have the following upper bound A(K) tor *(Bx"i) when K ) Ko,
depending neither on j nor on n,

(a") *(Bx*) < gCcrr [r - "«r-"11-t "{?-dx 
: A(K).

Suppose that o €. A\By"i. Then, if r € Q eK" and K ) Ko,

(4f )

for L-K,K +1rK+2,.... If

cxi: Ö ö Bxni,
Ic:l n=k
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then rn(c6r) s A(/() and if * / cxi, there are arbitrarily big n such that
, / Bxni. Hence there are arbitrarily big n such that x e Q for some Q € K"
for which ( f) is true when L = K,,K +L,K +2,.... C1early, hilB(x,2-") is

(0,C",K)-exponential with respect to rnr,2-n when C" :9r-re?co : 1 since

co:n9-re-9. The limit .4(K) for C6i in (4e) implies (4c).
This proves Lemma 4A. In order to have Lemma 48, we note the set of squares

f,n is finite and hence so is the number of its subsets. Hence, if K is fixed, the sets

Kxnj C K, coincide for an infinite number of j 's. F\rrthermore, if m(Ay,ri) > 0,

lher m(Ay*) 2 4-" and hence KKni :0 by (+d) if 9c;tCe$-o)K < 4-" and
K ) Ko. It now follows easily that for each n there is a sequence ia 4 i"z I "'
such that

KKnj^, : KKnjn,

for all i, fr and K e N. We can assume that each (j"+r,;) is a subsequence

of (1";) (n fixed, i varies). By the Cantor diagonal process we can now find a

sequence jt < jz < "' such that

(+s)

for all n,K € N and i,g
We now assume for

Kxrj, - Kxnjo

T?,. Hence we can define
So by (as),

BKn: BKnj,

indepedently of i ) n. The number A(I{) in ( e) is an upper bound also for
m(Bx") and hence ,a(K) is an upper bound for the measure of

cx: Ö ö ,*,
Ic=l n=/c

lf. r ( C1, then there is a sequence ny 1n2 ( ... such that o / Bxr, for all q.
That is, ( f) is true whenever n: ftq1 o eq e ,Crrr, and j : j;, i2nc, for all
L: K,K +l,K +2r... Setting ro:t-nt, we have as above that äi,lB(r,ro) is
(8,7,K)-exponential with respect to mr1, if. i ) no. Passing to a subsequence of
(l;), *" obtain that this is true if. i > q.

We have now proved Lemma 48 with the exception that we only know that
Kr satisfies (ac) if /( > Ks and I( e N. We can allow all values K ) Ks if.we
multiply Ct h (4c) by e9. This done, the proof is complete.

The next lemma is similar but simpler. Its formulation is related to the
ACL property of quasiconformal mappings, as we consider a property of a map
on line segments parallel to the coordinate axes and require that this property is
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true for almost all such line segments. There are actually two versions, one for
horizontal line segments and a similar one for vertical line segments, exactly like
in the definition of the ACL property. We will formulate and prove only for the
"vertical" version, the formulation and the proof for the "horizontal" version being
the same. The measure on line segments of the next lemma is the natural linear
measure denoted by Å.

Lemma 4C.Let Q:[o,å] x [c,d) be aquadrilateral. Let h:Q +R be
(o,C,K6)-exponential. If 0 < 0 I o, then for a.e. r € [a,ö] there is C, : C,(x)
such that hlJ, is (§,,C',L)-exponentiil with respect to the linear measure when
Jc : fi x [", d] . Furtherrnore, there is a function e(M), depending only on a, g ,
C , Ko and Q such that 0(M) -.+ 0 as M -+ oo and such that

.\ ({z e la,b): C'(r) > M}) S 0(M).

Proof. We can assume that ä is (a, C,l)-exponential for some C ) 0. Let

AK : {t e la,,al : )({u e 1",4: h(u,y) > l(}) > 
"-B*} .

Since rn({( a,y) : h(r,v) > /(}) I Qs-aK , the Fubini theorem gives that

Hence, if Bx _ Ax U Ax+t U Ax+zLJ . . ., then

(4h)

If r / Bx, then
) ({y e fc,dl: h(x,y) > L}) < 

"-eL
for L: I{,{_+ 1,.K + 2,.... Clearly, hlJ, is (0,"9,.I()-exponential and hence
(8,@,-c)eFK,1)-exponential. Since )(Br) <0(K) where e(X1 -.0 as K-+oo
by (ah), the lemma follows.

