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MEROMORPHIC FUNCTIONS OF BOUNDED
VALENCE ON AN OPEN RIEMANN SURFACE

Fumio Maitani and Hisashi Ishida

Introduction

In the theory of the boundary behaviour of canonical conformal mappings
on open Riemann surfaces, it is a well known fact that every canonical conformal
mapping on an open Riemann surface of finite genus is a vertical slit mapping
([4], [6], [9]). This theorem was first proved by M. Mori ([7]). For the proof of
the theorem, she prepared a lemma (Lemma 2, p. 177) which asserts that every
meromorphic function f of bounded valence on an open Riemann surface R of
finite genus has a limit at each weak boundary point of the Kerékjart6—Stoilow
boundary of R.

However, P. Jarvi ([3]) showed that the assertion of the lemma contains invalid
arguments. Although he could not restore the assertion of Mori, he proved that the
lemma holds true if R is an open Riemann surface with absolutely disconnected
boundary (see [8]) and if no cluster set of f at Kerékjart6-Stoilow boundary point
of R separates the extended complex plane. He further pointed out an error in the
example introduced by Kusunoki and Taniguchi ([5]) who intended to show that
N%.,04pn — Oap # @. Moreover, he remarked that one can obtain a planar
Riemann surface of the class NS ,04p,n — Oap provided that Mori’s assertion
holds true for planar Riemann surfaces.

In this note, we shall first give a simple example of a Riemann surface to show
that Mori’s assertion does not hold even for planar Riemann surfaces.

Secondly, we shall prove that every meromorphic function of bounded valence
on an open Riemann surface R with absolutely disconnected boundary admits
a continuous extension to the Kerékjarté-Stoilow boundary of R. Consequently,
according to the proof of Jarvi ([3]), we can conclude that there exists a planar
Riemann surface which belongs to the class N$2,04p.n — Oup.

1. The boundary behaviour of meromorphic functions
of bounded valence at weak boundary points

Let R be an open Riemann surface and I' be a family of locally rectifiable
curves v in R. Consider the class of Borel measurable linear densities p|dz| on R
for which the quantities

L(F,g):inf{Lgldzmer}, A(Q,R)=//Rg2dmdy
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are well-defined and not simultaneously 0 or co. Then the quantity

2
A(T) = sup {ff(l;—’j%; old|}

is called the extremal length of I'. Let R* be the Kerékjart6-Stoilow compactifi-
cation of R and B be the Kerékjarté—Stoilow boundary of R. Let p be a point
in 8 and V be a subregion of R whose relative boundary AV is compact and
regular. We say that V' is an end of p if the closure of V in R* contains p. Let
I(p, V) be the family of cycles v in V separating p and OV . We say that a point
p € B is weak or a weak boundary point if, for any end V of p, the extremal
length A\(I'(p,V)) of I'(p,V) equals 0.

For a meromorphic function f on R and p € § we call
Cl(f,p) =N{f(V); V is an end of p}

the cluster set of f at p. We say that f has a limit at p if CI(f,p) consists of
one point.

Mori ([7]) asserts in Lemma 2 that every meromorphic function f of bounded
valence on an open Riemann surface R of finite genus has a limit at each weak
boundary point of the Kerékjarté-Stoilow boundary of R. However, P. Jarvi ([3])
pointed out that the proof contains incorrect arguments. In fact, we can give a
counter-example.

Take a decreasing sequence {a,}32; of positive numbers such that lim,,_, o a,
=0 and z;«;l log(azn—1/a2n) = co. Take another sequence {b,}52, such that
aznt+1 < b2nt+1 < bon < agzn,. Delete a countable number of closed intervals
[b2n+1,b20] (n =1,2,...) on the real axis from the punctured extended complex
plane {0 < |z] £ oo}. Denote the remaining region by R;. Take a countable
number of rectangles without closed intervals on the real axis and denote them by

B, = {z; az2n+1 < Re(z) < agn,—1 < Im(2) < 1} — [b2n+1, b2x]

(n=1,2,...). Foreach n (n =1,2,...), join R; with B, crosswise along the slit
[b2n+1, b2n]. By this construction we obtain a two-sheeted covering surface R over
the extended complex plane. It is easy to see that R is a planar Riemann surface.
Let f be the projection map from R to the extended complex plane. Then f
is a meromorphic function of 2-valence on R. Let p be the Kerékjarté6—Stoilow
boundary point over 0. Then f has not a limit at p. In fact, for any end V of
p, there is an n such that V D U2, Bi. Hence the cluster set of f at p contains
a proper continuum {zy; -1 <y < 1}.

On the other hand, we can prove that p is a weak boundary point as follows.
Let V' be an arbitrary end of p and A, be the annulus in R; lying over the
annulus {z ; agn < |z] < azn_l} (n=1,2,...). Let T';, be the family of curves
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~r in A, lying over the circles {z; |z| = r} , where as, < r < azpn—1. Then there
exists an n such that U2 T'x C T'(p, V). Since

(F(p, V)~ z

1 o0
= - Z log(a2k—1/‘12k) = 00,
Tx) T or =

A(T(p,V)) =0. Thus p is a weak boundary point.

