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ON SOME THEOREMS OF
LITTLEWOOD AND SELBERG II
K. Ramachandra and A. Sankaranarayanan

1. Introduction
In a previous paper with the same title [1] we proved some theorems about the

Riemann zeta-function under the assumption of Riemann hypothesis. In this paper
we prove some unconditional results on ((s). Stating somewhat more generally
we prove the following.

Theorem. Let s: o I it and

(1)

(2)

r(') _ i#:II
n:L p

ffi: o((1og")")

wherc p runs through aJI pfimes and w(p) a,re some complex numbers (independent
of s ) with absolute value not exceeding 1 . §uppose a and 6 are positive constants
satisfying i So < 1- 6 andthat in {o ) a-6,7 -H <t ST *I/}.F,(s) can
be continued aaalytically and there lf(")l < TA . Here A is a positive consta,nt,
T ) Ts,H : Clogloglog? where To and C arelargepositive constarfis. Let
F(")* 0 in {o )a,T-H <t<T+H}.Thenfor o*6( o 1t-6,t:T,we
have

and

(3) logF'(s) : O((los?)e(Ioslog")-'),

where O=(1 -o)lQ-a).
Remark 1. The application to ((s) is immediate by density results. By

sta^ndaxd methods we can also prove density results for F(s) provided in, say

{o > 314, t > 
"o} 

F(s) ca,n be continued analytically a^nd there l.F,(s)l < to.

Remark 2. The theorem can be generalised further by allowing some growth
condition for c.r(p). We can state our theorem in a slightly different way to allow
F(s) : L(",x) for characters x(modg), for example for ltl3 q.
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Remark 3. We canstate aresultfor c* 61o < 1+6 analogousto the
remark made by D.R. Heath-Brown in Section 1a.33 of [3].

Remark 4. In a later paper with the same title we hope to obtain inequalities
dealingwith laryF(o+it)l for o)a andloglf(o+it)l for o)d,analogous
to what we proved in [1].

Remark 5. The t-interval condition T - H < t < T +ä is made possibleby
the kernel function exp ((sin ur)2) used extensively by Ramachandra in his papers.

2. Notation

In Lemmas 1 and 2 we borrow results from [4] and [3] in the same notation.
But in Lemma 2 we have changed the result contained in [3] to suit our needs (see

Remark below Lemma 2). We use z : x*iy, rD : u,*iu and s: o*it in various
contexts and we hope this does not cause confusion. For any analytic function .F.(s)
we write (F'lF)(s) for F'(s)lF(s). The symbol = denotes a definition.

Lemma L. Let f(z) be analytic i" lrl < .B. Suppose /(0) is different from
zero. For 0 ( r < R let n(a) denote the number of zeros of f(z) in lzl < t.
Thenfor 0(r< Rwehave

(4)

Remark. This result is called Jensen's theorem. For its proof see pages 124
to 126 of [a].

Lemma 2. If f (s) is regular and

f' ,dx

J, 
n(x);- *I,",o*ffillo,

(5)

(6) l#(')- t*l *' M
r

where p runs over all

(7)

zeros of /(s ) sucå that

1 above and the concluding
we obtain Lemma 2 which

Remark. From Lemma
(25) and (26) of that paper
Lemma 2 of Section 3.9 of [3].

remarks in 121 on (24),
is nearly contained as
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Lemma 3. Let z : a * iy be a complex variable and

(8) F(z):»*:I('-#)' (,>1),
tt=1 p

where p run,s over all primes and w(p) are complex nurnbers independent of z
withlw(fl11L. Let F(z) beregularin {r > a-6,,7-H 1y1T+H} and
there lF(z)l . To. Herc T ) To, + <a ( 1 - 6, H - ClogloglogT where
6 is a small positive constant, a is a positive constant, and To and C are large
positiveconstants. Put zs-z+iys where7. -+fi ( yo < T+tH. Thenfor
zL: ao * iyo with a - 6r ( re ( 2, we have,

(e) l*a,t-»+l <rog",t.E frrr-P,
where p runs over aJI the zeros of F(z) in the disc D : D(2o,2 - a *261) defined
by

(10) l, - ,ol Sz - q *2h.

Here 6y is a,ny positive constant such that 261 < 6 . In particular the lemma holds
for z1:aliyo.

Remark. The lemma is trivially true for zr : no * iyo with cs ) 1 { 6.

4. Proofofthe theorem

Lemma 4. Let s - o *it where a*h I o I 1 -6r, ?t) : uliu,
2 < X ( exp (to(toglog")/(1 - o)), B > 10000. ?I:en

(1 1)

(12)

r - * l,:,f,r' * w)x*exp ((,t" H') *
_ O(x'-').

Prcof. The proof follows from

* I=,(#)-"*, (1.'" ;)')*:r + o(f) - o(f)

according as n ( X ot n) X,
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Lemma 5. Let 3V - H and lul < V' (V' will be cåosen to be asymptotic
toV). Thenfor (fixed s:o*it andall w:u*i,u), u*o)-a-6t,wehave,

( 13) l#(,*w)-»u.ful *ros?
P

where p runs over all the zeros of F(z) in the disc D = D(20,2- a*261) defined
by l, -,ol a 2- a * 261 wherc zo : 2 * i,t + iu.

