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MONOTONE FUNCTIONS AND EXTREMAL
FUNCTIONS FOR CONDENSERS IN R,

Shanshuang Yang

0. Introduction

In this paper, we study some properties of monotone functions and extremal
functions for capacities of condensers. After introducing some notations and pre-
liminary results in Section 1, we shall give the construction of a monotone function
a^nd prove an oscillation lemma. In Section 2 we also prove that a relative quasiex-
tremal distance exceptional set with n-dimensional measure zero is removable for
monotone ACl-functions. These are generalizations and modifications of some
results due to A. Aseev and A. Syöev [AS]. In Section 3, by using the results ob-
tained in Section 2 and some results on conformally invariant variational integrals,
we prove a general existence and uniqueness theorem for the extremal function of
the conformal capacity of a condenser .E and study the boundary behavior of the
extremal. The corresponding results for the special case where .R is a ring are due
to F.W. Gehring [G2] and G.D. Mostow [M6]. In Section 4 we establish the cor-
responding results for the extremal functions of p-capacities of condensers. Some
results obtained here are needed to characterize quasiextremal distance domains
and null sets for extremal distances in E" (see [Y] for applications).

The author expresses his gratitude to Professor F.W. Gehring for suggesting
this topic and for his consistent encouragement and advice. The author would
also like to thank Professors J. Heinonen and O. Martio for making many valuable
suggestions.

1. Notation and preliminary results

We use the following notation for Euclidean n-space R" and its one point
compactification -R". Given o € R" and 0 < r < oo, we let B"(arr) denote the
open n-ball with center r and radius r and S"-'(*,,r) its boundary. We also let
alt. . ., e, denote the unit vectors in the directions of the rectangular coordinate
axes in -R".
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1.1. Acl-functions and Sobolev spaces. Suppose D is an open set in
R". A function u: D ---+ Rr is said to be ACL or to be in the class ACL(D) if
u is continuous in D and if for each closed n-intenral Q in D, u is absolutely
continuous on almost every line segment in Q parallel to the coordinate axes.
When m € D we say that u is in ACL(D) if u is in C(D)nACL(D\ {m}). It is
well-known that an ACl-function has partial derivatives almost everywhere and
that the ACl-property is a local property. Let I < p ( oo. If u is in ACL(D)
and Vu is locally .Lp -integrable or .tp -integrable in D, then u is said to be in
ACLf."(D) or ACLP(D), respectively. We let ACLä(D) denote the closure of
Co-(D) in ACL?(D) under the norm

( 1.2) ll" IIACL P (D) -

We further let W)(D) and lVpl,ro"(D) denote the Sobolev space and the local
Sobolev space in D, respectively, and W;,o(D) the closure of Co-(D) in W)(O).
Another fact we need about ACL functions and Sobolev spaces is that

ACLå.(D) - C(D) nW;,ro.(D)

for any D in R". For the proof of (1.3) and more details about Sobolev spaces
and ACl-functions we refer the reader to [M3] and [M5].

1.4. Conformal capacity and moduli of curve families. Suppose that
D is an open set in F.", that Fs and F1 are two disjoint compact sets in D and
that I4/(.F,6 ,4; D) is the set of aJI real valued functions u such that
(1) " is continuous in D U Fo U .Fr ,

(2) u(a) < 0 if x € Fo and u(r) > 1 if r e F1,
(3) u is ACL in D.
Then the p-capacity of "F6 and Fr relative to D, denoted by capr(Fo,.t,1;D), is
defined as

llVrltr,,(D) - UrlV, lo o*)''o

( 1.3)

(1.5) saPr(n ,Ft; D) - inf 
lrlYul, 

d*,

where the infimum is taken over all u in W(Fo, Fti D).