2. Cluster sets of meromorphic functions of bounded valence

Let R be an open Riemann surface and f a meromorphic function of bounded
valence on R. We call

Cl(f,8) =N{f(R—K); K is a compact set in R}

the cluster set of f at the Kerékjarté—Stoilow boundary S of R.

Lemma 1. Let f be a meromorphic function of bounded valence on R.
Then CI(f, ) is nowhere dense in the extended complex plane.

Proof. Suppose that CI(f, ) includes an open disk Dy. There exist a point
z; € R and a relatively compact neighbourhood U; of z; such that f(U;) C
Dy . Inductively, for each integer m (m = 2,3,...) we have points z, € R and
neighbourhoods Uy, of z,, such that f(Um) C f(Umn-1) and Umﬂ(U:';—llU,-) =g
This is contradictory to f being of bounded valence.

Lemma 2. Let f be a meromorphic function of bounded valence on R and
4" be a component of CI(f,3) which is a proper continuum. Then, for any open
disk D with DN~' # &, there exists a point p € 3 such that CI(f,p) is a proper
continuum and Cl(f,p)Ny' ND # @.

Proof. Contrary to the assertion, suppose that CI(f,p) reduces to a point for
any p € f satisfying Cl(f,p) Ny’ N D # @. There exists a point p; € f such
that Cl(f,p1) Ny’ N D # @. Since CI(f,p1) is a singleton, denoted by w,, we
can take an end V; of p; such that f(V3) C D and the unbounded component of
C - f(Vi) meets 7'

Now suppose f(Vi)N~' = &. There is an end V{ of p; such that V{ is
properly contained in V; and f(0V{) N+’ = @. Then the unbounded component
E of C— f(V}) contains 4'. On the other hand, f(V}) contains a sequence of
points converging to w;. Hence the outer boundary O0FE of f(VY) is contained
in 4'. Similarly we should have the other end V' of p; such that E is properly
included in the unbounded component of € — f(V{") and the outer boundary of
f(V}") is contained in 4'. This is contradictory to f(V}) being connected. Hence,

fM)ny' # 2.
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Let wy (# w1) € f(Vi)N~'. Then there exist a relatively compact subregion
Ui of Vi such that wy € f(U;) C f(V1) C D. On the other hand, there is a point
p2 € B such that CI(f,p2) = {w2} C+' N D. Hence there is an end V; such that
f(V2) € f(Uy). Therefore there exist a point w3 € 4' and a relatively compact
subregion U; of V; such that ws € f(Uz) and U; N U; = @. Inductively, we
have ends V,, and relatively compact subregions U,, of V;, such that f(U,) C
f(Um=1) and U, N (U;:;l U;) = @. This is contradictory to f being of bounded
valence.

3. Meromorphic function of bounded valence
and absolutely disconnected boundary

Let R be an open Riemann surface and 3 be the Kerékjarté-Stoilow bound-
ary of R. Let f be a meromorphic function of bounded valence. We denote the
totality of components of C —CI(f, 8) by {G:}. Note that f(R)NG; # @ implies
f(R) D G;.

Lemma 3. Let f be a meromorphic function of bounded valence on R.
Suppose that p is a weak boundary point of 8 such that CI(f,p) is a proper
continuum. Then, for any disk D with D N Cl(f,p) # @ there is an infinite
number of members {G;,} of {G;} such that DN G;, # @ and f(R) D G;, .

Proof. Denote CI(f,p) by v. We may assume that v is a bounded closed
set in C. Take an end Vj of p such that f(V)) is a bounded closed set in C.
Let ol|dz| be the linear density on V; which is the pull-back of the Lebesgue
measure on C by f. Since f is of bounded valence on f(Vp), A(g,Vy) < 0o and
L(F(p,Vo),g) = 0. Take a point wo € v and a disk D(wo,¢) = {w; |w —wo| < 6}
whose boundary meets . By Lemma 1, there is a member of {G;}, say G;, such
that D(wo,e) NGy # @ and f(R) D G;.

Contrary to the assertion, suppose that there is only a finite number of mem-
bers, say {Gi}i=1,...n, such that D(wo,e)NG; # @ and f(R) D G;. We can choose
ends {Vi} of p such that dVy € I'(p,V,) and favk oldz| < €/2%. Let Jx be the