Finally, we will prove two simple lemmas of a more general character.

Lemma 4D. Let X be a space with measure rn. Let hir,hiz,... for j -
1,..., n be measurable functions X --+ R sucå tåat

*({* € X : hiy@) > M}) S oi@)

for some functions 0i@) such that ei@) -» 0 as M -+ a. Then for a.e. r e X
thereisasequence let < kz <... (whichmay dependon a) suchthat hi*,(a) are
boundedfor all i> 7 and j:7,...)n.
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Proof. Let

Eu* = {a e X : hix(x) > M for some j = 1,...,n},

EM: Ö ö ,,,-.
p=l k=p

Clearly *(Eux) S 0(M) : 0{M) +...+ e"(M) for all M and /c and hence also
*(Eu) < 0(M). If o d Eu, then obviously there is a sequence lq I kz I "'
(depending on c) such that o / Eru4 and hence h1x,(a) 1 M for all j 1n.
Since 0(M) --r 0 as M + q, the lemma follows.

Lemma 4E,. Let fx,lo,å] *+ C be embeddings. Suppose that they a,re

uniformly absolutely continuous, that is, given e ) 0, fåere is 6 > 0 such that
,I(/rD) 1 e tor all k whenever E C .[ is measurable and )(E) 16 where.\ is tåe
linear rneasure. If t: I -» C is an embedding sucå that fx -» f pointwise, then

/ is abso/utely continuous witå respect to the linear measure.

Proof. Choose e > 0. Let 6 ) 0 beanumbersuchthat if ,\(.8) ( 6, then
)(/rE) ( e for all ,t. We claim that then in fact

(4i)

Suppose first that E is a finite union of closed intervals Ii -- [oi,bi], j < n.
Supposethat,\(/E)>e.ThentherearepointsiDjo:ai1ait<...<
for j - 1,...,n such that

» lf@ii) - f(*i,i-l)l ) €.

1,,

By the pointwise convergence, this is true for big & if we replace f by f*. This
contradicts the assumption that .\(/rE) < e. This easily implies the lemma.

5. The limit of pr-homeomorphisms

We can now prove that embeddings which are limits of pr-homeomorphisms
with uniform parameters are still p-homeomorphisms. We start with two lem-
mas in which the notion of the linear dilatation is crucia.l. We denote the linear
dilatation of a map f at a point z by H yQ) and it is defined by the formula

HtQ): limsouPr{tQ,r)

when äy(2, r) ) 1 is the quotient of the maximum and minimum of lf (z') - f @l
on the circle lz' - zl: r.

If / is differentiable at z with a non-singular derivative, then H tQ) is just
the dilatatioa K1Q) defined earlier. If / is a p-homeomorphism, this happens
at a.e. point z and hence f/y is (o,C,Ks)-exponential if Ky is.
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Lemma 54. .Let u: G -+ G' be a homeomorphism of two domains G and
G'of C. Let R=(a,å)x(c,d)CG beaquadrilatera|suchthat RCG and
that the area function

A(v) : m(wl(a,å) x (c, v)])

hasafrnitederivative A'(yo) atthepoint ys.If I:Ioo:(o,b)*yo and F CI
is a countable union of compact sefs sucå that the linea.r dilatation H-(z) < N
for all z e 'F , then the linear measure ,\ satisfies

(5")

Proof. If .F is compact, the proof is contained in the proof Theorem [Y.4.2 of
[LV], starting from the fourth paragraph of the proof of this theorem and ending
in the paragraph containing formula (4.6); inequality (5a) is obtained from this
formula (4.6) by substitutin1 A'(yo) for M. A limit process gives (5a) if .F, is a
countable union of compact sets.

Lemma 58. Let fx: D --+ C be (o,C,Ks)-homeomorpåisms and suppose
that fp --+ f uniformly on compact subsets of D where f : D ---+ C is an embed-
ding. Then f is ACL.