Prcof. The proof follows from Lemma 3.

Lemma 6. Let
z"+u-P _ 1

(14)

and

( 15)

p(p) _ (t * w - p)2 log2

p- » pb),
P

where p runs over all the zeros of F(z) in the rectangle R defrned by

(16) .B: {Rez ) o - 261,1t-yl3ZV}.
Thenfor lrl<V' (V' willbe chosenasymptotictoV) a,nd u*o) a-61 we
have,

(12) l#f, * .) - pl ( Iog?.

Proof. For D as in Lemma 5, we have

nrfi--\ub): o(rog?)'

since (by Jensen's theorem) there are O(Iog 7) zeros involved and for any fixed p

l#-r(n)l <r
since it is so on ls * tr,' - pl:10. Again

I » r(n)l <r'gr
plD,pe R

since for p / D, we have

ls * ur - pl> lro - pl- l" +, - rol
>2*a*2&-(2-a*61)=ft

Lemma 7. ft is possible to choose V' - V such that on 1) : lV, and
u*o2a-1061 wehave,

(18) llrtr)l < (log?)2.
'prR I

I{ere 1061 ( 6.
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Proofl. By Jensen's theorem the number of zeros of F(z) in {c } a-LLfirY I
y <Y *1) with 116r < 6 is O(log?) provided T-2V <Y <T+2V. Hencethe
numberof zerosof .F'(s*ur) in {u*o) a-llfi,V -1( u <V+1} is O(logf)
and so there exists a line u : V' such that on this line ls *w - pl> Lllog?.
This proves Lemma 7 since the number of zeros in 2 ) ls * to * pl > 1/ log? is

O(1og?) andalsothe zeros p with ls*w-pl>2 contribute O(log7). Thetotal
contribution to pr is therefore O((log?)2) and this proves Lemma 7 completely.

Lemma 8. We

(1e) r-#,,,
1_t+ 2ri J u-d-o

where the integration is restricted to lul < V' a.nd we take the integral to mean

the limit as we move from u:2 to u,: d - o.

Proof. First, the contribution to .[ of Lemma 4 from lrl > V' is o(1). The
lemma now follows on moving the line of integration to u : d,-o since by Lemmas
6 and 7 the horizontal bits contribute o(1). Note that exp ((sinur)2) decays like

(expexp (lullrO))-r uniformly in lul < 1/10.

Lemma 9. We have,

{(#-('* ') - t')

(21) J-*1,=e-o,tut1v,

+ * l,:d-o-ro o,Px'"*P (("" #)')#

* rtlx-"*p ((,r" 3))#+o(1)

* ut) - ,)x'"*p ((.t" #)')#- o6d-o tos r).(20) 
I,:d-o,or3v,(#r'

Proof. The proof follows by Lemma 6.

Lemma 10. We have

Prcof. Let as before 1161 < 6. We move the line of integration to u :
a-o -1061. Weobtain

ttx'"*p ((,t" 3))#- o4..-olos r).

r-»ryo-,exp((""T) ')
peR t

thelastintegrationbeingsubjectto lul <V'. Nowsince Rep(a and o)a*6
and exp ((sinto)'?) tapers in lul < 1/10 uniformly as fast as (expexp (lul/fO))-r,
the lemma follows.
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Lemma 11. We have,uniforrnlyfor {o*61o 1l-6,,t:T}

(22) 7,,, - o((tosr)')

provided F(r)* 0 in {c ) a,T -H <y <T +II}. Ilere O is as statedinthe
theorem,

Proof. The proof follows from Lemmas 4, 8, 9 and 1.0 on choosing X by
xl-o: log?.

Lemma L2. Subject to the conditions of Lemma 77,

(23) los r(r) - O (tr"s 
")o(los 

los 71-t).

Proof. The proof follows by integrating (22) with respect to o from o to
,' : i(l * o), since (as will be proved in the next lemma) log F(o' + it) :
O((log 

")"-') 
, for some fixed e > 0.

Lemma L3. We have, with o' : i(t + o),

los F(o' + it) - O ((log 
")"-')

(24)

for some fixed e: .(r) > 0.

Proof. By a simple application of the Borel-Carath6odory theorem we have
logF(a*e*it): o(log?) for {o)-a,r-+H <t<T+rH}. Put s' :o'*it.
We proceed by considering (as in Lemma 4) the integral

* I=rr'(s'* 
u)x-"*n (('i" ;)')+

and moving the portion lul ! HlT of the line of integration to u * ot = a * e

i.e. u = d - o' + e. This leads to the Lemma. With Lemmas 11, 12 and 13 the
theorem stated in the introduction is completely proved.

Remark. If .F,(s) l0 in {o>o,T-C <t<T *C} where } Sa( 1-6
and here lf'(")l < TA, (? > 10), it follows by the proof of Theoräm 1a.2 of [B]
that if C : C(6,e,o6) then uniformly in a ( os 1 o ( 1 and t : T,we have
F(s): O((log?)"+'), where the O-constant depends only on ,4., o6, 6 and e .
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