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ON SOME THEOREMS OF
LITTLEWOOD AND SELBERG II

K. Ramachandra and A. Sankaranarayanan

1. Introduction

In a previous paper with the same title [1] we proved some theorems about the
Riemann zeta-function under the assumption of Riemann hypothesis. In this paper
we prove some unconditional results on ((s). Stating somewhat more generally
we prove the following.

Theorem. Let s = o + it and
_N\~0n _ _w@)\
(1) F(s) = g o = H (1-=F)  @>,

where p runs through all primes and w(p) are some complex numbers (independent
of s) with absolute value not exceeding 1. Suppose a and § are positive constants
satisfying % Sa<l1-6andthatin {c 2 a—-6T—-H<t<T+ H}F(s) can
be continued analytically and there |F(s)| < T“. Here A is a positive constant,
T > Ty,H = ClogloglogT where Ty and C are large positive constants. Let
F(s)#0in{c>a,T—-H<t<T+H}. Thenfora+6§<oc<1-6t=T, we
have

@ T = 0(tog T)°)
and
(3) log F(s) = O((log T)®(loglog T) ),

where © = (1 -0)/(1 — a).

Remark 1. The application to ((s) is immediate by density results. By
standard methods we can also prove density results for F(s) provided in, say
{0 >3/4, t > Ty} F(s) can be continued analytically and there |F(s)| < t4.

Remark 2. The theorem can be generalised further by allowing some growth
condition for w(p). We can state our theorem in a slightly different way to allow
F(s) = L(s, x) for characters x(mod g), for example for |t| < q.
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Remark 3. We can state a result for a + § < ¢ < 1+ § analogous to the
remark made by D.R. Heath-Brown in Section 14.33 of [3].

Remark 4. In a later paper with the same title we hope to obtain inequalities
dealing with |arg F(o + it)l for ¢ > a and log |F(a + it)| for 0 > a, analogous
to what we proved in [1].

Remark 5. The t-interval condition T— H <t < T+ H is made possible by
the kernel function exp ((sin w)2) used extensively by Ramachandra in his papers.

2. Notation

In Lemmas 1 and 2 we borrow results from [4] and [3] in the same notation.
But in Lemma 2 we have changed the result contained in [3] to suit our needs (see
Remark below Lemma 2). We use z = 41y, w = u+iv and s = o+t in various
contexts and we hope this does not cause confusion. For any analytic function F(s)
we write (F'/F)(s) for F'(s)/F(s). The symbol = denotes a definition.

Lemma 1. Let f(z) be analytic in |z| < R. Suppose f(0) is different from
zero. For 0 < z < R let n(z) denote the number of zeros of f(z) in |z| < z.
Then for 0 < r < R we have

T ey

Remark. This result is called Jensen’s theorem. For its proof see pages 124
to 126 of [4].

Lemma 2. If f(s) is regular and

f(s) M
(5) f(So) <e (M >1)

in |s — so| < r, then for any constant € (with 0 < e < %,) we have

®) £ - O

M in |s — sg| < (1 — 2¢)r,
r

where p runs over all zeros of f(s) such that
(7) o= sol S (1= o).

Remark. From Lemma 1 above and the concluding remarks in [2] on (24),
(25) and (26) of that paper we obtain Lemma 2 which is nearly contained as
Lemma 2 of Section 3.9 of [3].
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Lemma 3. Let z = z + 1y be a complex variable and

pz

® F=Y2=[(-42)" @>,

where p runs over all primes and w(p) are complex numbers independent of z
with |w(p)| < 1. Let F(z) beregularin {z > a—-6§T—H <y <T+ H} and
there |F(z)| < TA. Here T > Ty, 1 < a <1-§, H = ClogloglogT where
6 is a small positive constant, a is a positive constant, and Ty and C are large
positive constants. Put zo = 2 + iyo where T — %H Sy <T+ %H Then for
z1 = xo +tyo with a — §; < z¢ < 2, we have,

F' 1
9) IF(ZI)_;;.ZT——/J' < logT,

where p runs over all the zeros of F(z) in the disc D = D(29,2—a+26;) defined
by

(10) |z = 20| £ 2 — a+ 26;.

Here 6, is any positive constant such that 26; < §. In particular the lemma holds
for z; = a+iyo.

Remark. The lemma is trivially true for z; = zo +iyo with zo > 1+36.

4. Proof of the theorem

Lemma 4. Let s = 0 + it where a+ 6, <o < 1-6, w = u+ v,
2 < X < exp (10(loglog T')/(1 — a)), B > 10000. Then

(11) I= %’-(s +w)X"¥ exp ((sin 3)2) dw

T 21 Jyeo B

(12) =0(X'7).

Proof. The proof follows from
2—71;27 o, (%)wexp ((sin %)2) % =1+ O(%) or O(%)

accordingas n < X or n > X.



134 K. Ramachandra and A. Sankaranarayanan

Lemma 5. Let 3V ~ H and |v| < V' (V' will be chosen to be asymptotic
to V). Then for (fixed s =0 +it and all w=u+1v), u+ 0 > a — 61, we have,

F 1
(13) F(s-i—w)—z——;l«logT

S+ w—
P

where p runs over all the zeros of F(z) in the disc D = D(z9,2 — a+26,) defined
by |z — 20| <2 — a +26; where zo =2 + it +1v.
Proof. The proof follows from Lemma 3.