1.6. Remark. If u is in W(Fo, Ft; D), then

,(*) _

is also afunction inW(Fn,\;D) such that 0 < u(c) < 1, u(c): i on .4 for
i:0r1 ,and

( 0 if u(r)
l. 1 if u(")

lrtVu lo d* < l, lVrlo d*



Monotone functions and extremal functions for condensers 97

for 0 < p < oo. Therefore, in (1.5) one can replace W(Fo,h;D) by a subclass

W' : W'(F0,4;D) without changing the capacity, where W'(Fo,fi;D) is the

set of all functions u in W(Fo,\;D) such that 0 < u(c) < L, u(x): 0 if
x e Fo and u(o) : l. if r e Fr. A function u is said to be admissible for
capp(trt, h; D) if u is ia W'(Fs,h; D). The n-capacity 

".p,,(Fo, &; D) is called

the'conform aJ capacity, since it is conformally inwariant, and it is usually denoted

by cap(Fo, \;D).
Furthermore, we let A(fo, fi; D) denote the family of curves joining -Fs and

Fy ia D. Given a curve family I we let modr(l) denote its p-modulus. We

denote the n-modulus by mod(l) instead of mod"(l). For the definition and

basic facts about modulus, we refer the reader to [G1] and [V]. The next lemma

is due to J. Hesse [H, Lemma 5.2 and Theorem 5.5].

1.7. Lemma. If Fo and Fr are two disjoint compact sets in D, then

frtthennore, if Fs and Ft lie in D, then (1.8) holds with equality.

1.9. Condensers and their capacities. A condenser is a domain in R"
whose complement consists of two disjoint compact sets .F6 and .F'1 . It is usually
denoted by .E(Fo,F1) or .R. We say that B is a ring if, in addition, f'e and

F1 are connected. A compact set F is said to be nondegenerate if it contains a

nondegenerate component. A condenser R is said to be nondegenerate if Fo and
Fr are nondegenerate. The p-capacity of ,8, denoted by capr(.R), is defined as

the p-capacity of .t,o and Fr relative to -R", that is

capr(rB) - capr(Fo, .F., ; -R").

The conformal capacity of .E is denoted by cap(.R).

1.1O. Relative QED exceptional set. A compact subset .E in R" is said
to be an M-QED exceptional setrelativeto adomain D, L 1M <a,if. E C D
and if for each pair of disjoint continua .E'e and .F1 in D \ E

This definition is a generalization of the concept of QED exceptional sets intro-
duced by Gehring and Martio tGM]. lf. D: -R", then a relative M-QED excep-

tional set .E is an M-QED exceptional set and -R" \ E is an M-QED domain.

1.12. Lei D be a domain in R" and F C D be a compact set. We say that
F n AD is locally non-isolated if for each c6 € F n äD there are arbitrarily small
neighborhoods U of cs such that each component V of. U nD satisfies Vnf * 0.
It is easy to see that if D is locally connected at each point of F n AD (see [V,
17.51 for definition), then Ffl 0D is locally non-isolated. But the converse is false.

(1.8)

( 1.1 1)
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In this section we
tone ACl-functions.
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2. Monotone functions

study the construction, distortion and extension of mono-

u(*)<r(ro)+"
for all a e 1.4 function u is saidtobe monotonerelativeto F, if both u and

-u a,re monotone above relative to .t,.
2.2. Remarks. In the above definition, by a curve 1 in D joining 16 to F

we mean that 7: [0, t) - R" ir a continuous map with 7(0) : no t Z(t) e D for
all t € [0,1) a,rrd 7nF * 0. this definition is essentially equivalent to Lebesgue's
definition of monotonicity. More precisely, we have the following lemma.

2.L. Deffnition. A real function u defined in
to be monotone above relative to a compact set F
point ns € D can be joined to the set F by . curve

2.3.
function

(2.4)

for all domains A with
non-empty compact set

for all n e t. Thus

since lnAL*0, and

an open set D c F,' is said

7 in D such that

Lemma. Suppose that D is a domain and that u is a continuous
in D . Then u is monotone in D in the sense of Lebesgue, i.e.

supu-supu, infu-infu
a^AaAA

Ä C D , if and only if u is mo notone in D relative to a
FCOD.

Proof. We first assume that u is monotone in D in the sense of Lebesgue.
For each as € D and e > 0, we let A denote the component of the open set

{xeD:u(x)> r(ro)-e} containing oo. Onecanshowthat A is asubdomain
of D with ro €A and äAnAD* 0. Thus -u ismonotoneabovein D relative
to .F : 0D, h a similar manner, one can show that u is monotone above relative
to .F'.