Proof. Let E - (o,b) x (c,d) and suppose that R C O. We will prove
that /1.I, is absolutely continuous for a.e. y e (c,d). The proof for vertical line
segments is the same.

Let Ae@) be the area function

Ax(v) : m (lx[1a, a; x (", v)]) .

Each A* is differentiable with finite derivative a.e. in (a, ö). Since /3 ---+ / uni-
formly on E, there is a constant B > 0 such that Ax(d) ( B for all &. Let
E*M : *({y , AL@) >_ M}). rhen

hence \(E*ru) < B lM which tends to 0 as M -+ oo.
Now every ä;" coincides with Ky^ a.e. and hence is (arCrKo)-exponential.

Let 0 < P < a. By Lemma 4C there are functions C"(y) such that Hy^lln is
(0,C"(y),1)-exponential for a.e. y € (",d). In addition, there is a function 0 such
that 0(M) -» 0 as M ---+ a and that

,d

Å ({y € ( c, d,) : Cn(y), M}) S e(M)
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for every n.
We can now conclude by Lemma 4D that there is a subset E C (c,d) of full

mea,sure suchthat forevery V e E thereis asequence lq <-lez < "' (depending
on y) such that both ä'3-(y) and C*,(V) are bounded. Removing a null-set, we

can assume that each lxllo , A e E , is absolutely continuous.
Fix y € -8. We will show that /lI, is absolutely continuous. As we have

seen, we can assume, possibly by passing to a subsequence, that there is M > 0

such that for all ,, A!"(v) I M and that H y.llu is (8,M, 1)-exponential.
By Lemma 4E, it suffices to show that fi lln , i > 0, are uniformly absolutely

continuous, Iy : (o,b) * V is as above. Denote

Jny(If) _ {z € Jy : Hy.Q) < lf },
and

Lnu(rr) -
Since H t.lln was exponential,
Ur,, >ol"y(If) - Jnu.

By Lemma 5A, if F C Jny(lf) is a countable union of compact sets, then

Jny(n+1)\ Jny(n).

Jny has full measure in Iy. Obviously,

(5b)

for all n. Since every measurable subset of .I, contains a countable union of
compact sets with the same linear measure, absolute continuity of. f"llo implies
that (5b) is in fact valid whenever F C J"y(N) is measurable.

In particular, since Hf^lln i. (8,M,1)-exponential, )(I"y(N)) 3 M"-Br'r
and hence

r(f" Lny(n)) s Mo(,^r + 1)e-PN12(5.)

where
CN+

(5d)

Mo - 4M ltfr . Hence there is a constant c7y, indepedent of n such that
0 as N -» m and that

l(f" Q"y \ /,r(rr)) ( c1s.

Since .[, \ J,"y is a null-set, so is )(å(/y \ /"y)) by the absolute continuity.
Consequently, ,,v of (5d) is an upper bound also for )(å(/y \ /r(N)). Since
cN --+ 0 as .lf -) oo, this fact and (5b) imply the uniform absolute continuity of
the maps f"lls. As we have observed, this implies the lemma.
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So we know that the limit map is ACL. Next we will show that the dilatation of
the limit map satisfies the exponential condition and hence is a pl-homeomorphism.
We start with

Lemma 5C. Let fi: B(0,2) -» C be (a,C,Ks)-exponential. Suppose that
f i - f where f is an afrne and non-constantt map of the dislr B(0, 2). Then f
is non-singular and

(5") Ky l LKs

where L is a constarfi depending only on C and a.

Proof. We can assume that / and each f i fi* 0 and 1. Composing / and
fi with suitable orthogonal maps, we can assume that /(c * iy) : r I iK g .

