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ISOLATED POINTS IN THE BRANCH LOCUS OF THE
MODULI SPACE OF COMPACT RIEMANN SLTRFACES

Ravi S. Kulkarni

1. Introduction

Let g be an integer at least 2 and let Ms denote the moduli space of compact
Riemann surfaces of genus g. Each of these Riemann surfaces has a canonical
hyperbolic metric. All geometric notions will be tacitly with respect to this metric.
Forthe generalities on these spaces cf. [Be], [H]2. For g ) 3 set

This is called lhe branch locus of .rtZr. This is not a good definition for g :2,
since every surface of genus 2 admits a hyperelliptic involution. So in this case set

82: {X e Mzl AutX * zr\.

It is known that Mo is a normal quasiprojective complex algebraic variety and is
nonsingular outside Bn. The geometric structure of Bo is of substantial interest
in many contexts. In this note we shall consider the isolated points of. Bn.

We show lhat Bo contains isolated points only if 29 * 7 is a prime.and the
converse aJsoholds if thisprimeis 17. Let q:29*7 beaprime. It turnsout
that if X is an isolated point in Bo and q:2g * 1 is a prime then Aut X = Zo
if g > 3, and N Zn if g : ). Let G : AutX if g ) 3, and a subgroup of
AutX isomorphic to Zs if. g :2. Then XIG must have genus 0 with three
branch points each of index g. A main point is to determine which X in Mo
with this type of structure are actually isolated points in Bn. Fix a generator u
of G. Let p : X t+ X/G be the canonical projection. The set § consisting of
those c in X with G, * e is called the singular sef and B : p(E) the brancå
set of the G-action. Now z acts as a rotation at each point c in § by an angle
Zrrfq where 1( r < g-1. Thenumber r dependsonthechoiceof u but
since G is abelian it is constant on the G-orbit of r. Thus from the three orbits
of G in § we can construct a characteristic symbol [r, s, t] of the G-action, cf.
Section 2 for a precise definition. The necessary and sufficient conditions for X
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to be a^n isolated point of Bo are given in terms of the characteristic symbols, cf.
Theorem 3.6. Finally we show that tåe number of isolated points in Bo is 1 if
g :2, l@ -z)lg1 if 2g + 1 is a prime f 7, and 0 otherwise. Here for a real
number r, lx) denotes the greatest integer ( u.

In Section 4 we construct hyperbolic-geometric models of these surfaces rep-
resenting isolated branch points. Actually we describe models for aII cyclic group
actions with fixed points so that the quotient has genus 0 and three branch points.
These models are built out of hyperbolic polygons by identification of its sides in
pairs. Among these are included the models for the famous surface of genus 2 ad-
mitting a group of order 48 a^nd the Klein's surface of genus 3 admitting a group
of order 168. Flicke and Klein, cf. [FK], p. 280 exhibit in principle a model for
the latter surface which seems to have been reproduced at several places in the
literature, cf. also Burnside [Br], p. 420, and [RL]. We believe that the models
constructed here are new and substantially simpler than the ones which have ap-
peared in the literature. The details of the underlying topological idea in these
constructions are given in Theorem 1 of [K] and works for any cyclic group action
with a fixed point. It could be profitably used in some other contexts.

2. Preliminaries

2.1. Suppose 9 ) S. Let X denote an isolated point in Bn arrd let G:
Aut X. In [H]z it is described how a topological type of an orientation-preserving
action of a finite group I/ on a compact oriented surface of genus g leads to a
subvariety Vn in Bo. That description shows that the dimension of Vn is positive
if either the orbit space has positive genus or it is of genus 0 with at least 4 branch
points. It follows that in our case for every nonidentity subgroup H of. G we must
have X f H = the Riemann sphere with three branch points. Let H be a subgroup
of order q where g is some prime divisor of lcl. The branching indices of the
action must be g. So by the Riemann-Hurwitz formula it follows that

2g-2:q{1-1-1-1}( g q q)

Or g : 2g + t. So first of. all 29 * 1 must be a prime, and if this prime is denoted
by g then g is the only prime divisor of lGl. In other wor<ls G must be a g-group.