Next we assume that u is monotone in D relative to a compact set .F, in 0D.
Let A be any domain in D with Ä C D. Then for ml ro € A and e ) 0, there
exists a curve 1 ia D joining as to F such that

AA

letting € --+ 0 we obtain sup66u 2u(ro). Hence

'rT" >'ln"
which implies the first equality in (2.4). Similarly, one can show that

L{"Su(a)+e
for a^ny s € A a,nd e > 0. This implies the second equality in (2.4). o



Monotone functions and extremal functions for condensers 99

2.5. Theorem. Supposethat D isadomainin R", F ucompactsetinD
alad u a function which is bounded in D U F and ACL" in D. Then there exists
a function u' defined in D U F such that
(u) ,' : u, on F and u' e ACL"( D) with

(2.6) lolo,'f o* s lrlvul'dm,

(b) ,' is monotone relative to F,
(c) if F nAD is locilly non-isolated and if u is in C(D U ,F,), then u' is also in

c(Du F).

Proof. Let lul < M < oo and {r3} be an ordering of the rationals on the
interval l-M,M\. Using Lebesgue's method (see [AS], [G2, p.359] and [M5,
4.3.3]), we first construct a sequence of function. {rr} as follows.

Set us: u. If up-1 has been constructed, then let

(2.7) Gp: {r € D:up-1(") > rr}

and let Dr be the union of all components of G* whose closures do not intersect
.F'. Set

(2.8) ur(c) : {l;-,,,, itr:Zii.D 
\ D*,

The sequence {u1} is monotone decreasing and converges to the limit function u
in DUF. Then applying the above process to -u, we obtain u' and set u, : -,t)t .

We next show that u' has the desired properties.
For the proof of (a) it suffi.ces to show that u € ACL"(D) with

(2.9)

From
on lc,

(2.10)

lolo,lo* < loloulo*.
the definition of {u1} and the assumption on u, one can show, by induction
that

sup l"u(r) - ur(y)l S sup_ l"(*) - "@)lx ry€B 
' r,yeB

for any connected set B in D and all &, that up is in ACL(D) and that

(2.11) lVull < lVul

a.e. in D for atl ft. It follows from (2.10) that u is continuous in D.
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Next by (2.11) and the hypothesis that u € ACL"(D),

lV" xldm

Hence there is a subsequence of {u1}, denoted again by {"r}, such that {Vu3}
converges weakly ia L(D) to a vector function I : Ur,...rln). Since ut is
ACL(D) for all å, the same argument as in [G2, p.362] shows that u is ACL in
D and that Vu - f a.e. in D. Hence (2.9) follows from the fact

lVrlnd* lV,, ln d*.

The same reasoning as in [AS] shows that (b) is true.
Finally for the proof of (c), it suffi.ces to show that u is continuous at each

point of F n AD. For this we may assume that F O äD lies in R".
Let as € .Fn 0D. By the assumption, for any r ) 0, there is aneighborhood

U of xs such that U C B"(xs,r) and that each component V of. U O D satisfies
V n p f 0. Thus, as in the proofof (2.10), one can prove that

(2.L2)
UND UnD

for all lc and the continuity of u at as follows from (2.12) and the continuity of
u at as. This completes the proof of Theorem 2.5. o

Next we establish an oscillation lemmafor the monotone ACl-functions which
will be needed in what follows.

2.13. Lemma. Suppose that E is an M-QED exceptiona) set rclative to a
domain D in-R" . Let G be any open set in H," and F a compact set inG. If a
function u in LCL(G \ E) is monotone relative to F , then there exists a constant
t > 4 depending only on n and M such that

(2.L4)

for all oot nL in DnG\(EUF) with B"(rs,tr) C DnG\r,, where, : lro-rrl.
Proof.Let xs, z1 bein DflG\(EU.t') with B"(ro,tr)CD f'lG\F and

set
r1 = 2r, 12 : lR, R: tr,

where r = lzo - z1l and t > 4 is a constant to be determined. Without loss of
generality we may assume that

(2.15) å("(r')-u(ro)) :6)0.

