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ON SOME THEOREMS OF
LITTLEWOOD AND SELBERG III

K. Ramachandra and A. Sankaranarayanan

1. Introduction

In paper II with the same title [2] we proved some unconditional results about
¢(s) in a more general set up. In this paper we continue these investigations. As
before we begin by stating the final result of this paper as follows.

Theorem 1. Let s = o + it and
@ X E-I0-52)"
P

where p runs over all primes and w(p) are arbitrary complex numbers (indepen-
dent of s) with absolute value not exceeding 1. Suppose a and § are positive
constants satisfying § <a <1—6 and thatin {s >a -6 T-H<t<T+H},
F(s) can be contmued analytically and there lF(s)| < TA Here A is a pos-
itive constant, T > T,, H = ClogloglogT where Ty and C are large posi-
tive constants. Let F(s) # 0 in {o > a,T— H <t < T+ H}. Then for
a<o<a+Ci(loglogT)™!,and T— ;H <t < T+ }H, we have,
(a) loglF(o +zt)| lies between C2(log T)(log log T)' and

—C3(log T)(log log T)~! log { C4((¢ — ) loglog T)~ } and
(b) |arg F(o +it)| < Cs(log T)(loglog T')™*

where Cy, C3, C3, Cy and Cs are certain positive constants.

Corollary 1. For a + Ci(loglogT)™! <0 <1-§, t =T, we have,
|log F(o + it)| < Cs(log T)®(loglog T) ™!

where 8§ = (1 —0)/(1 — a) and Cs is a positive constant.

Corollary 2. For a <0 <1-§,t=T, we have,
|F(o + it)| < exp(Cr(log T)%(loglog T)™Y),

where 0 is as before and C; is a positive constant.
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Remark 1. The application of Theorem 1 to ((s) is clear by density results.
Under the conditions of the theorem we can also prove density theorems for F(s).

Remark 2. We now indicate the proof of the corollaries. Corollary 1 is
already proved in [2] for the o-range a + § < ¢ < 1 —§. The theorem above
gives an upper bound |log F(o + it)| < Cs(logT)(loglogT)™! for o = oy =
o+ (loglogT)™ and T — H/3 <t < T + H/3 (where Cs > 0 is a constant).
We have already an upper bound |log F(o + it)| < Cs(log T)%(loglog T)~' for
o =02 =1—¢ and the same t-range. We now apply maximum modulus principle
to the function (for suitable X > 0)

p(w) = (log F(s + w)) X ™ exp ((sin %)2)

According to this its absolute value at w = 0, namely Ilog F(s)| is majorised by
its maximum modulus on the boundary of the rectangle {0} — 0 < Rew < oy —
0,—H/10 < Imw < H/10}. Corollary 1 follows by a proper choice of X as a suit-
able power of log T'. (The bound for |log F(s + w)[ namely O((log T)?°), needed
on the horizontal sides of the rectangle can be obtained by Borel-Carathéodory
theorem). This completes the proof of Corollary 1. Corollary 2 follows from
Corollary 1 and the part (a) of the theorem.

By a modification of our proof of Theorem 1 we can prove

Theorem 2. Let 1 -6 < a < 1—10(loglogT)™!. Then for a < o <
a + (loglog T)™! (in place of (a < ¢ < a + C;(loglog T)™')) the assertions (a)
and (b) hold, provided F(s) # 0 in the region mentioned in Theorem 1.

From Theorems 1 and 2 we can prove by the methods of (3] theorems like

Theorem 3. Let Ao (> 7/12) be a constant. Then for any fixed k, the

number of lattice points (ny,n,,...,nk) in the first quadrant of the k dimensional
Euclidean space such that

X<ng-onpg <X 4 X

is given by
X (log X)¥~1 + O(X* (log X)*~2).

Remark. In fact we can prove an asymptotic formula valid uniformly for
k < e(loglog X)(logloglog X)~!. These and similar results will form the sub-
ject matter of another paper. Theorem 3 is due to M.N. Huxley and C. Hooley
(unpublished).

In what follows we will prove only Theorem 1.
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2. Notation

We use z =z + iy, w = u+ v and s = o + it in various contexts and we
hope that this does not cause confusion. For any analytic function F(s) we write

(F'/F)(s) for F'(s)/F(s). The symbol = denotes a definition.

