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A NOTE ON WIMAN AND
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1. Introduction

A wellknown result of Wiman concerning automorphisms of Riemann surfaces
is the fact that for g ) 2 the largest cyclic group of automorphisms of a compact
Riemann surface of genus g has order at most 49 *2, cf. [W] Section 2, or Harvey
cf. [Ha] Corollary to Theorem 6. For each genus ) 2 Wiman also exhibited a
surface with such automorphism group: namely .2 - ,2s*r - 1. In a different
direction Accola and Maclachlan independently proved the following. Let n(9)
denote the maximum of the orders of Aut(Xr) where X, varies over all compact
Riemann surfaces of genus 9. In [Ac], [M] it is proved that n(9) > S(g { L), and
for each g there exists a surface admitting an automorphism group of that order,
namely w2 * z2s*2 - L.

In this note we consider the question as to how far are these surfaces deter-
mined by the orders of their automorphr'sm groups alone. Our interest is in the
"stable" situation, i.e. in investigating the structure of the groups of order 4S + Z

and 89 * 8 and the corresponding surfaces for large values of g. It turns out that
the surfaces of Wiman and Accola-Maclachlan are the *main" members of these
families in a certain probabilistic sense. More precisely if g is sufficiently large
and is such that 29 * L is not of the form 3rn or 9m where all prime divisors of
n't, ate congruent to 1 modS then the Wiman surface is the only Riemann surface
of genus g which admits an automorphism group of order 49 * 2. Similarly if g
is sufficiently large and is not congruent to -1mod4 then the Accola-Maclachlan
surface is the only Riemann surface of genus g which admits an automorphism
group of order 89 * 8. The excluded genera in these statements are genuine ex-
ceptions. In the eg + 2)-case (respectively (8S * 8)-case) there are precisely 2
(respectively 1) additional Riemann surfaces admitting automorphism groups of
the respective orders. For more precise statements see Theorems 4.7, 5.5, 6.7.

The above automorphism groups are special cases of the groups of orders
ag I b acting on surfaces of genus g, with a * b 10, where a, b are rational
numbers. Whereas in general it would be difficult to obtain the precise statements
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as in the above (ag + 2) - and (8g
expected to show some patterns.
paper.
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+ 8) -cases the families of these types would be
We hope to investigate this theme in a future

2. Preliminaries

2.1. Throughout X, will denote a compact Riemann surface of genus g, and
D, the underlying compact orientable surface. While an automorphism group of
X, has its usual meaning, by u'rr automorphism group of E, we simply mean a
finite group of orientation-preserving homeomorphisms of E, . A part of the theory
of Hurwitz concerning automorphisms of Riemann surfaces is purely topological.
We recall it in those terms mainly to set up a notation.

2.2. Let G be afinite group of orientation-preserving homeomorphisms of Er.
Then the orbit-space G\», is homeomorphic to Ea for some ä. Let p: E, ---+ E6
be the canonical projection. The fixed points of a non-identity element in G is a
discrete (hence finite) set. The stabilizer subgroup of a point is cyclic. Let .S be
the union of all the fixed points of non-identity elements in G. Then ,S is called
the singular set of the G-action and B : p(S) the brancå set of the G-action.
The common order of the stabilizer subgroups at the points i" p-, (y) , y € B, is
the brancluhgindex no of y. Let B: {yr,a2,...,U"}, and {nr,nr,...,n,} be
the corresponding indices. The Riemann-Hurwitz relation reads

(2.2.r) 2-2g: lcl{z
Moreover G has a system of generators {o;, b;,xj}, 1 ( i < h, 1 ( j 1 r,,
satisfying

(2.2.2)
h

and fr@;,bt)
i:1

and possibly some other relations. The symbol {h;n1,Tt2t...,n,} is called the
branch data of the G-action. When g > 2 by (2.2.1) the quantity {Z - 2h -
Evea(l - Llny)l is negative. In this case if G is an automorphism group of a
Riemann surface X, then the branch data is the signature of the Fuchsian group
which uniformizes this action. When the complex structure is not relevant and
the Fuchsian group is considered only as a group of homeomorphisms it will be
convenient to call it a topological FLcåsian group.