sl,t,

Ic-oo JD JD
:1,L

U r, (,o,tr)\E 
Iv' l d*)L 

/ n
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For any 0 < e < 6, by the monotonicity of u(z), we can choose curves 70 and 7r
in G \ .E joining oo and 11 l,o F , respectively such that

(2.16) ,(o) < u(zo) + e

for all a € 1o and that

(2.L7) ,(r) > u(x1) - e

forall x €lt. For i = 0, 1,let r!1) bethelastpointwhere Ti meets 5"-1(cs,11),
Iet o!2) be the first point where 7; meets S"-'(ro, 12) after r!'), urrd denote the

subcurveof 7; from rl') to ,l') Uy 71. Then dn^/, = 0 by (2.15), (2.16) and
(2.L7). Next let

D1= {u:r < lc-csl< A}, D2: {r: 11 ( l*-*ol ( rz},

and let I be the curve family each member of which contains a subcurve connecting
the spheres S"-'(ro,11) and S"-'(rr,r) or ,9"-1(*orrr) and §"-l(cs,J?). It is
easy to see that

(2.18) a(rå,zi;D\E)ca(7i,tl;h\E)ul.
Since the modulus of a curve family joining two spheres ^9"-1(c6,o) and

S"-t(ro,ä) is bounded above by 
",,(log(ö/o))1-" 11V,2.s1), by (2.18)

(2.1e) mod (a({,zi;D \ E)) < mod (a(7[, |;\ \ a)) + 2cn(Losz)t-n

where c, is a number depending only on n. On the other hand, by Theorem 1.0.1,2

of [V] and the hypothesis that E is an M-QED exceptional set relative to D,

(2.20)

where c'n is also a number depending only on r?,. Hence

(2.21)

The right side of (2.2L) tends to oo when t tends to oo. Therefore, we can choose
the positive constant t depending only on n and M such that t ) 4 and

(2.22) mod (A(7s, TiDt \ E)) > mod (A(7[, $;Dt \ E)) > 1.

Next set
u(u)-u(ao)-e,(*)

Then u

(2.23)

Letting

is in

t,,
e+

u(r 1) - u(*o) - 2e'

Lemma L.7 and (2.22), w€ obtainW(to,^fti Dr \ E). Thus, by

lV,|"dm)cap(zol7tiDt\E))mod(A(zo,7t,Dt\E))>

in (2.23) yields (2.I4) as desired. tr

\^u

0
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The main result in this section is the following extension theorem for monotone
ACL-functions.

2.24. Theorem. Suppose that E is an M -QED exceptiona) set relative to
a domain D in R" with m(E) = 0, that G is any open set in F." and that F
is a compact set in G. Srppo"e aJso that a function u is bounded and ACL" in
G \ E and that u is monotone relative to F. Then u can be extended to be a
function u* in LCL" (C \ (E n .F')) whichis also monotone relative to F.

Proof. For each P e G nE\.t., Lemma 2.13 and the absolute continuity
of Lebesgue integrals imply that there is a neighborhood V of. P such that u
is uniformly continuous in V \ E. Thus u can be extended to P continuously
and hence it can be extended to be a continuous function u* in G \ (E n .F,).

Furthermore, since m(E) :0, Vu* : Yu a.e. in G and it follows from (2.14)
that

(2.25)

forall n)y in DnG \.F,'withr- l* - yl ,

n G \ f', where B - Bn(0, 1) ,

a.e. in G and f is as in (2.14).

Next we show that u* is ACL in G \ (E n F). Since the ACL-property is
a local property, it suffices to show that u* is ACL in a neighborhood of each
point P in GflE\.F'. Given P e G nE\.F', we let d: d(P,A@ nG\.F.)),
rt: dl(2t * 1) and Br: Bn(P,r1). Then (2.25) holds for all r, y in .B1. We
will prove that u* is in C(.B1) nW)(Br). For this we only need to show that the
partial derivatives 0u*f 0a, i:L,...tft, are the weak derivatives of u*. To this
end we let g be any function in Cs-(Br) and need to show that