3. Proof of Theorem 1

It suffices to prove the theorem for ¢t = T'. Because we can consider a larger
H, and every point of the smaller interval T — %H <t<T+ %H will be a
mid point 7 of a bigger interval of the type 7 — %H <t<7+ %H contained in
[T — H,T + H]. We split the proof into three parts. The first two parts deal with
an upper bound for a positive quantity Jo in the form O((logT)(loglogT)™!).
The third part deals with an application of this result to the proof of the theorem.

Lemma 1. Let z = 2 + 1y be a complex variable and
— -z —z\~1
(2) F(z)=) amn =[] (1 -w(p?)
n=1 4

where p runs over all the primes and w(p) are complex numbers independent of
z with |w(p)| < 1. Let F(z) be regularin {z > a —6,T—H <y < T+ H} and
there lF(z)| < TA where A > 0 is a constant. Here T > Ty, % <a<l1-6,
H = Clogloglog T where § is a small positive constant, a is a constant and Tj
and C are large positive constants. Put zo = 2 + ty. Then for z; = zo + iy
where T — %H <y <T+ %H with a — 6; < o <2, we have

F' 1
3) Py — | <ot
F T zl—p'

where p runs over all the zeros of F(z) in the disc D = D(z,2 — a+ 26,) defined
by
(4) Iz—zO|§2—a+251.
Here 6, is any positive constant. We will suppose 116; < 6.

Proof. This is Lemma 3 of [2].

Lemma 2. Under the conditions of Lemma 1, we have,

zo — 3

(zo — B)% + (yo —7)?

(5) Re %I(ivo +1yo) = z + O(logT)

pED

where we have written p = 8 + ty. This holds in particular for o < zo < 2.



142 K. Ramachandra and A. Sankaranarayanan

4. Another expression for the left-hand side of (5)

Lemma 3. Let s = o + it where a + (logX)™ = 0; <0 <1-§ and
X = (log T)* with some positive constant A < 1. Let B(> 100000) be a constant.
Then

1 F' X% — Xv . w\?
(6) =), F(S + 'w)(—w2 Tog X ) exp ((sm E) ) dw
= O((log T)*(loglog T)™?).

Proof. We have,

e [0 () o (05)) gy = 0o 0™ bos -+ 0 (70

if n < X and

[ () o (0 5) ) ooy = (g

u=2

fn>X.
Hence for any constant ¢ (0 < & < 1), we have,

Z2\w w
i [ (G- () ) o (50 5) ) artoge =1+ (g

u=2
if n <X and
2, w w 2. ¢
3wt Joa (G0) "= (3) ) oo (s 5) ) gy = 0 () e 7).

if X <n<X?and

2\ w w 2
ai | () = ()) e (50 5) ) srimext = O(nex)
if n> X2.
Thusif 1 —§ +¢ < 1 we obtain

) Aw) | X7y X?A(n)
I= O(ng ne Xsnzg)ﬂ (7) n”logX z n1+"logX)
= 0(X* 27 (log X)™1),

where we have used A(n) = logp if n = p™,0 otherwise. This proves the lemma
since 2A(1—0) < A.
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Lemma 4. Let 3V be asymptotic to H and |v| < V' (V' will be chosen to
be asymptotic to V). Then for (fixed s = o+it and all w = u+iv ), u+0 > a—6,
we have,

F' 1
(7) 7(s+w)—¥m‘<logT,

where p runs over all the zeros of F(z) in the disc D = D(z9,2— a+26,) defined
by |z — 20| £ 2 — a + 26, where zp =2+ it + 1.

Proof. The proof follows from Lemma 1.

Lemma 5. Let

2stw-r _ 1
(8) /“l‘(p)_ (s+w—p)2log2
and
(9) p=>_ ulp)

P
where p runs over all the zeros of F(z) in “the rectangle” R defined by
(10) R:{Rez>a—26,|t—y| <2V}.
Then for |v| < V' (V' will be chosen asymptotic to V') and u+ 0 > a — 61, we
have,

: F'
(11) \?(s +w)—p| LlogT.

Proof. This is Lemma 6 of [2].