Conversely given a system of generators {a;, b;,*i}, 1 ( i I h, L < j < b,
for G satisfying (2.2.2), and g determined by

(2.2.1)' 2 - 2s - IGI{2 - 2h -»r(1 - rlr,,}.
there is a G-action on E, with orbit-space E;, and the branch data of the above
form.

2.3. We note the following restrictions for the branch data.

- 2h - » yeB(1 - tlnr)\.

order ri : n j
b

fI ,,
j:L

1
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Proposition, Let G beanautomorphismgroupof Es, g>2. Supposethat

I C l> a@ - t). Then the possible branch data are:
i) (0; 2,2,2,n), 3 1 n;
ii) (0;Z,m,n),31m1n; if m:3 then n> 7, if m=4 then n) 5;
iii) (0;3,a,n),31a(-6, aln;if a:3 thenn>.4;
iv) (0;4,4,,n), 31n;
v) other finitely many possibilities.

If moreover I G l> 8(g - t) then the possible bra,nch data are further reduced to:
vi) (0; 2,3,n), 7 1 n.
vii) (0; 2,4,n), 5 I n.
viii) ot.her finitely many possibilities.

These are easy consequences of (2.2.1) and were essentially noted by Hurwitz
himself, cf. [Ac], [Ha], [Hu], [K], [M]. A proof may be left to the reader.

3. A lemma on ffnite groups containing a cyclic subgroup of index 3

3.1. In order to prove our results we need some specific information about
finite groups in the title of this section.

Lemma. Let G be a frnite group containing a cyclic subgroup A of index 3.
Let r be the set of primes f 3 dividing lGl, and An the n -primary subgroup of
A. Then
either
I) G is cyclic,

or
II) G is noncyclic, A is normal in G and G is either a split extension of A by

Zs or a split extension of An by a cyclic }-group,
or
III) G is a central extension of the subgroup of index 2 in A by S, where Ss

denotes the symmetric group on 3 letters.

Proof. Let $ be the permutation representation of G ot GIA and I{ its
kernel. It would be convenient to consider / as a homomorphism into ^9s so that
the letter 1 corresponds to the coset [A]. Evidently H < A. The image of / is
transitive on three letters so it is either ((1,2,3)) or .9e . In the following we shall
denote for a finite group U and a prime p its p-Sylow subgroupby Up.

CaseTz im/: ((1,2,3)). Then (G:H):3: (G: A). So If : A,i.e. A
is normal in G. Conversely if ,4, is normal in G then it acts trivially on Gf A, so
A: H. The conjugation of A by G gives a representation a of ((1,2,3)) into
Aut.4,. If G is abelian then o is trivial, G is either cyclic or isomorphicto Ax Zs
and the lemma follows easily. So we now assume that G is nonabelian and so o
is nontrivial. Now 4,, is characteristic in ,4 so it is normal in G, and G is a split
extension of An by Gs. If Gs is cyclic we are in the case II). Otherwise Ga is a



86 Ravi S. Kulkarni

3-group containing a cyclic subgroup of index 3. By the known structure of such
groups, cf. [G], Theorem (4.4), Gs is then a split extension of a cyclic subgroup
by Zr. Butthen G containsanelementof order 3 notlyingin A. So G isasplit
extension of A by Zs.