Let Q be the square with center 0 and sides parallel to the coordinate axes such
that the vertices of Q are on ,sr : {z € c: lzl - 1}. we need the notion of
the modulus of a quadrilateral in the sense of [LV, I.2.9] and for it we need to
distinguish two pairs of opposite sides of Q, called o-sides and ö-sides as in [LV,
I.2.31. we let the sides parallel to the y-axis be the o-sides of e. Let Ai(p)
denote the modulus of a general quadrilateral in the sense of [Lv, I.2.4]. Then
M(Q): 1 and M(f Q) - I{y. Thus it suffi.ces to estimate M$q

By Theorem 3c, fj -+ / uniformly on compact subsets. Hence the quadri-
laterals /iQ converge to f Q in the sense of [LV, I.4.9] and so

(5f ) K7 - M(fA) _ jui M(fiQ),

by the continuity of the modulus [LV, I.4.9].
we first compose each f i as fi : gihi where gi is lft-quasiconformal and

å; is an (oKo,C,1.)-homeomorphism (see Lemma 28) and hence an (o, C,,l)-
homeomorphism. Clearly, we can still assume that also g; and hi fix 0 and i.
Now the set of (o,c,1)-homeomorphisms B(0,2) --+ c which fix 0 and 1 is
compact by Lemma 3D. The compactness and the continuity of moduli of quadri-
laterals, as expressed in equation (5f), imply

.t: sup M(he) < a
where the supremum is taken over (o,C,1)-homeomorphisms of B(0,2) into c
which fix 0 and L. Since each gi is Kg-quasiconformal,

u(f iQ): M(sihiQ) < KoM(hie) < LKo.

Remark. In the above proof, äi is an (oKo,c, L)-homeomorphism and. hence
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which tends to 0 as .K6 --+ oo for fixed a and C. In view of the compactness
properties of p-homeomorphisms (Section 3) and the good approximation theorem
to be proved later in Corollary 6C, a normal family argument would show that ä;
becomes arbitrarily close to a conformal map if Ko is big enough (and a and C
are fixed). It would follow that if we regard in (5e) .L also as a function of .K6,
then .D -» 1 as Ko --+ oo for fixed a and C.

Theorem 5D. Let fi: D + e be (a,C,Ko)-homeomorpåisms for j > O.

Suppose that fi convergetowardsanembedding f: D -* Ö as j -crc. Thenthe
convergence is uniform on compact subsets of D and there a,re L : L(o,) ) L and
C' : C'(a,C) > 0 such that f is an (al2L,Ct,Ll{o)-homeomorphism.

Proof. By Theorem 3C the convergence is uniform on compact subsets. We
know that / is ACL by Lemma 58 and so is differentiable a.e. [LV, III.3.2]. It
suffices to show that it satisfies (1b).

Let E be the set of points of D such that / is differentiable in E and such
that there are such sequences as in Lemma 48, i.e. for each r e E there are a
sequence n1 < n2 (...of integersandasequence r; ) 0 of numberswith ri ---+ 0

such that f*,lB(*,rr) is an (al2,1,Kr(r))-homeomorphism with respect to the
measure mr.o of (4b) for all i > g. Here Ky is (al2,C',Ks)-exponential with

C, - C,(o,C): 92Ceo12 l"(1 - e-.,lr).

Let a €.8. We will show that if the differential Df(a) f 0, then Df(a) is
non-singular and K1(z) < LK{x) where L: L(a).

Choose numbers ri ) 0 and integers r?1 ( nz 1..' such that r; + 0 and
that f(,,,18(x,2ri) arc (af2,7,K{x))-exponential with respect to m,,2,, in the
balls B(c,2ri) for j > i. We assume for simplicity that r,:0: f(r) : fi@)
and define maps 9j, 9xi: B(0,2) --+ C, j,& > 0, by

si@): r;r fTiil,
sxi@): riL f,r?iy).

Then, as j ---+ et gj -* Df(r) and, for fixed j t gki --+ gi as lc -) oo. Further-
more, the convergences are uniform and every 9*; is an (al2,m(B(0,2)), Kr(r)) -
homeomorphismif k>i.

Since for every fixed i, gxi --+ gi as k -+ oo, we can find a sequence mr I
rnz 1... such that äi :9*,i + Df(x) as j -r oo. As mi > j, each å; is an
(al2,4,fr(r))-homeomorphism. Since D/(o) is a,ffine, we can apply Lemma 5C
and conclude that Df(*) is non-singular and that

Koil,): Kila) ! LK1(c)

where L: L(a12,4): L("). Now .I(1 is (al2,C',Ks)-exponential, C'as in
(5g), and hence LKy is (al2L,C',LKs)-exponential.