* trz) d*Q))Ltnty -"tt( l,ro
Bn(r,tr) C D

f (*) _ lv".(r) l" _ lv"(r) l"

that is

(2.26)

lr,".Xd'm: - lr,'Hd'm' i:t'2" " 'fr'

l,,Wd,m:Q
The following is a sketch of the proof for (2.26). For more details we refer the

reader to [AS, Lemma 4].
We extend g to the whole space by letting p(x) :0 for r / fu and assume

that supp(p) C Bz, where Bz : B"(P,r2) with 0 < rz ( 11. Let s be any real
number with 0 < lrl < min{r1 - rz,r2} and set

og(r)g(*) :,*(*)p(*), F(*, s) -
s(n * sei) - g(s)

, F(r) _
0x;
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Then

(2.27)

On the other hand, fo

Then

(2.28)

Since

(2.29)

Next,

lg(v) -g(,)l < Mtlv - rl+ M2tlv-,1( IrtO *trz)a*1,1)'t"

for all r, y in .B1 , where M1 and M2 are constants depending only on u* and
g. Thus using Hölder's inequality and Fubini's theorem, we obtain

(2.s0) 
l*lrO,s)ldm ! M1m(K) * M2tm(K1e-r)lnllvrll,rcl m(B1r/^,

which tends to 0 as s tends to 0. Hence by (2.28), (2.29) and (2.30),

ff
lgä/", F(c,s) dm - lr,'(*)o*'

This and (2.27) imply (2.26).
Finally, the monotonicity of u* follows directly from the monotonicity of u,

and the proof of Theorem 2.24 is completed. o

lr,F(*, 
s) d,m - o.

r any € > 0, we let

K - {r e Br: lr(CI,s) - r(")l ) r}.

lu,lr@,s) - r(o)l dm 1 em(81) * l*lrallam + l*lr(*,s)ld,m.

F(r,s) --+ F(a) a.e. in .B1 as , - 0, *(K) + 0 as s --+ 0 and

r':e L lr(')l dm: o'

it follows from (2.25) that
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3. Extremal functions for the conformal capacity of condensers

In this section we generalize a result due to F.W. Gehring [G2] and
G.D. Mostow [M6] which says that if R(Fo,fr) ir anondegenerate ring in -R",
then there exists a unique extremal function u in Wt(Fs,.F'r;E") such that

t
cap(E): 

J*lYufam.
Our proof makes use of results obtained in Section 2 a^nd some results on the
conformally invariant variational integral

I(3.1) I(u,D): 
JolYulam.

In order to formulate our result we need the following definition.

3.2. Deffnition. Suppose that D is an open set in F." and that cs € R,.
Foreacht>0let

P(t): caP('R1)

where Et : ft(Fo,Fr) is the condenser with tr'o : R" \ B"(ro,2t) and F1 :
ff1*o,t) \ D. We say that a point o6 € äD is a regular boundary point of D if

(s.B) w(*o,q: I, @? dt: @,

i.e. if rs satisfies the Wiener criterion with respect to D.
The main result of this section is the following theorem.

3.4. Theorem. If .R: ft(Fo,fr) i" a condenser in -R" , then there exists a
function u in ACL(.B) such that
(a) cap(.R) : [*lYul"dm;
(b) limr-rou(r):i for eachregularboundarypoint xs of R on 0F;, i:0,1;
(c) u is a weak solution to the partiil differential equation

div (lvul"-2vr) : s

in R, i.e.

l*v'r*'Yu 'Yw d,m : o

for all tu € Co-(.R);
(d) , is unigue in the sense tåat if u is in ACL(.R) with u - u in ACL['(ft) and

cap(.R) : l*lvula*,
then u - u is identicilly constant in R.
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The proof of Theorem 3.4 depends on several preliminary results. The first is
a modification of several well-known facts about the integral (3.1). For the details,
we refer the reader to [M4], [LM] and [GLM].

3.5. Lemma. Suppose that D is a bounded domain in R" . If g is in
C(D)1W*(D), then there exists a unique extremal function up in C(D)nWl(D)
with up - g in Wl,o(D) such that

(3.6) I(uo,D) < I(u,D)

for all u in ACL"(D) with u - 9 in ACLä(D) . Furthermore,

(3.7) ,l*. rr(r) : e@o)

for dl regular boundary points ro of D.