Case 2: im / : ,Ss. Now ff is a subgroup of index 2 in A. The conjugation
of If by G gives a representation o of ,Ss into Aut f/. Since Aut ä is abelian
the subgroup ((t,2,3)) must act trivially on .EI . Let K : ö-L ((f ,2,3)) . Then
K centralizes .EI. Now A : ö-1(((2,3))) also centralizes H, and G : (K,Al.
So G centralizes If . So we are in case III). o

4. Automorphism groups of order 49 *2
4.1. Let G be an automorphism group of Es, g ) 2 of order 49 * 2. So the

possible branch data are either of the type i) to iv) listed in 2.3 or other finitely
marly restrictions which are not listed there. Since we a,re willing to consider only
the large values of g these finitely many possibilities have no effect since each of
them determines at most one value of g as can be seen easily from (2.2.1). Our
first aim now is to determine the structure of these groups.

4,2. We first prove that the cases (0;3,3,n), (0;3,4,n), (0;3,5,n) and
(0;4,4,n) cannot occur. Indeed (0;3,4,n) and (0;4,4,n) do not occur simply
because 4 is not a divisor of.49 * 2. As for (0;3,5,n) let us write (2.2.1) in the
form

2g -2
4g +z

1
1

3

11
B;

As observed above, each n uniquely determines g. Hence as g tends to infinity
so does n. But the left hand side tends to I whereas the right hand side tends
to 71L5. So (0;3,5,n) ca,nnot occur. A siåilar argument shows that the case
(0;3,3, n) also cannot occur.

4.3. Now consider the case ii) of the branch data listed in (2.3). The equation
(2.2.L) in this case reduces to

^ 4g*2 .4g*2o:-T- n '

Since rn, n are divisors of.49t2, say rnu,:nu=4912,weget zlu =8. At
least one of u, u must be 1. But this means that G must be cyclic. Now in the
remaining two cases (0; 3, 6, n) and (0; 2,2,2, n) from (2.2.L) we get n : (ag {Z) I 3.
This means that G contains a cyclic subgroup of index 3.

4.4. We now apply the lemma in Section 3 and note further restrictions on G.
We suppose that G is not cyclic. We first prove that the case III) of (8.1) cannot
occur. Suppose it did. Then G is a central extension of a cyclic subgroup H by
.93. Here the order of Il is (2g +t)13.
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Asserfion I. G is isomorphicto a direct product of H and Ss.

Proof. Let / be the homomorphism of G onto ,5s which defines the extension,
arrd K : ö-' (((t,2,3))) . Then K has order 29 * 1 and since If is central we see

that K is in fact either cyclic or isomorphic to If * Zs. Also G : K x 22, where
22 rnust act nontrivially on K since otherwise G would be abelian. But since .EI

is central and has index 3 in K it contains the p-primary parts of. K , where p
is a prime I 3. So lhe Zz-action must be nontrivial on the 3-primary part of K
and otherwise trivial on the other p-primary parts, p+3.lf. K is isomorphic to
H * Ze then clearly G is isomorphic to a direct product of ä and §s as claimed.
Otherwise I( is cyclic and Ke, i.e. the 3-Sylow subgroup of K, must be cyclic of
order at least 9, and fIi is a cyclic subgroup of index 3 in Ks . But there is no
nontrivial Z2-aclionon a cyclic 3-group which is trivial on a subgroup of index 3.
This contradiction shows that K is isomorphic to ä * Zs arrd G is isomorphic
to a direct product of ä and ,53. o

So ä is also a homomorpåic image of G. In either of the cases of (0; 3,6, n)-
or (0;2,2,2,n)-branch data G is generated by at most 3 elements of order at
most 6. So the order of ä , and hence also the order of G, is bounded. So such
actions do not exist for large genera.

4.5. It remains to consider the case II) of Lemma 3.1, i.e. G is a semidirect
product of a cyclic subgroup Aby Zs, where Zs acts nontrivially on A, or G is
a split extension of An by a cyclic 3-group. We note at once that the case of the
branch data (0;2,2,2,n) cannot occur, for Zs which is a homomorphic image of
G is not generated by elements of order 2. So the branch data must be (0; 3, 6, n) .