If Df(a):0, then Kt@) is not defined. It follows that (1b) is truefor a.e.
c with substitution a;+ af2L, C,- C', and .I( e LKo.
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Remark. We have formulated the theorem so as to get it as simple as possible.
However, it is possible to obtain more precise information on the exponent of the
limit map, at the cost of increasing other parameters. In fact any o' e (0, o) is
an exponent of /.

In order to have this result, we have to choose first a very small I e (}ra)
(above we have chosen B : alz). Then we would have as above by Lemma
48 numbers r; and n; such that /,,18(x,2r;) is a (B,1,K1)-homeomorphism
with respect,to mr,2r, a,nd where K1 is (o- 0,C',Ks)-exponential with C':
C'(a,B,C). Now the limit D/(o) of the maps äi defined above is .6/(1(c)-
quasiconformal and by the remark after the preceding lemma, L : L(a- §,C' , Ko)
: L(ar§,C,Ko) where L "-+ L as I(s --+ m if other parameters are fixed. Thus
we can obtain by a proper choice of first B and then, after having chosen B,
of K0, that .L is arbitrarily close to l and as / is an ((o - P)lL,Ct,LI<o)-
homeomorphism, we have that arny a' € (0, a) is a exponent of /.

6. Dilatation estimates and the good approximation

Knowing that non-degenerate limits of K-quasiconformal maps are still K-
quasiconformal, Theorem 5D is somewhat unsatisfactory in the respect that we
may have to change the parameters of the limit map. However, there are situa-
tions where we can obtain more precise information on the dilatation of the limit
map. We present here some results in this direction as well as the related good
approximation theorem

We start with the following lemma which is a special case of the more general
Theorem 68. If all /r' are K1-quasiconformal for some fixed number K1 , then this
is a 2-dimensional version of Lemma 82 of [T] proved in much the same manner.

Lemma 6I^. Let fi and f be embeddings of a domain D of C into C such
that f1 --+ f a,ndthat fi are (a,C,Ko)-homeomorpåisms. Suppose thatfor some
number K ) 1,

*({* e D: K1,(c) >.K}) -+ o

as j - oo. Tåen / is l(-quasiconformal.

Proof. We first assume that a > 310 where 0 > 0 is the constant of Lemma
3E.

Let P be a rectangular quadrilateral of f D, that is P is a geometric quadri-
lateral whose sides intersect orthogonally and where we have in addition two pairs
of opposite sides called a-sides and ä-sides like in [LV, I.2.3]. The pre-image

f -L p is a quadrilateral in the sense of [LV, I.2.3] with a-sides a^nd å-sides that
are pre-images of the a-sides and å-sides of P. If M(P) and M(f -1P) denote
the moduli of the quadrilaterals [LV, 1.2.4), we will show that

(6") M(f-'P) < KM(P)
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for all such P which will imply that /-1, and hence /, is K-quasiconformal [LV,
Theorem IV.3.3].

We will use the characterization of the modulus of a quadrilateral by means

the modulus of path families. Let C be the family of arcs in P joining the o-sides

of. P. Then the modulus M(c) of. c and the modulus M(P) of P coincide (cf.

[LV, L4.1 and III.4.1]).
Let so be the length of the a-sides of P and s5 the length of the å-sides of

P. Then M(P) : sols16 and if we set

P(c) : stl

for c € P, we have, when Å, is the linear measure otr 7r

(6b) [pd,^.,>t
J.t

for all locally rectifiable I e C and

(6") [ n'a*- 'o - M(P): M(c).
Jp- sä

Ler Q1 : fr'P and Q : f-rP.Since fi ---+ / uniformly on compact sets

by Theorem SC, Q i converge to Q - f -t p and the continuity of the modulus of
a quadrilateral (cf. (5f)) implies that U(Qi)'- M(Q) as j -+ oo. We define a

function pi in Qi by setting pi@): m if s is not a regular point of fi and if
/i is differentiable at r, we set

ei@): pUi@Dloti@)l - ";'loti@)l
where lOti@)l is the operator norm of the derivative of fi at n. We will need

the fact that

(6d) l»f,@)l' : ry,@)K1,@)

a.e. in Q; when J y, is the Jacobian.