Lemma 6. It is possible to choose V' (asymptotic to V') such that on
v==V' and u+ o > o — 106;, we have,

(12) | 3 o) < (tog 7).

PER

Proof. This is Lemma 7 of [2].

Remark. From now on we assume that F(z) #0 in { > a,T - H <y <
T+ H}.
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Lemma 7. We have,

(13) = %(s) + L+ + S+ 0((log T)*(loglog T)’l),

where

(14") I = 5% vmao_La (%’(s +w) — u) (X::)l—;;;) exp ((sin %)2) dw
T T = (s P

and

a5= 2 (G e ) (50 (55))

The two integrals in (14) are subject to |v| < V.
Proof. The proof follows by Cauchy’s theorem of residues.
Lemma 8. For a + (log X)™! =0y <o <1-§, we have,

log T
— 2a—20-6 a—o—6,/2 g
(15) L = 0((X 14X 1 )loglogT)’
(16) I, = 0((X2°"2"‘251 + Xomo-108) logT )
loglog T

and

D S S logT
" °7 ;%I:D (p—s)?log X +O(10glogT)'

Proof. The estimates (15) and (16) follow from (11) and the fact that on
u=a—o0—108; we have u = O(logT) since |s + w — p| > 6, on this line.

Lemma 9. For a + (log X)™! =0, <0 <1-6, we have,

_ log T _ logT
(18) L= O(loglogT)’ L= O(loglog T)
and
X2ﬂ 2U+Xﬁ o
(19) =w)y

2 (log X)((0 - B + (t 7))

where Sy denotes the sum in (17) and w is a complex number (depending on
other parameters) with |w| < 1.
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Proof. The proof follows from Lemma 8.

Lemma 10. For a + (logX)'1 =01 <0 <1-4, we have,

Z 7 (0 —B)* + (t —7)?
(20)

28—-20 B— 0.1
pED

where w' is real and |w'| < 1.
Proof. The proof follows from Lemmas 2, 3, 7, 8 and 9.
Lemma 11. We have,

— oy —f _ o
&) o= G pra oy - olee D)

Proof. Put o = o, in (20). We have f —0; < a—o0; = —(log X)™! and also
0y —a <oy —f and so

— 0'1—[5 o 1
JO—;(Ul_ﬁy-l-(t—y)? =w (62 )J0+O(logT)

where |w"| <1
This proves the lemma since e™2 + e™! < 1 and |w"| < 1.

Lemma 12. For Sy defined by (19) we have,

28-20 B—o
(22) SO =w Z ((J‘IX_ ha X_ 7)2)(01 - ﬂ)v
pED

B)? +(t

with |w1| S 1.
Proof. The lemma follows from (log X)™! = 6y —a < 0; —f and also ¢ > 07 .
Lemma 13. With 07 = a + (log X)™!, we have,
: log T
Proof. The lemma follows from
1-6, F' logT
— it)dt = — ) =1 )
/cr1 F(a+z ) O(loglogT) og F(o1 + 1t)

and the fact that here the left-hand side is (by Lemmas 2, 3, 7, 8, 9, 11 and 12)
O((log T)(loglog T)™1).
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Lemma 14. For a < ¢ < 01, we have,

!

E o +it) = o(ﬁ).

(24) (01— 0) F loglog T

Proof. The proof follows from Lemmas 2, 3, 7, 8, 9, 11 and 12.
Lemma 15. For a < ¢ < 0, the quantity
4% FI . FI .
(25) /a Re (-f(a1 +it) - = (u+ zt)) du
does not exceed Cy(log T)(loglog T)~!, but exceeds
C1o(log T')(log log T)'1 — C11(log T')(log log T)_1 log ((Clg(log logT)(o — a))_l),

where Cy, Cy9, C11 and Cy, are positive constants.