Assertion 2. Let p be a prime divisor of lcl, p * 2,3. Then p = 1mod3.
Also Gs is isomorphic to Zs or Zs x 23.

Proof. Let p be a prime divisor of lGl , p * 2,3. Then ,4, - Gp. Since
Å, is a characteristic subgroup of A we see that A, is normal in G, and G is
a semidirect product of. A, by a subgroup Z of order not divisible by p. Now
suppose if possible that p - -lmod3. Then A, does not admit a nontrivial
action by Zs. Since .A commutes with /, it is clear that G is in fact a direct
product ot A, and .0. So A, is also a homomorphic image of G. But it cannot
be generated by elements of order 3 and 6. This contradiction shows that every
prime divisor of lGl different from 2 and 3 is : Lmod3.

Now let zr be the set of prime divisors of lGl different from 3. Then by
an analogous argument the z'-primary part An of .A is normal in G and G is
isomorphic to a semidirect product of. An by Gs. So G3 is a 3-group with a cyclic
subgroup of index 3 and being a homomorphic image of G it is generated by at
most two elements of order 3. From the wellknown structure of 3-groups with a
cyclic subgroup of index 3 it follows that Gs is isomorphic to 23 or Zs x Zs. o

4.6. The above argument also shows that for each prime divisor p : 1 mod 3
of lcl we must have Zs acting nontrivially on Ao. This then determines the
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isomorphism type of G as noted down in part II) of the theorem below. Notice
that lGl is 6rn or 18rn where every prime divisor of nz is congruent to 1mod3.

4.7. Theorem I). For g sufficiently large the Riernann suråces of genus g
admitting an automorphism group of order 4S +Z a,re classified as follows. There is
a unique Riemann surface admitting a cyclic automorphism group of order 4g +2.
If 2S + t = 3m or 9m where every prime divisor of m is congruent to l mod3
then there are 2 Riemann sudaces admitting a noncyclic automorphism group of
order 49 *2.

II) ?åe isomorpåism type of a noncyclic automorphism group G is uniquely
determined as follows: If 2g *L :3m, rcspectively 9m, where every prime divisor
of m is congruent to lmod3 then G x Zo x (B x Zs) where a:2 (respectively
6), B is a cyclic subgroup of order m, and for each prime factor p of lBl, Zs
acts nontÅvially on Bo.

(Noie: i) Two groups G1 , respectively G2 of homeomorphisms of topological
spaces X1 , respectively X2 , are considered equivalent if there is a homeomorphism
å from xr to & such that hGrh-' - Gr. In the context of Riemann surfaces
one would require ä to be a biholomorphic rnap.

ii) More succinctly G may be described by its presentation as follows. Write
,: (4s +2)13. Then

(4.7.1)

where

G - (ro)yolrt - y3- e)yozoy;t - z6),

a) if lcl = 6m then rs : 1 (mod n), (r - l,n):2, or
b) if lcl :18rn then r3 :1 (mod n), (r - 1,n):6.;

Proof. The assertion II) is already proved above. If G is cyclic the assertion I)
was proved in [K], in fact for all g > 2. (The following argument could also be
used to offer a still different proof of the uniqueness statement there.) We now
assume that G is not cyclic.

We first note that the assertion I) is equivalent to the underlying purely topo-
logical assertion: there are two inequivalent G -actions on E, . Indeed equipping a
structure of a Riemann surface on Eo f G and "pulling" it back to E, we see that G
can be made into a group of holomorphic automorphisms of some complex struc-
ture on Er. Since the action has 3 branch points and the complex structure on
a thrice-punctured sphere is unique we see that the G-action uniquely determines
the complex structure on Er. So if there are two distinct (i.e. nonbiholomorphic)
Riemann surfaces admitting G-actions, the actions must be topologically inequiv-
alent. Conversely if the same Riemann surface admits two distinct G-actions then
its automorphism group would have order larger lhan 4g *2. This would give
a proper inclusion of the triangle group with signature (0; 1,6,(49 * 2)/B) into
another F\rchsian group. However no such proper inclusion exists, thanks to the
complete classification of such inclusions by Singerman, cf. [S], Theorems 1 and 2.
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Now a G-action on E, with a given branch data {0; 3,6, n} gives an inclusion
of n : rr(Eg) into the triangle group A : A1o;a,6,r) ffi a normal subgroup so

t}nat Af r = G. We take

A = {(,?,C l€3 : 116 : e" : €qe : e}.