2.2. Supposeif possible that G* Zo. Then being a g-group G must contain
a subgroup Il isomorphic either to Zo x Z, or to Zrz. In the first case the
Riemann-Hurwitz formula applied to the If -action would show that

2g-2:o'{r-l-i -}},
which is inconsistent with q : 29 * 1. In the second case since Zr, is cyclic at
least two of the branching indices would have to be 92 and the third may be g or
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q2 ,, cf. [H]1 . In either case one easily checks that this data is inconsistent with
q:29 +1. So GxZo.

2.3. Let p: X = X/G be the canonical projection, § the singular set and
B: {A,B.C} the branch set of the G-action. Fix a generator u of G. Since G
is abelian it is clear that at each point in a G-orbit in § the action of u in a small
neighborhood is by a rotation through an angle which is a fixed multiple of. 2r f q.
Let a, ö, c be these multiples determined modg over p-L(A), p-'(B), p-t(C),
respectively. It follows by the Hurwitz's theory that

(2.3.1)

AIso

(2.3.2)

a+å+c:0 modg.

each of a,b,c is * 0 mod g.

Note that cha,nging a generator u by some power ) of it replaces a, b, c by )a,
Åä, ,\c where ,\ is l0modg.

2.4. Let N denote the set of unordered triples {r,s,t} of numbers counted
modg such that eachis l0modg and r*s*t:0modg. Now the multiplicative
group Zi : Zo - {0} acts on N by componentwise multiplication. An orbit of
{r, s, t} under this action will be denoted by [r, s, t] . A standard consequence from
Hurwitz's general theory in this setup is that there is a canonical surjective map
ftom NIZI onto the set of all Riemann surfaces admitting a Zr-action with quo-
tient the Riemann sphere with 3 branch points. It is a special case of a wellknown
theorem of Nielsen on cyclic group actions on compact orientable surfaces that
in our setup this map is actually a bijection, cf. [N], [Sm], [E]r,2, cf. also [H]z
Theorem 14 where however a different equivalence relation is used. (In terms of
F\rchsian groups this amounts to the fact that there is a bijection of. Nf Zi onto
the set of PSL2(.E)-conjugacy classes of normal subgroups = zr1(X) of the triangle
group A = A{o,r,o1 with quotient = Zo.) Consequently we can associate symbols

[r,s,t] in a one-to-one manner to the Riemann surfaces admitting a Zo-action
with quotient of genus 0 with 3 branch points. A symbol of this type will be
called lhe cha,racteristic symbol of the corresponding Riemann surface.

2.5. The following consequence of a crucial theorem of Singerman, cf. tsl
Theorems 1 a^nd 2, will also be used in the sequel. The only Fuchsian groups which
contain the triangle group A{c,c,c}, up to conjugacy in PSL2(R), are the triangle
groups Alr,o,rol, A1s,s,q1 and A1z,s,zs): containitg A{o,o,o} as a subgroup of
index 2, 3, 6 respectively, except for g : 7 in which case in addition to the above
inclusions Åg3,ty is also contained in A1z,a,z) as a subgroup of index 24.
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3. fsolated points of Bn

3.1. We shall now derive necessary and sufficient conditions for a Riemann
surface to be an isolated point in 6r. First

Lemma. Let g ) 3. Let G = Zq, q:2g *7 aprime, and let X be
a compact Riemann surface of genus g admitting a Zc-action with quotient of
genus 0 with 3 branch points. Let [r,s,t] be the characteristic symbol of X. rf
X is an isolated point in Bo then no two of r,srt can be equal.

(Note: Although the individual values of r, s, f in a characteristic symbol are
defined only up to an action by Aut Zo the notion that two of r,s,f are equal or
not is welldefined.)