Proof. By [LM, Section 2.7] there exists a unique extremal function up in
C(D)1W;(D) with up - e in Wl,o@) such that (3.6) holds for all u in C(D)n
W)(D) with u - p in C(D) nW*,,@). Now let u be in ACL"(D) with u - e
in ACL['(D). For any fixed e > 0, u - 9 € ACL[(D) implies that there exists
w e Cf (D) such that

llV(u - ?) - Vtpllr,"(D) I €.

Thus,

Letting e -+ 0, we obtain the desired inequality (3.6).
Finally (3.7) holds if co is a regular boundary point of D by [LM, p. 154]. o

3.8. Lemma. Suppose D is a domain in R," which contains the sphere
S"-'(*orre). If u1 and u2 are ACL in D with'ur:r.t2 on S"-L(rs,,ro) then u
is aJso ACL in D where

,,(r\: t"r@) if x e DtB"(rs,rs),-\*) [rr(r) if x e D\B"(cs,re).

Proof. Obviously u is continuous in D. Since the ACl-property is a local
property, it suffices to show that u is ACL at every point on S"-t (ro , rs ) . Suppose
r e S"-L(x6,rs) and choose r ) 0 so that B: B"(a,r) C D. Let Q be any
closed n-interval {c e R" i a;1x;1b;,i:1,2,...,n} with Q c B and .t
be any line segment in Q parallel to c;-axis on which u1 and u2 are absolutely
continuous. Since Z is divided into a finite number of subintervals by the sphere
S"-t(ro,rs) on each of which u is equal to either u1 ot u2, it follows that u is
absolutely continuous on L. This completes the proof of Lemma 3.8. o
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3.9. Proof of Theorem 3.4. We first prove the existence of u. Since .Fo

and Fr are disjoint, it is easy to see that

Thus appealing to Theorem 2.5,, we can choose a sequence of functions {ui} C
Wt n ACL" such that

cap(^B) lVuild*

and that each ui is monotone in .R relative to 0R. Since {Vu;} is a Cauchy
sequence in .8"(.8), it converges in .D'(.B) to a vector function I : Ur,...,ln).
Hence,

-li* tJ+@JR

(3.10)

that

(3.11)

cap(.B) - lVuild* lfldm-

the boundary behavior of u, without loss of generality, we may assume

\.Blies in aball B"(0,r), 0 < r ( 1.. Choose s € (r,1) andlet

I(uD, D) < I(r, D)

lim tj-*Jn : l.
Next, by Lemma 2.13 and (3.10), we see that {ui} is equicontinuous at each point
r e R. Then Ascoli's theorem implies that there is a subsequence, denoted again
by {"i}, which converges uniformly on each compact subset of .B to a continuous
function u(z). By the same method as in [G2] and [M6], one can show that u(c)
is in ACL(.E) *d that Vu(r) : /(r) a.e. in .8. Therefore,

cap(l?) lV,ln d*.:l*
For
H,"

v@)
ur(r), if lrl S ",

u(*), if lrl > s,

where u1 isthefirstfunctioninthesequence {ui}, B: B"(0,1), and D: BflR.
By Lemma 3.8, tp is in ACL"(R") and hence in C(D) nwl@) with 9 = u on
äB and g : i on ä4 for i : 0,1. By Lemma 3.5, there is a unique extremal
function up in C(D) nwl@) with up - p in Wl,o(D) such that

:{

for all u in ACL"(D) with u -9 in ACLfi(D).
We show next that u has the same extremal property as uD in D and that

u - I is in ACL['(D).
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For the extremal property of u, we must prove that

(3.12) I(", D) S /( u, D)

forall u in ACL"(D) with u-gir. ACLfi(D). Infact, u*Ve ACLS(D) implies
that for any fixed e ) 0, there exists w in Cf;(D) such that

(3.13) llv(, - p) -vrl|."1ay ( e.

On the other hand, since the function

u'(a): 
{;,9i 

* v@)' 
lf l E flr 

",
is admissible for .8, that is, u' e ACL(.B) n C(E) and u' : i on 0F; for i : 0,1,
(3.10) implies that

(3.14)

Thus, by (3.13) and (3.14),

llvrllr"«pr : llv(u, + d -v(, - (, - e))llr"rrr
> llv(, * v)l|."<ot - llv(., - (u - p))llr"rrl > llVrllr"r D) - e.