Since A is a maximal Fuchsian group, cf. [S], we see that the G-actions on
D, are classified by normal torsionfree subgroups = zr. Such normal subgroups
arise precisely as kernels of homomorphisms of A onto G which map (,4, ( onto
elements rrArz of orders 3r6rn respectivelysothat fryz:e.Let uscallatriple
(*ry,r) of elements in G of orders 3,6rn respectively aHurwitz systemif x,y,z
generate G and rlz: e. Obviously urry Hurwitz system determines canonically
a homomorphism of A into G, the kernel = zr and a G-action on Dr. Two
Hurwitz systems which differ by an automorphism of G obviously determine the
same G-actions. The map

{Hurwitz systems}/ Aut G ', {G - actions on Er}

which can be defined for arbitrary automorphism groups of compact orientable
surfaces is in general surjective but not necessarily injective. However in our
special case we shall now show it to be injective and that there are precisely 2
elements in either set.

To this end we take G as in (4.7.1). It is clear that A : ("ol is a normal
subgroup of G of index 3 and it coincides with the the group generated by the
center of G and the commutator subgroup of G. The commutator subgroup
coincides with (z[-l). The elements of G outside .4. are of order 3 or 6. Any
Hurwitz system arising from a G-action on E, has the form (2, y, z) wherc z : z3 ,

(s,n) : 1, y is an element oforder 3 outside A and * : (yr)-'. Onesees that the
possible forms of y are V3r3, j = 1 or 2 and t even. Now note that both {zs F-+ zfi ,
Ao e Ao, (r,r) : 1), and {ro r-, zot Ao å yoz|, f even} define automorphisms of
G. So modulo AutG every Hurwitz system is equivalent to ((yszs)-L,Uo,zs) or
(@3ro)-',y3,zo). One easily checks that these systems are indeed inequivalent.
Moreover we claim that they define two distinct normal subgroups of A. For if
the same normal subgroup, say tD, is defined by both the Hurwitz systems then
rl|q-re' and r7(q-r('" would lie in (D. But then ("-' *ould lie in Q, and the
order of the image of ( in G would be smaller than n. So the two Hurwitz systems
define two distinct normal subgroups of A. As observed earlier this means that
the G-actions are distinct and so there are two distinct Riemann surfaces of genus
g admitting actions by a noncyclic subgroup of order 49 * 2. o
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5. Accola-Maclachlan surfaces

5.1. By looking at the list in 2.3 and the argument in 4.2 it follows that the
only possible branch data is (0;2,4,2g * 2). Write n for 29* 2. We first need
to consider the groups G of order 4n generated by two elements xry of orders n
and 4 respectively so that cy has order 2. So

(5.1.1) (*y)' : e,

Write A- (r) .

or fry - y-r fr-L , -1 
_1 r,

Of yfy - : A, 'y'

5.2. Assertion. A is not normal in G, and (y) is a complement of A.
Proof. If A is normal then the last relation in (5.1.1) shows that y2 would lie

in .4. But then r,y would generate a subgroup of order at most 4g ++. So A is
not normal in G. Also (y) does not intersect .4 nontrivially for otherwise y being
only of order 4, y2 would have to lie in L leading to the same contradiction. So
(y) is a complement of. A. o