Let Ci : f;'C which is the set of arcs in Qi connecting the o-sides of Qi.
If. 1e C;, then f it eC, and (6b) easily implies that

I p1dÄ-, > t
J1

for all locally rectifiable I e Ci. Using (6d) we obtain

(0") u(Q): M(c) 
= lo,oldm: Io,"tzJri@)Kt,@)d,m

[ ^-,,: 
Jrtu'Lr(x)dm
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where L/a): N1,(f;r(*)). l,et

Ein:{reP:K<Li@)<r},
F5, : {x e P : n < Li@) ( n * 1},

and substitute these into (6e) to obtain

u(ei) < [ ";'x d* + [ sf,2nd,m. i / ";,(p*t)d,mJ p J Ein fnJ ri,
when rr > I(0 . The value of the first integral is I((s,/s6) : K M(P) and hence

u(e i) < K M(p) t so2nm(Ei,) * i rt, (p + L)m(F1).
P:n

If p > Ks, then *(f i'Fi,) A Ce-op. Since a > 3f 0, it follows by Lemma BE
that m(Fin) S C'p-s for some C' > O and hence

u(e i) S n M(p) | soznm(Ei,) * i C, (p +1)p-r.
P=n

For fixed n, m(f , 
t Ei,) -- 0 as j -» oo by assumption and hence so does m(E-)

by Lemma 3E. Hence keeping n fixed and letting , --r oo, the middle term in the
above sum vanishes and the left hand side tends to M(f -t P) by the continuity
of the modulus of quadrilaterals (cf. (5f)). Hence

M(f-' P) s K M(P)+ i c' (p + L)p-,
P=n

for every n and letting n -+ oo we obtain (6a).
If a < 3f 0, we choose a number Kt > K such that otKt > B/g and find

the decomposition of /i as f i : Si(hilD) (see Lemma 28) where gi is K,-
quasiconformal and hi C --+ c is conformal outside D and each åilD is an
(oK'rC,1)-homeomorphism. We can assume that the maps äi fix 0 anå 1 and so
we can pass by Lemma 3D to a subsequence so that there is a limit h:lirr,j-*hi
a^nd hence also 93 ---+ g : f h-' . Formula (2d) of Lemma 28 shows that

*({v € D : K4(y) > t}) : *({v e D : Ky,(y) >.K'}) --+ o

as j -+ oo and hence å : limj-oo ä; is conformal as we have just proved. The
maps 9j are I('-quasiconformal and furthermore, the uniform absolute continuity
of the maps åi (Lemma 3E) shows that

*({* e hiD: Ko,(r) r I(}) :*(hi{* € D: K1,(o) > K}) -' 0

as i + oo and it follows from the first part of the proof (or from [T, Lemma B2j)
that g : limj-- g; is K-quasiconformal. Hence f : gh is K-quasiconformal.

Now we can prove
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Theorem 68. -Let fi,f, D + C be embeddings such that all f1 a.re

(o,CrKn)-homeomorpfusms and that f = limj-*fi. Suppose that there is a
measurable function K: D + [1, -) such that

(6f) *({* € D: Ky,@)> K(x) +e}) -» 0

for every e > 0 as j + oo. ?åen f is a p,-homeomorphism such that K t@) S
K(a) a.e. in D.

Proof. The initial setup is almost the same as in the proof of Theorem 5D.
Lei E be the set of points r e D such that / is differentiable with a non-singular
derivative at c, that K is approximately continuous (for this notion see [F,2.9])
at c and that the following condition is true: There are numbers a', Ct and
I(å, sequenc€s rr!1 < n2 <..' and numbers r; ) 0 with lim;-o?"i : 0 such
that /,,lB(x,2r) is an (a', C', /()-homeomorphism with respect to the measure
Tnx,2r; of (ab) if i > q. Remembering that measurable maps are approximately
continuous a.e., cf. [F,2.9], the set .E has full measure in D by Lemma48 and
Theorem 5D.