Letting e + 0 yields (3.12). This shows that u has the same extremal property
as uD in D.

Toshowthat u-p isin ACL['(D), welet A:{r:s < lrl < 1} and

ui@): {fl9l; r[f', ,,,1 @i@) - e@)), lf |Il i::
for j : Lr2r..., where {u1} is the sequence of monotone admissible functions for
.B chosen above. By Lemma 3.8 ui is in C(D) nwl@) with ui : 0 on 0D.
Since Vu; -r Vu in I"(.8) and since ui + u uniformly on each compact subset
of R, for any e > 0 we can choose j such that

(3.15) llvri - Vullr"lry < |e

and

(3.16) ll"i - pllt"re»: llui - ully^61< |e(1 - s).
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Then for such j,

(s.12) llv(,i - v) -vuillr,(o) : llv(«", - ,) 
ql_;")llr,,,

< llVri -yull7.6, * * Wi - pllr^<ot < ir.
On the other hand, by [M1, Lemma 2.2), ai is in I7j,6(D), so there exists ur in
Co-(D) such that

(3.18) llv(. - ,1)llr"p1< le.
Then by inequalities (3.15), (3.17) and (3.18),

llv(" - p) -V*l|,.(D) < llv(" - u)llr."<ot

+ llV(ui - e) - Vrillz,"lay + llVui -Yullpp) < e.

This shows that u - cp is in ACLfr(D) as desired.
From the extremal property of u and uD) we see that

(3.19) I(u,D): I(uo,D).

Set to : r!, - up, ar,d for each real number f , let

w(t): lrlor+tu)l"dm.
Then

u * tu - e - (1 + t)(u - e) - t("o - p)
is in ACL['(D) for each fixed f and (3.12) implies that W(t) > W(0). Using
Hölder's inequality and Lebesgue's dominated convergence theorem as in [GLM,
p. 51] and [G2, p. 363], we car] differentiate w(t) with respect to t under the
integral sign. Then setting I : 0 yields

(3.20) [lvul-'vu.ywdm:0.Jo'
Hence, Hölder's inequality, (3.19) and (3.20) yield

(8.21) I(u,D) : lolo,f d,m: 
loY,f-ryu.vupd,m

f
< Jolv"l-'lvrrl dm 1I(u,D)@-r)/nl(up,D)r/" : I(u,D),

and we have equality throughout (3.21). This implies that Vu = Yup a.e. in D
and hence that u - up is identically constant in D. Finallg the boundary value
property of up in Lemma 3.5 yields the desired boundary value property of u.
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For the proof of (c) and (d), we first show that

(3.22) I(u,R) < I(u,R)

for all u in ACL(.B) with u -u € ACLä(R). This can be done by the same

method as in the proof of (3.12). Then conclusions (c) and (d) will follow from an
argument similar to that used to establish (3.20) and (3.21). This completes the
proof of Theorem 3.4. s

3.23. Remark. Since all nonregular boundary points of a domain form a set

of zero capacity [K, Corollary 5.6], Theorem 3.4 implies that cap(i?) : 0 if and
only if either O.Fs or äF1 contains no regular boundary points of l?.

3.24, Remark. Theorem 3.4 does not guarantee that the extremal func-
tion u for a condenser J? is admissible since it may not have right boundary
values at nonregular boundary points of .8. However, the following lemma gives

a geometric condition which is sufficient to ensure that the extremal function is
admissible. Essentially the same result was given by Martio in a different form

[M2, Corollary 3.8].

3.25. Lemma. If D is a domain and if rs lies in a nondegenerate component
of 0D, then xs is a regular boundary point of D.