5.3. Consider the permutation representation { of G on G/A. We regard
$ as a, homomorphism of G into ,Sa where the latter is a symmetric group on
{1,2,3,4} and the coset [,a] is identified with the symbol 1. Notice that S@)
must be a 4-cycle for otherwise it would be a 2-cycle or a product of two 2-
cycles and y2 would be in (e). By renumbering if necessary we may fake $(y) :
(1,2,3,4). Now we claim that $(a) must be a Z-cycle. For if possible assume the
contrary. Since /(c) fixes 1 and does act nontrivially (since (o) is not normal
in G), it would follow that /(r) must be a 3-cycle. Then the group generated
bV ö@) afi $(y) would have order divisible by 72,, and since the alternating
group does not contain a  -cycle this group has to be ,Sa. This is not possible
for the stabilizer subgroup of ,Sa at L is not cyclic and would not be contained in
ö(A). So {(r) must be a 2-cycle. Also by the second relation in (5.1.1) we have
ö(*)ö(y)(t): $(x)(2): ö(y-t)ö(r-1)(1):4. So ö(*): (2,4). It follows that
/(y2) commutes with /(z) and so y2 normalizes A.

It is clear that im / is isomorphic to D6 , i.e. the dihedral group with 8
elements. So the kernel of { must have index 2 in A. In other words K :
ker/ - (r2). Now the conjugation action of G on K factors through the action
of Da. Since /( is cyclic Aut /( is abelian. Now the commutator quotient of D3
is the Klein 4-group, i.e. isomorphic to 22 x 22. In particular the conjugation of
K by y is of order 2. So y2 acts trivially on K. In other words, y2 centralizes
(r'1.

5.4. Assertion. If g =0,'].., or 2 mod4, then y2 actually fies in the center
of G.

Proof. suppose first that g is even. Then A = z2xK and K has odd order.
Since the conjugation action of y2 or K is trivial it is clear that it is actually
trivial on ,4, as well. So y' lies in the center of. G. Next suppose that g = I
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mod4. Then A x Zax Zto+ry1, and the odd order factor is contained in K.
If the action of y2 on .A were not trivial it would have to be nontrivial on the
Za-factot. We ca,n write the generator r-1 of .4 in the form o1o2 where a1 has

order 4 a,nd 12 has odd order. But then ,-'y' : rlfizAz : azyzrll and it is
easy to see that the order of, x-tyz would be g * 1. But by the third relation in
(5.1.1) ,-'y' is conjugate to c and has order 29*2. This contradiction shows

that the action of y2 on A must be trivial. So y2 lies in the center of G. o

5.5. Theorem. tret Xo be a Riemann surface admitting an automorphism
group G of otder 8g*8, where g issuffcientlylarge. If g= 0, 1, or 2 mod4,
(or more generally in the notation of (5.a) if y2 lies in the center of G ) then
Xo is uniquely determined. It is hyperelliptic and is given by ,' - z2c*2 -L.
The group G is its full automorpåism group. As an abstract group tåis group is
isomorphic to

(5.5. L ) (Zro+raZz) x ZnlB.

Here the action of Za : lyl "" Zzo+, * Zz = (r) + (t) is given by yry-' : n-rt,
yty-r :t, and A = ly2tl.

Proof. We know fhaf XolG is a sphere with three branch points-say, a, b,

c-of index 2, 4, and 29 *2 respectively. Let p: Xo + XolG be the canonical
projection. We may take (y) to be the stabilizer of a point in p-l(ä). Now p-t(ä)
has 29 * 2 points. Also .4, is a complement of (y) r" it does not intersect any
conjugate of (y). Since Ä has 29 * 2 elements it follows that A acts simply
trarrsitively on p-l(ö). Let $ be this permutation representation. By numbering
the points in p-r(b) by {1,2,...,2s +2} suitably we may take r/(y)(l) : 1,
and r/(o) - (7,2,. . . ,2g * 2). Since under our hypothesis y2 commutes with
c arrd ,!@'z)(t) : 1 , we see that ,b(y') : ". In other words y2 has 29 * 2

fixed points. It is wellknown that this is the maximum number of fixed points for
a nontrivial automorphism of a surface, and when such an automorphism exists
the corresponding Riemann surface is hyperelliptic, and the automorphism is the
hyperelliptic involution. It is also wellknown that the hyperelliptic involution is
central in the full automorphism group of the surface.