Lemma 6. Let

2stw—p _ 1
(14) p(p) = Gt w_p)log2
and
(15) p=Y_ up),

where p runs over all the zeros of F(z) in the rectangle R defined by
(16) R:{Rez>a—26,|t—y| <2V}
Then for |v| < V' (V' will be chosen asymptotic to V) and u + 0 > a — 6, we
have,
FI
(17) |F(s+w)—y| < logT.

Proof. For D as in Lemma 5, we have

> o~ 3" u(p) = 0(log ),

oD St+w-—p D
since (by Jensen’s theorem) there are O(log T') zeros involved and for any fixed p
1
)——S+w_p —#(p)‘ <1

since it is so on |s + w — p| = 10. Again
> u(p)l < logT
p€D,peR
since for p ¢ D, we have
ls+w—p| > ]z0 — p| = [s + w — 2|
>22-a+25h-2—-a+6)=46

Lemma 7. It is possible to choose V' ~ V such that on v = V' and
u+0o > a— 108, we have,

(18) ‘Zu(p)' < (log T).

peR
Here 106; < §.
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Proof. By Jensen’s theorem the number of zeros of F(z) in {z > a—116,,Y <
y <Y +1} with 116; < 6§ is O(log T) provided T -2V <Y < T+2V. Hence the
number of zeros of F(s+w) in {u+0 > a—116;,V—-1<v <V +1} is O(logT)
and so there exists a line v = V' such that on this line |s + w — p| > 1/logT.
This proves Lemma 7 since the number of zeros in 2 > |s +w — p| > 1/1ogT is
O(log T) and also the zeros p with |s+w — p| > 2 contribute O(log T'). The total
contribution to p is therefore O((log T)z) and this proves Lemma 7 completely.

Lemma 8. We have (if there are no zeros of F(z) in ¢ > o and T — H <
y<T+H)

(19) I="2(s)
dw

+L {(%I(s+w)—#)+u}X'”exp((sin%)2)g+0(1)

2mi u=a—0o

where the integration is restricted to |v| < V' and we take the integral to mean
the limit as we move fromu =2 tou=a —o0.

Proof. First, the contribution to I of Lemma 4 from |v| > V' is o(1). The
lemma now follows on moving the line of integration to © = a—o since by Lemmas
6 and 7 the horizontal bits contribute o(1). Note that exp ((sinw)?) decays like

(exp exp (|v|/10))_1 uniformly in |u| < 1/10.

Lemma 9. We have,

F' w . w\2\ dw oo
(20) o<V (_1_7_(3 +w)— ,u)X exp ((sm E) ); =0(X* 7 1ogT).
Proof. The proof follows by Lemma 6.
Lemma 10. We have
— 1 w . w2 dw _ a—o
(21) =5 uX" exp ((smB) ) = O(X* % logT).

u=a-—o,|v|<V’

Proof. Let as before 116; < §. We move the line of integration to u =
a — o — 106; . We obtain

=3 oo ((nf5%))

peR

+L uX" exp ((sin%)z)d—w

2my u=a—o0—106; w

the last integration being subject to |[v| < V'. Now since Rep < a and 0 > a4+

and exp ((sinw)?) tapersin |u| < 1/10 uniformly as fast as (expexp (|v|/10))—1 ,
the lemma follows.
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Lemma 11. We have, uniformly for {a+é <o <1-§,t =T}

(22) B )= 0(101)°)

provided F(z) #0 in {z > a,T— H <y < T+ H}. Here O is as stated in the
theorem.

Proof. The proof follows from Lemmas 4, 8, 9 and 10 on choosing X by
X1« =logT.

Lemma 12. Subject to the conditions of Lemma 11,
(23) log F(s) = O((log T)° (log log T)“l).

Proof. The proof follows by integrating (22) with respect to ¢ from o to
o' = (1 + o), since (as will be proved in the next lemma) log F(o' + it) =
((log T)®=¢), for some fixed € > 0.

Lemma 13. We have, with ¢’ = 3(1+ o),
(24) log F(o' + it) = O((log T)® ™)

for some fixed € = ¢(c) > 0.

Proof. By a simple application of the Borel-Carathéodory theorem we have
log F(o +e€+1t) = O(logT) for {¢ > a,T—3H <t <T+1H}. Put s’ =o' +it.
We proceed by considering (as in Lemma 4) the integral

% ., F(s' + w)X"¥ exp ((sin %)2) dgw

and moving the portion |v| < H/3 of the line of integration to u + o' = a + ¢
i.e. u=a— o'+ ¢. This leads to the Lemma. With Lemmas 11, 12 and 13 the
theorem stated in the introduction is completely proved.

Remark. If F(s) #0in {0 >a,T-C<t<T+C} where 1 <a<1-§
and here IF(s)| < T4, (T > 10), it follows by the proof of Theorem 14.2 of [3]
that if C = C(6,€,00) then uniformly in & < 09 < 0 <1 and t = T, we have
F(s) = O((log T)e"'e), where the O-constant depends only on A, oy, 6 and e.
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