Proof. It is known that (even for g not necessarily a prime) there is a unique
compact Riemann surface Y of genus g ) 2 admitting an action of a cyclic group
,4. of order 2q : 49 + 2. It is hyperelliptic with equation w2 : z2s*r - 1, cf. [K].
Moreover YIA is the Riemann sphere with three branch points with branching
indices {2,c,,2q}. Let p:Y p+ YIA be the canonical projection. The two points
in Y lying over the branch point of index g and the one lying over the branch
point of index 2q are fixed by the subgroup B = Zo of. A. It is easy to see from
the Riemann-Hurwitz formula that Y lB is the Riemann sphere with three branch
points. Since the two points in Y lying over the branch point of index g in y 

f A are
permuted by the element of order 2 in A it is clear that the characteristic symbol
of Iz with respect to the B-action has the form [r,r,t]. Notice also that there is
only one characteristic symbol lr,s,t) with two of r, s, t equal. So by Nielsen,s
theorem Y is the only Riemann surface up to biholomorphic equivalence which
admits a Zr-actiot:, with the characteristic symbol lr,r,tl. But by construction
Aut Y has at least 49 * 2 elements. So by (2.2) Y cannot be an isolated point in
Bc' o

3.2. Lemma. Let G, X, [r,r,tl beasinLemma (8.1). Fix ageneratoru
of G, andwr.t. u let {r,s,t} be an element in N (cf. (2.4)) whici represents
[r,s,t] . If x is a,, isolated point in Bo then the following iotds: rf {r,s,t} :
{)r,.\s, Åt} for \ in Zi then ),:'J,. If q is congruent to -lmod3 then this
condition is automatic. If q is congruent to lmod3 and {r,s,f} - {År,)s,,\t}for Åll then,\ is a cubicroot of unity and [r,s,f] : [1,,\,Å2]

Proof. Suppose we have {r,s,t} : {)r,.\s,,\/} for ), 11. This means that
as unordered triples of elements in Zo the two triples are egual. So we may take
År: s,Ås:1,,\t: r. So ,\3r: r or .\3 : 1. In particular the multiplicative
group Zl contains an element of order 3. So g must be congruent to 1 mod B.
This proves the last statement in the lemma.

Now assuming g to be congruent to 1 mod B we form the group H : z, x zt ,
i.e. thesemidirectproduct of Zoby 23 where 23 actsnontrivially on Zo. ti »11,
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is a cube root of unity mod g then a presentation of ä may be taken as

(3.2.1) H:(*,yl*'=y'=",yry-t -r^).

In this group cy has order 3. There is an obvious map of the triangle group Ar,r,s
onto .EI with a torsionfree kernel. Correspondingly we get an action of ä on a
Riemann surface I/ such that YIH has genus 0 with three branch points with
branching indices 3, 3, g . lf. h is the genus of Y the Riemann-Hurwitz formula
gives

2h-2

This implies that h: g. So we have an If -action on a Riemann surface of genus
g. Let K = (c). Over the branch point of index g in YIH there are three
points in Y which are all fixed by K since G is normal in ä. Moreover the
intersection of I( with the stabilizers of all points in Y lying over the branch
points of index 3 must be {e} since 3 and g are relatively prime. It follows that
the K-action has exactly 3 branch points. Another application of the Riemann-
Hurwitz formula shows that YIK has genus 0. Now the presentation (3.2.1) of
ä clearly shows that the characteristic symbol of this K-action is [1, ), ]']. By
construction Aut I/ has at least 39 elements, so Y is not an isolated point of 6r.
An appeal to Nielsen's theorem shows that Y is the only element of B, which has
the characteristic symbol [].,.\,,\2]. So the lemma follows. o