Fbom (5.1.1) and the above results the isomorphism type of G is clearly as

described above. The hyperelliptic involution i" y' . AIso y2 : ä. Let G l(tl : g
which is easily seen to be isomorphic to the dihedral group Dno+t. Let C be the
normal cyclic subgroup of order 29 *2 in If . It acts on the Riemann sphere. Since
up to conjugacy in the full Möbius group a cyclic subgroup is determined uniquely
by its order we may choose the coordinate z so that the fixed points of C are at
0 and oo and the fixed points of elements of order 2 in the nonidentity coset of
C in H , which form a single C-orbit, are at the 29 + 2-th roots of unity. Our
original Riema,nn surface is obtained as the 2-sheeted cover which is branched at
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these roots of unity. This implies the equation for the surface as given above in a
wellknown manner.

Finally the full automorphism group of this surface is also G. For otherwise
we shall get a proper inclusion of the triangle group with signature {0; 2,4,29 !2}
into another Fuchsian group. No such inclusion exists according to Singerman, cf.

[S], Theorems 1 and 2. o

6. The exceptional automorphism groups of order 8g + g

6.1. In view of 5.5 it remains to investigate the case when g : -1 mod4.
In this case indeed there are other possible automorphism groups of order 89 * 8
and correspondingly other Riemann surfaces. We continue with the analysis of
the group in the notation used in Section 5. Write 29 * 2 : 2km where m is odd
and ,t ) 3.

6.2. Write the generator c-1 of .4 in the form o1o2 where 11 has order 2&

and 12 has order rn. The conjugation action of y2 on (o2) is trivial since (c2)
iscontainedin (o2). Asiswellknowntherearefourpossible Z2-actionson (c1);
namely i) 11 r+ c1, ii) t1*+ xll, iii) o1 *+ xlL-'-t, and iv) z 1r-+ a!r-'*r. No*
we observed in 5.4 that x-Lyz is conjugate to r and so has order 2S +2. This
condition shows that xg2 has order 2k . lt is easily checked that only the actions
i) and iv) are consistent with this requirement. In the case i) y2 is central and
this is taken care of in 5.5. So now we assume that the case iv) occurs. In this
case the 2-group (rr,y') is isomorphic to a semidirect product of a cyclic group
by Zz known as a twisted semidihedral group usually denoted by S*D2rar. Our
aim now is to determine the possible isomorphism types of G assumin g that it
exisfs. Fortunately it turns out that there is only one isomorphism type.

6.3. First let L : (*ry'\. Clearly .t contains ,4. as a normal subgroup of
index 2, and G contains L as a normal subgroup of index 2. Let z- be the set of
all odd prime divisors of lGl . Then An , i.e. the z'-primary part of ,4,, is contained
in (c2) and so it is central in .t. So .t is an internal direct product of. An by
.L2 , where the latter is isomorphic to S* D2x+, . This determines the isomorphism
type of Z. It is convenient to write down its following presentation. Notice that
g *2 is the unique natural number less than 29 *2:2km which ir - 2e-t a 1

mod 2* and : 1 mod rn. Then writing u : A2 ,

(6.3.1) L - (*,ulr2g+z : Lrz - e) uru - #+2).

6.4. Next notice that the element ya of G is not in .t and has order 2. So
G is an internal semidirect product of .D by (yc). The conjugation action of yr
on .6 would be determined by

-1 -1 ' 
_1fiåyfry L-_fr -y--fr'lt, u å yfruyt - yry-L fr : fi,-Lu* -- fis+Lu.
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Now the point is that the order of &' : u-ru, respectively ut : ae*Lu, is indeed
29 *2, respectively 2, and 'u,'frtn' - rts+z, and moreover

-1fr å fi -L[.,
?,,c å fig+' u,

is indeed an automorphism of .L of order 2 as can be checked from its presentation
(6.3.1). So such G indeed exists. Its presentation may be given by

(6.4.1) G - (*,,ylxzg+z -- y4 - (yn)z : e, U2ryz - ns+z,.