Proof. Suppose .F is the nondegenerate component of äD containing rs.
Thenthereis apositivenumber r ) 0 suchthat 1B^(us,r)n.F' *0 for any f
with 0 <t 1 r. It is easy to see that

Rr c E(R" \ B"(ro, 2t),8"(xs,f) n r)
where .R1 is defined in 3.2. Therefore, by the monotonicity of capacity and the
spherical symmetrization inequality for the moduli of condensers [G1, p.225),

\ B"(*0,2t),8"(ro,r) n r,))eU) - cap(Et) ) cap (n(R"

w (fi1,, D) -
pU)t /("-r) 

O,
t

dt - ool,'+l,'
and hence c6 is a regular boundary point of D. o

3.26. Corollary. If .E is a condenser and if each component of 0R is
nondegenerate, then the extremal function for cap(.R) can be extended to be an

admissible function for R.
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4. Extremal functions for p-capacities

In this section we extend the results in Section 3 to the case where the con-
formal capacity is replaced by p-capacit5 1< p < oo. For this case we say that
a point ro e 0D \ {oo} is a p-regular boundary point of D if.

(4.1) Wn(ro,q: l, ep(t)t/(n-r, * : *,
where

(4.2) pp(t):ffi
and where Er = 8(Fo, fr) *d R|: R(Få,}'{) are condensers with

Fo = 4 : R'\ B"(cs,2t), Fr :E"(*o,r) \ D and Fl:8"(ro,t),
4.3. Theorem. If Fs, F1 are disjoint compact sefs in R" and if every

bounda,ry point of R : R' \ (R U .F,t) i" R" is p-regular, thut there exisfs a
unique function u in W'(Fs, Fr;R") such that

(4.4) cap(Fo,Fr;R"):[1Vuya*.
JR

Rtrthennore, u is a weak solution to the differential equation

(4.5) div (lVu;r-'V,r) : g.

4.6. Theorem. If Fs, F1 are disjoint compact sets in R" and if R :
R" \ (fo U F1) is a domain, then there exists a function u in ACL(.R) sucå tåat
(a) capr(Fs,.F'r;R") : !*lYulPdm;
(b) limr-, ou(x): i foreach p-regularboundarypoint xs of R on 0F;, i:0,1;
(c) u is a weak solution to the partial differential equation

div(lVu[-2Vu1: g

in R, i.e.

(4.7)
l.tYulo-'Yu.vur 

d,m- o

forallt e Cs-(.B);
(d) , is unique in the sense that if u is rn ACL(R) with u - u in ACLI(R) and

capr(Fo, .F,r ; R") : 
f*lVrY 

a*,

then u - u is iden tically constant in R,



with tu; : i on 4 for i :0, L,, wi = ui ot S'-'(0,r;) and

t pwiled,m< [ lYulPd,mJo;' Joi

forall u €ACL(Di) with u-ui € ACLä(D1).
Next let

ui(a): {i::();, li fl ?;;:
Then Theorem 4.7 in [GLM] implies that {ui} is an equicontinuous sequence in 8.
F\rrthermor", {ri} C Wt (Fo,F1; R") and

capr(Fs, Fr; R") :,lllL [ -V r ln O*.
J-@JR

Finally, an argument similar to that of Theorem 3.4 shows that

u:limujj-a -
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4.8. outline of the proof for Theorem 4.3. First we choose a seguence

{ui} in Wt n ACLP such that
t

capr(Fo, Fr;R") : 
,.liå J*lV"lna*.

Let .Fo, Fr C B"(0rr), choose an increasing sequence {ri} so that 11 ) r and

ri -) oo as j -+ oo, and let Di: Rfl B"(0,r;). Then by using a generalized

form of Lemma 3.5, we obtain

wi € ACL (8"(o,ri)) n C (8"(0, "i))

is the desired extremal function. o

4.9. Outline of the proof for Theorem 4.6. Let d - d.(Fo,.F,r) > 0,
choose a decreasing sequence {6;} so that 6r < }a ana 6i --» 0 as j -» oo, and

let
fjil : 4(6i) : {r € R" : d(a,4) S ar} , i: 0,l,J :1,2,....

Applying Theorem 4.3 to (I{'),F{»;R"), we obtain extremal functions ui €

W'(F[i),F{');R") cWt(Fo,Fr;R"). By [H, Theorem 3.3],

(4.10) 
r.lilg""nr(fä(j),p(j)'R") =capr(Fo,Fr;R").

Thus {ur'} is an equicontinuous minimizing sequence for capr(Fo, f'r;R"). Then
as in the proof of Theorem 3.4, it follows that

u : jlläuj
is the desired extremal function. o
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