3.3. Now let g, e, G, X be as in Lemma (3.1) a^nd let lr,s,t) be the
characteristic symbol of X. Suppose that no two of r, s, f are equal and if. q :
1,mod3 then [r, ",t]+ [1,,\,,\2] where ,\ l1 is a cubic root of unity modg. We
claim that X must be an isolated point in Br. Suppose not. Then G is a proper
subgroup of ä : Aut X. Correspondingly we have a proper inclusion of A{c,c,o}
(which uniformizes the G-action) in some Fuchsian group As (which uniformizes
the ä-action) as a subgroup of index (H : G). Now the possibilities for A17
are classified by Singerman, cf. (2.5). Among these possibilities one need not
consider A1z,t,zq1, since this inclusion factors through the inclusions in A1z,q,zq),
or A{e,e,c}. Similarly for q : 7 one need not consider the inclusions in A1z,r,z1 ,

since this inclusion factors through an inclusion in A1r,s,z1. Now the inclusions
in A{z,c,zc}, or A1a,s,s1 are of index 2 and 3 respectively. In the first case I/
would be cyclic since 29 is one of the branching indices, and we are exactly in
the situation encountered in the proof of Lemma (3.1). We saw there that in this
case two of r,s,t are equal. In the second case ä is a group of order 3q. By
Sylow's theorem one sees that there is only one g-Sylow subgroup of Iy' and so
it is normal, and If is isomorphic to a semidirect product of. Zo by h. If. Zs
acts trivially on Z, then ä would be cyclic and this would be inconsistent with
the branching {3,3,7}. (In a cyclic group action with quotient of genus 0 and k
bra^nching indices the l.c.m. of any k - L branching indices equals the order of the

-3q{ r-å å it
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group.) Since Aut Z, contains a unique subgroup of order 3 it follows that .F/ is
uniquely determined up to isomorphism. It is as given by the presentation (3.2.1)
and we are exactly in the situation encountered in the proof of Lemma (3.2). As
we saw there in this case the characteristic symbol would be [1, Å, )2] where \ I L

is a cubic root of unity mod q. These contradictions show that X must be an
isolated point in 6r.

3.4. The case of genus g : 2 needs a special consideration in view of the
different definition of 82, cf. Section 1. If X is an isolated point in 82 then for
every subgroup If of Aut X, H I ( the hyperelliptic involution ) we have X/ä
of genus 0 with three branch points. If the order of If is divisible by a pÅme q f 2
then as in (2.1) g must be 5. As in (3.1), it then follows that AutX contains a
subgroup isomorphic to Zfi and X is the hyperelliptic surface to2 : z5 - 1 . From
[K], Theorem 3 it follows that in this case AutX is not larger and X is indeed an
isolated point in 82. On the other hand if AutX is a 2-group of order at least
4 then it contains a subgroup isomorphic to 22 x 22 or Za. In either case by
Riemann-Hurwitz formula it already follows that for some subgroup I/ I I the
hyperelliptic involution I XIH is not of genus 0 with 3 branch points, and so X
is not isolated.

3.5. Now for g ) 3 we compute the number of isolated points in Bo. We
have already observed that if this number is nonzero then g : 29 * 1 is a prime.
Moreoverif X is isolated then AutX is isomorphic to Z, and the characteristic
symbol [r,s,l] of X satisfies

i) None of r, s, t is 0, and their sum is 0.
ii) No two of r , s, t are equal.
iii) If g:1mod3, and ) is a cubic root of unity modg then [r, s,t)+ [1,),12].