By the Hurwitz procedure, cf. 2.2, it is clear that G acts on E, with branching
data (0; 2,4,29 ! 2).

6.5. For determining all actions of G it is important to know the orders of
the elements in G. Since (y) is a complement of (c) every element of G can be
written as yiai where 0 < i < 3, 0 ( j < 2S* 1. Note the following properties:
a) y2 commutes with o2.
b) yry-' - a-1r2 :y2s-c-2 :y2xg, y-rry - Uza-r : *oA'.
c) y2aiy-z - sik*2) .

d) y-'*'y: ya2A-r : s-Lrzr-'y' : r-rre : xe-r i
hence y-rrziy: yrziy-L - ,ik-t) .

6.6. Lemma.
i) ?åe orders of both yr2i and A-rrzi are 4.
ii) ?åe order of yx2i+r is 2 or 4 according as j is even or odd.
iii) 

"åe 
order of A-trzi+t is 2 or 4 according as j is odd or even.

iv) ?åe orders ofboth y2x' and fi' are sarne.

Proof. i): Notice that ya2iya2i : aik-r)Oz*zi - *ik+r)rz. 11o* ,r(o*1)
has order 1 or 2 according as j is even or odd. In either case (yx2i)2 has the
same order as y2. Hence the order of yazi is 4. The proof for y-La2i is similar.

ii), iii): Next

ya2i+1 yozi+L = yazi y-t O*r-t Oz rzi+t
_ *ib-r)r-ty2y2r2i+r _ *ik-r)-r+2i+t _ ,ik*r).

So the order of ya2i+r is 2 or 4 according as j is even or odd. On the other hand

y-L azi*t O-r azj+t : y-r x2i yy-t fryy2 n2j+1

- *ik-t) Oz o-L y2 fizi+r - ,i6-r)*e*2i+t - s(r+r;1r-'rr.

So the order of A-tr2i+r is 2 or 4 according as j is odd or even.
iv): Now

y2 rry2 *, - or(g*3) - {k*1) r2r

which has the same order as a2'. So the order of y2x' is equal to that of c'. o
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6.7. The possible Hurwitz systems are ((,7,O where €,T,e have orders
29 *2,4,2 respectively so that (, 4, ( generate G and their product €qe : ".Flom the above lemma we see that the possibilities for (f , ?) are of two types:
A) (r",ye,) or (y'r", y'tf) where (r,2gI2):t, r*s:1 mod4.
B) (r', y-rr") or (y2a',yc') where (r,2g * 2): L, r *s : -1 mod4.

Flom the presentation (6.a.1) it is not difficult to check that there are auto-
morphisms of G carrying (o, y) to any of the above Hurwitz systems. So from the
discussion in 4.7 it follows that the G-action is unique upto topological equiva-
lence. Since the quotient is a sphere with three branch points it follows again that
the corresponding Riemann surface admitting this action is unique. Finally again
appealing to [S] it follows that this Riemann surface is distinct from the one in
Theorem 5.5. Also for the same reason G is the full automorphism group of the
surface. To summarize:

Theorem. For large values of g if g = 0,1,2 mod4 then there is a unique
Riemann surface (given by ,' - 22s*2 - l) admitting an automorphism gtoup
of order 89 * 8 . rf g - -f mod4 then in addition to the above one there is
precisely one more sucå Riernann surface. In both cases the full automorphism
group coincides with the automorphism group of order 8g + g . Theb isomorpåism
types are given by their presentations (5.5.1) and (6.4.1).
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