Proof. By Lemma, 2 the quantity in question is

L ™ (H(or) = I(u))du + o(—log’i :T)

where

)= Z(u—m2+<t— mER

pED

Now

J(o1) — J(u) = z (o1 — (t — '7)2 Z (o1 = B)(u = B)(u —o1)

Y
pED pED

where Y = ((u — 8)2 + (t — 7)?) (o1 — B)* + (t — 7)?). Denote the two sums in
J(o1) — J(u) by >, and 3,. We have

e NS e A

pED

and so \

/ Zl du < Z 01 2(0'1 —Ut)_7)2

pED

_ 01 =P
< l(log X)
Y =D

= %Jg(logX)_1 = O((log T')(loglog T) ).
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Now ), is negative and

—/:lzzdu;/:l ) (U—ﬂ)(al;ﬂ)(dl—u)du

pED
o o1—u (u—B)*(o1-8)
S/a z:(u—a:' Y )du
pED
. [ du logT 01— a
1 =
< Jo(log X) /, u—a_o(loglongoga—a)'

This proves the lemma.

Lemma 16. For a < ¢ < 0,, we have,

o F' , F' , log T
(26) /a Im {F(al +1it) — F(u + zt)} du = O(loglogT)'

Proof. For a < 0 < 0, we see that the integrand is (apart from a term of the
type O(logT')), by Lemma 2,

—(t-17) _ —(t-17)
,;)((01 =B+ (t—7)? (u—-BP+(t- 7)2)

t — 1 — 2_u_ 2
=z( 7)((o ?,) (v —8)°)

pED

and hence its absolute value is

<Y It =7l(or — u)(201 - 28)Y 7.

pED

Hence the absolute value of the integral in question is

1 ” |t — 11
log X 2 {(/,, (w=P)2 +(t—7)? du).

pED

, ( 2(01 - B) )}

(01— B)* +(t —v)°

2 ® |t -1l

< — du -
= log X g{(/ﬂ (u—PB)2 +(t—7) “)

o1~ B
'(<al —ﬂ)12+(t—7)2)}

_mdo log T
T logX O(loglogT)'

This proves the Lemma.

<




148 K. Ramachandra and A. Sankaranarayanan

5. Proof of Theorem 1

From the results of Section 4 Theorem 1 follows from the identity (valid for
a<o<or=a+(logX)™?)

(27)  log F(o + it) = log F(0y + it) — (o1 — a)%,(al +it) + / " K(u)du

where ,

F' . F .
K(U) = F(O'l + 2t) - F(u + lt),
just as in [1].

APPENDIX
1. We can in this paper replace F(s) by any function

where 1 = A\; < Az < --- is any increasing sequence of real numbers and {a,}
with a; = 1 is any sequence of complex numbers such that the series

>¢
:“3

n

is absolutely convergent at some point of the complex plane. The condition a >
is unimportant. Any a will do. The only change is in place of Lemma 3 we
have (by fixing u to be large instead of u = 2) I = O(X?**(log X)™!) since
(F'/F)(s+w) can be proved to be O(1) for all u exceeding some suitable uy. We
can now choose X = (logT)*, where ) is a sufficiently small positive constant.
The rest of the proof is unaltered.

2. In our paper [2], in the condition a > 1,1 does not play any serious role,
and the condition can be relaxed to any a <1 -346.

3. In [2], we can (instead of the Euler product) work with the condition
F(1+it)=0((logT)*) for T— H <t < T + H where

H = C(loglog T')(logloglog T).

For, it follows that in (¢ > 1,7 —3H/4 <t < T + 3H/4) we have Relog F(s) <
Cloglog T (not the same C at all places) and by the Borel-Carathéodory theorem
we can prove that in (¢ > 1+ 1/(loglogT),T — $H <t < T + 3 H) there holds
log F(s) = O((loglogT)?). Now we can apply convexity arguments to obtain a
bound for |log F(s)| in (¢ > a+ C'/loglogT, T — H/3 <t < T+ H/3), not very
different from the resuits proved in paper [2].
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4. Without stating the most general results obtainable by the results of this
paper, we can state results like this for example. Let

F(s)=((s)+ Y. =2,
n=1

where

Z an = O(z(1/D =)

n<z

where § > 0 is a constant. Let T > Ty. Then F(s) has > T'~° zeros in
(¢ > 3 —C"/loglogT,T <t < 2T) where C" depends only on ¢ and other
constant like §. The same is also true of the function F(s) defined in o > 0 by

= (-1
Z s ’

where 1 = A\; < A2 < A3 < --- and Ap41 — Ap is both > and <« 1. (It may be
noted that both a, and A, can depend on T').
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