So we need to compute the number of the characteristic symbols satisfying
these conditions. Now in the triples (r, s, t) satisfying i) there are q - 1 choices
for r. With r fixed s cannot be 0 nor -r, for the latter would imply f : 0. So
there are q - 2 choices for s. Now t is fixed. So the number of such triples is
(q - t)(q - 2). Now the condition ii) further removes 3(q - t) triples of the form
(r,r,-2r), (r,-2r,r), (-2r,r,r) leaving the number (g - txq - 5) of triples.
Since the components in these triples are pairwise distinct it follows that there are
(q * txq -5)16 corresponding unordered triples. Now consider the Zi-actionby
componentwise multiplication on this set. If q l7mod3 this action is free and so
there are (q-S)/A orbits which is the required number of characteristic symbols in
this case. If q = 1 mod 3 and ,\ is a cubic root of unity mod q then the action is free
outside the orbit of [1,Å,Å2] which contains (q-t)lZ elements. So the required
number of characteristic symbols in this case is ((c - S)/0) - (1/3) : (q-7)/6.
In either case one sees that there are [(g -Dlq characteristic symbols.

Summarizing we have proved the following theorem.

3.6. Theorem. ?åenumberof isolatedpointsin Bo isL if g:2,[(g-2)13)
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if q : 2g * L is a prime > 7, and 0 otherwise. The isolated point in 82 is the
hyperelliptic suriace w2 : z5 - 1. trbr g > 5 the isolated Riemann surfaces a.re

precisely those X's for which AutX is isomorpåic to Zo and sueh that in their
characteristic symbols [r, s,l] no two of r , s, t are equal and if q = 1 mod 3, and
) is a cubic root of unity mod g then lr, s,tl + [1, ,\, ,\2] .

3.7. Examples. i) For g - 3 the only characteristic symbols are [1-,1,5] and

1Lr2,41. The latter does not correspond to an isolated point since 23 :1mod7,
and by (3.2) nor does the first. So there are no isolated points in 6s.

ii) For 9:5 the characteristic symbols are [1,1,9] and [1,2,8]. The first
does not correspond to an isolated point by (3.2), the second does. So there is
exactly one isolated point in 6s.

ii) For 9:6 the characteristicsymbols are [1,].,11], [1,2,10], [1,3,9]. Only
the second corresponds to an isolated point.

4. Geometric models

4.1. In this section we construct a model for a Riemann surface X, admitting
a Z1-aclion with a fixed point and with quotient of genus 0 with three branch
points. We may take its characteristic symbol in the form [1,o,å]. We fix a
generator x of 21 so that on each of the points of the three orbits of singular points
o, no, ab a,ct by a rotation by an angle (2tr)/1, (ztr)/u, (2tr)lv respectively.
Then the order of oo, respectively uå is u: ll(l,a), respectively u : ll(l,,b).
Notice that l.c.m.(u,u) must be l, and L* a * ö = Omodl. AIso 29 -2 -
I{t-r-t -u-r -r-r}.

ur: uz t
vzl

uo: u2
:P

4.2. Let T
copies Tt, Tz , .

be a hyperbolic triangle with angles
. Tzt. The vertices of T; are I[i , U; ,

Tll) lrlu, rlu. Take 2l
V; , with angles r ll ,, 7r /u ,
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r f u respectively and their opposite edges are denoted by n; , ui t t)i, respectively.
The polygon P is obtained from the union of the ?i's by identifying all .lf;,s to
a single vertex Å16, and further identifying u2;-1 with u2;, arrd o2; with uzi+rt
where the subscripts are counted mod2l . The sides of P are flLt Tt2t ...t rt2t;
We also have the identification of the vertices (/2,; with (Jz;+r, and I/2;_1 with
%;. For convenience we may take the vertices of P as [L, Vz, (Jt, Vt, . . . , V21 ,

4.3. Let the generator s of 21 act on P as a rotation through arrangle Ztrf I
fixing the center No. on the sides of P it induces the permutation n; å ni+z
and on the vertices U; r+ U;+z and Y; ,+ V+2. Now consider the sidepairing a :

TTzi-t å ttzi+2o, and let X denote the surface obtained by isometrically identifying
n26-1 with Dzi+za in an orientation-reversing manner. Since r commutes with
o we obtain a Z1-action on X. Since PfZl is clearly isometric to the space
obtainedfrom fiuT2by glueing u1 with u2 atud u1 with uz itis clearthat Xf 21
is isometric to the space obtained from TruTz by glueing u1 with uz t r)L with u2 ,
and n1 with n2,i.e. xf 21 has genus 0 and three branch points with branching
indices u, u , l. In particular the genus of X is determined from the equation
2g -2: r{1- u-L - u-l - I-1}.