unbounded component (that is, the component including co) of C— f(8V4). Since
f(8Vk) cannot enclose y N D(wo,€), Jx contains a point in v N D(wg,€). There
exist a G; (1 <7 < n)and a component K; of JyNG; such that f(Vk) D K;. We
assume that 0V} is oriented so that Vi lies to the left of Vi . Then f(OVk) is a
finite union of oriented closed curves. If the boundary of a component of Ji N G;
contains an oriented subarc C' of f(0Vi) and the component lies to the left of C,
then the component is contained in f(Vi). Generally the sheet number of f(V;)
over a component of {f(Vi)— Jx — f(8Vk)} N G; is higher than the winding num-
ber of f(0Vi) about a point in the component. In other words we can say what
follows. Let K| be any other component of Jx N G;. Take (; € K; and (3 € K!.
Then we can take an oriented piecewise analytic arc [ connecting ¢; to (3 in G;.
When [ crosses f(9Vi) once transversally from right to left (or left to right), then
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the sheet number of f(Vi) increases (or decreases) by one. Since {; and (; are
not enclosed by f(8Vi), the number of times [ crosses f(0V%) from right to left
is equal to the number of times [ crosses from left to right. Hence we can con-
clude that {; € f(Vi). Therefore Jx N G; is contained in f(V%). There exist Gj,
(1 <ip € n) and a sequence of ends Vi, of p such that Jx,, NG;, C f(Vk,. ). Let
Wy be a closed disk contained in G;,. Since Nf(Vk,,) = =, for every sufficiently
large number kn,, (Ji,, NGi,) N Wy = &; hence Jx,, NGi, C Gi, — Wp. Since the
length of 8J; is less than ¢/2%,

62

{area of (Gi, — Wo)} > {area of Ji,, N Gi, } > {area of G;,} — kT

This is a contradiction for a sufficiently large number &, .

We say that the Kerékjarté—Stoilow boundary S of R is absolutely discon-
nected if every point p € § is weak.

Theorem 1. Let f be a meromorphic function of bounded valence on R and
B be absolutely disconnected. Then CI(f, ) is totally disconnected. Especially,
f admits a continuous extension to 3.

Proof. Suppose that CI(f,3) is not totally disconnected. We may assume
that CI(f,5) is a bounded closed set in C. Let o|dz| be the linear density on R
which is the pull-back of the Lebesgue measure on C by f on R — f~1(c0) and
0 on f~!(co). There is a component G; of C — CI(f, ) such that f(R) D G;
and there is a boundary component «; of G; which is a proper continuum. Take
a disk D(wo,¢) = {w; |w — wo| < s} such that wo € v; and 0D(wq,e) N7y; # B.

We prove that there exist w; € v; N D(wo,€) and z; € R such that f(z;) =
w;. Contrary to the assertion, suppose that f~1(y; N D(wo,€)) = @. There
is a sequence {a,} in G; which converges to wo. Then {f~!(an)} does not
cluster in R. Let ¢ € B be one of the accumulation points of {f~*(asn)}. Then

CI(f,q) > wo. Take an end V; of ¢ such that f(V5) is a bounded closed set in C.
Since q is weak, there is a sequence of ends {Vi} of ¢ such that dVj € I'(q, Vy) and
fav,, o|dz| < e/2*. By our supposition f(8Vi) does not meet ;N D(wo,¢). Since
f(Vk) N G; # @, by a similar argument in the proof of Lemma 3, f(Vx) D G;N
{ the unbounded component of € — f(8Vk)}. 1t follows that CI(f,q) contains
G, which contradicts Lemma 1. Hence there exist w; € ;N D(wo,¢) and z; € R
such that f(2z;) = w;. Therefore we have a relatively compact neighbourhood U,
of z; and a disk D(wy,€;) such that f(U;) = D(wiy,e1) C D(wo,¢).

Since D(w1,e1) N7 # &, by Lemmas 2 and 3, there is an infinite number of
members {G;,} of {Gi} such that D(w;,e1) NGy, # @ and f(R) D Gy, . Since
f(R—U1)ND(w1,€1) # @, we can take G; (j # 1) such that f(R—TU;) D G;N
D(w1,¢€1) and D(w;,¢€1) meets a component v, of dG; which is not a point. In the
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same way we can take wy € v;ND(wq,€;1) and a relatively compact neighbourhood
U, of wy such that f(Uz) = D(wz,e2) C D(w1,€1) and U, NU; = . We can
repeat this procedure infinitely, which is contradictory to f being of bounded
valence.

Remark. We denote by Osp the class of Riemann surfaces which tolerates no
univalent bounded analytic function. Let AD be the family of analytic functions
with finite Dirichlet integral. We denote by O 4p the class of Riemann surfaces on
which there are no nonconstant AD-functions and by O4p,» the class of Riemann
surfaces on which there are no AD-functions of at most n-valence. Jarvi ([3])
asserts that a plane region G in the class Osp — O4p belongs to NS, 04p,n —
Oap, provided that the assertion of Lemma 2 in Mori [7] holds for planar Riemann
surfaces. We have proved in Section 1 that the assertion of the lemma does not hold
even for planar Riemann surfaces. However, we know that the Kerékjart6—Stoilow
boundary of a plane region in the class Ogp is absolutely disconnected. Hence,
we can apply Theorem 1 to restore the proof of Jarvi ([3, p. 179]). Accordingly,
we conclude that there exists a planar Riemann surface which belongs to the class
N52104D,n — Oap.
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