We will show that Kt@) 3 K(r) if o € .E which implies the theorem.
Assume that a : 0 = f (x) : /i(o) and define the maps 9j *d 9xi of. B(r,2) :
B(0,2) as in the proof of Theorem 5D. So we can again find a sequence pr I pz I
... such that setting

hi : gpi,i,

then äi is a map of B(0,2) such that äi + Df (x)lB(0,2) uniformly; in addition,
since we have (6f) and .I( is approximately continuous at r, it is possible to choose
p; in such a way that, as J -+ oo,

(os)

the limit D f (*) of the maps hi is
and hence K (*) -qrrusiconformal. So

Finally we present the good approximation theorem for pl-homeomorphisms.

Corollary 6C. Let fi b" (o,C,Ks)-homeomorpfusms of a domain D. If
f i - f where f is an embedding of D and if there is a complex map p. of D
such that

(6h) pti - p

inmeasure as j - a,then f isa p,-homeomorpåism suchthat pl: lt a.e. in D.
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Proof. Let E be defined as in the proof of Theorem 6B with the exception
that the condition that .I( is approximately continuous at r is changed so that
p is approximately continuous at c. It suffices to show that p,/r): p"(r) for
xeE.

Let R : K p be defined by (2b), i.e. K is the dilatation corresponding to p.
Then .I(y, satisfy (6f) for K : Kp and K is approximately continuous at points
where p is approximately continuous. If o € E is such a point and p(r) : 0, then
K(r):1 and hence Kt@) < K(r): 1 by Theorem 68 (see the first paragraph
of the proof where we gave the exact conditions for the validity of the inequality).
Thatis, pf@):Q:p(a).

So if r € -E and p(x) : 0, then we are.done . If. p,(r) f 0, then we can obtain
this situation as follows. Replace each f i by f ih where ä is a suitable affine map,
chosen so that h(a) : c and that p.(c) : 0 if pr* is given by the following rule,
obtained by imitating the composition rule for the complex dilatation [LV, IV.5.2]:

tt,n * p'(h(v)) exp(-2i areh,) 
.

1 + ph tt (nty)) 
""p( - 

2i arg hr)'

the condition that p*(r) :0 is equivalent to the condition that p6-, : p(a).
Note that since ä is affine Fn, h, ar.d h2 are constants. Then fih - /ä and
pfih + p* in measure. Define the set E as in the beginning of this proof but
replacing p by p*, f by fh ard fi bV fih. ClearlS still c € .E and furthermore
p*(r) : 0. Hence prh(n): 0 as we have just proved. Consequently p'y@) :
Plt t -r(a) : p,1r-, : p(a).

7. Linear dilatation
It is well known that quasiconformality can be characterized by means of the

linear dilatation which we have defined in the beginning of Section 5 [LV, Theorem
IV.4.2). We can obtain something similar in this direction for pr-homeomorphisms
although complete characterization of p-homeomorphisms by means of the linear
dilatation seems unlikely as probably the linear dilatation H t@) can be infinite
in an uncountable set for a given p-homeomorphism /.

Theorem 7. Let f: D ---+ C be amap such that HyQ) is finite outside a
countable set and that Hy is (a, g,Ko)-exponentiaJ. Then f is an (a,C,Kn)-
homeomorphism.

Proof. We must only show that / is ACL. We only recall the proof of Lemma
5B. Let R= (a,ä) x(c, d) C D be aquadrilateral and.[, = (a,å) xy. By Lemma
4C, Hllly is B-exponential if 0 < B < a for a.e. y. Fix such y and assume in
addition that H yQ) is finite at every z € Io. Formulas (5b) and (5d) of Lemma
58 show that there is a function u(t), depending only on the parameters of H tlln ,

such that u(t) --+ 0 as t -+ 0 and that

(7")
^(f 

E) s u(rrE'))
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if. E C I, is a countable union of compact sets. It follows now like in the latter part
of the proof of Theorem IV.4.2 in [LV] that (7a) is in fact true for all measurable

EcIo.

Remarlc. In order to conclude that / is ACL, the exponential condition for
I/y might be too strong. If, for instance, I! is finite outside a countable set and

(7b)

if .I( > Ks for some K6 ) l, C ) 0 and o ) 3, then this would seem sufficient
for the ACL property. By a variant of Lemma 4D this would imply that H y would
satisfy a condition analogous to (7b) on almost all lines parallel to the coordinate
axes for some power a ) 2 which would suffice in the variant of (5c) needed.
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