4.4. Now we claim that the characteristic symbol of this Z1-action on X is
[1,a,ö]. It is convenient to do a computation on P and interpret it in x. For any
point or subset in P we shall denote its image in X by a bar overhead. Consider a
small arc o starting ftolr;, V2 lying in u2 a.nd oriented towards No. See the figure
below. Since n1 is identified with n2o+l2 we see that Vz : ho*r. Also c"(a) is
arr arc starting from V2oq2 lying in u2aar2 ar,d oriented towards lfo. It is easy to
see that the angle between e and fr"(a) is %rfu. In other words on X we see
ro fixing Vz atdinducing in its neighborhood a rotation through 2r/u. Similarly
it is seen that zo*r-fixes U1 and induces there a rotation through -2trfu. So
fr-o-r : rö fix"r ur and induces there a rotation through 2r li. This shows
that the characteristic symbol of this action is [1,a,ö]. Bv the arguments in the
previous section X is the unique Riemann surface admitting a Z1-action with
quotient of genus 0 with three branch points and with the characteristic symbol
[1, o, å].
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4.5. We describe three examples of the above procedure. First as noted in
(3.7) there is a unique isolated branch point in Bs. lt admits a Zt-action with
the characteristic symbol [1,2,8]. The corresponding Riemann surface may be
represented by a hyperbolic 22-gon with all the internal angles 2rlll so that if
its sides are cyclically labelled fltt... rn22 ther the sidepairing is n2i-L å n2i+4.

Next we describe the famous surface of genus 2 which admits a group of order
48. This group is isomorphicto GL2(fu), i. ". the group of all nonsingular 2 x 2
matrices with entries in a field with 3 elements. It contains an element of order 8.
The Riemann-Hurwitz formula easily implies that the Zs-action on a surface of
genus 2 must have the quotient of genus 0 with branching indices 2, 8, 8. It
is a fortuitous circumstance in this case that this data uniquely determines the
characteristic symbol. It is [1,4, 3] . So the surface is completely determined by the
fact that it is of genus 2 and that it admits a Zs-action! By the above procedure
it is obtained from a 1.6-gon whose internal angles are alternately 2r/8 and zr.

The sidepairing is rt2;-1 r--+ n2i+s. It is easy to see that if we agree not to count
the vertices with angle zr as vertices then we have an octagon with all the internal
angles 2rf 8, and the sidepairing is a standard one, namely abcda-Lb-rc-rd-l1

Finally we describe the famous Klein's surface X of genus 3 which admits a
group of order 168. This group is isomorphic to PSL2(Zz). It contains a cyclic
subgroup of order 7 which is unique up to conjugacy in PSL2(27). Again it is easy
to see that the Riemann-Hurwitz formula implies that the Z7-aclion on a surface
of genus 3 must have the quotient of genus 0 with branching indices 7, 7 , 7 .

There are however two possibilities for the characteristic symbol, namely [1, 1,5]
and [1,2,4] . Which is the possibility for the Klein's surface? To see this fix a cyclic
subgroup A of order 7 in PSL2(27). Its normalizer lf is a nonabelian group of
order 21 . There is a unique nonabelian group of order 2L up to isomorphism,
namely

lrryl *' : a3 : e, yry-r : *'1.

Since N leaves the fixed point set of A in X invariant the above presentation
shows that the characteristic symbol must be 11,2,41. So by the above procedure
a model for X may be obtained from a hyperbolic L4-gon with all internal angles
2tr f 7 wherc the sidepairing is given by nz;-, å n2;+4.
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