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ON SOME THEOREMS OF
LITTLEWOOD AND SELBERG III
K. Ramachandra and A. Sankaranarayanan

1. Introduction

In paper II with the same title [2] we proved some unconditional results about
((s) in a more general set up. In this paper we continue these investigations. As
before we begin by stating the final result of this paper as follows.

Theorem L. Let s:o*it and

(1) .F(r) -
oo

f O'n)/'ntt
n:l

:II(r-y) -'
P

where p runs over aJl primes and w(p) are a,rbitrary complex numbers (indepen-
dent of s) with absolute value not exceeding 1. Suppose a and 6 are positive
consfanrts satisfying i S" < 1- 6 andthat in {"2g-6,7 * H <t <T * H},
Il(s) can be continied analytically and therc l.F'(")l < TA. Here A is a pos-

itive constant, T ) To, H - ClogloglogT where To and C are large posi-
tiveconstants. Let F(s) l0 in {, > o,T-H <, < f +H}. Thenfor
a 1 o ( a * C1(loglog T)-', and T - in < t < T + LrH, we have,
(a) loglf(a+it)l lies between Cr(1og")(loglog?)-r and

-G(l"s 
")(log 

log ?)-1 log { Ca ((a - o) log log r)-1 } ana
(b) largr(a + ir)l < Cs(los?)(loglog T)-' ,

where Cr, Cz, Cs, Ct a.nd Cs are ceftain positive constants.

Corollary 1. Fbr a*C1(loglog?)-r 1o 1L-6,t:T,wehave,

I 
l"s F(" + ir) | S Co(los T)t (l"s los 

")-'
where 0 : (l - o) lG - CI) and Co is a positive constant.

lr@ +it) I <

1 - 6, t : T , we have,

exp(Cz(1"s T)t (1"s los ?)-'),

where 0 is as before and Cz is a positive constant.
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Remark 1. The application of Theorem 1 to ((s) is clear by density results.
Under the conditions of the theorem we can also prove density theorems for tr-(s).

Remark 2. We now indicate the proof of the corollaries. Corollary 1 is
alreadyprovedin [2] for the o-range a+61o < 1-6. Thetheoremabove
gives a^n upper bound llogF(o + it)l < Ca(1"S")(loglog?)-1 for o - oL :
a*(loglog?)-1 and ? -Hls < { S T+HlT (where Cg > 0 isaconstant).
We have already an upper bound llog.F'(o + ir)l < C3(l"S?)a(loglog?)-1 for
o : 02 - 1 - 6 a.nd the same l-range. we now apply maximum modulus principle
to the function (for suitable X > 0 )

p(w) : ( log r'(s * w)) x- *o ( ( .t" #) ') .

According to this its absolute value at u :0, namely lt"gf1sll is majorised by
its maximum modulus on the boundary of the rectangle {o, - o I Re w I o2 -o,-Hf L0 ( Imto S H/101. Corollary 1 follows by a proper choice of x as a suit-
able power of log ?. (The bound for I log tr,(, + ur)l namely O((log T)ro) , need,ed
on the horizontal sides of the rectangle can be obtained by Borel-Carathdodory
theorem). This completes the proof of Corollary 1. Corollary 2 follows from
Corollary 1 and the part (a) of the theorem.

By a modification of our proof of Theorem 1 we can prove

0 + (1oS log n-' G, place of (a S
and (b) hold, provided F,(r) # 0 in

From Theorems 1 and 2 we can

the region mentioned in Theorem 7.

prove by the methods of [3] theorems like

Theorem 3. Let ),0 (> 7ll2) be a constant. Then for any frxed lc, the
number of lattice points (nr,rr, . . . ,r*) in the first quadrant of the k dimensional
Euclidean space such that

X 1n1...nx 1X + Xro

is given by
xro(log X)r-t + O(xl, (tog x)&-').

Remark. In fact we can prove an asymptotic formula valid uniformly for
k < e(loglogx)(logloglogx)-r. These and similar results will form the sub-
ject matter of another paper. Theorem B is due to M.N. Huxley and C. Hooley
(unpublished).

In what follows we will prove only Theorem 1..
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2. Notation

Weuse z:t+iyrw:u*iu and s:o *it invariouscontextsandwe
hope that this does not cause confusion. For any analytic function F(s) we write
(F'/F)(s) for F'(s)lP(s). The symbol : denotes a definition.

3. Proof of Theorem 1

It suffices to prove the theorem for f : ?. Because we can consider a larger
ä, and every point of the smaller interval T - iH < t < T + L2H will be a
midpoint r of abiggerintervalof thetype r -+H <t<r+lH containedin

lT - H,T + Hl. We split the proof into three parts. The first two parts deal with
an upper bound for a positive quantity Jo in the form O((log")(loglog")-1).
The third part deals with an application of this result to the proof of the theorem.

Lemma L. Let z : x * iy be a complex variable and

(2)

(3)

(5)

F(r) -,anTl ':i
n:l

_ II (' - u(p)p-')-'
P

1 
I * tog?,

z1 - pt

where p runs over all the primes and u(p) are complex numbers independent of
z with l"(p)l < 1. Let F(z) beregularin {a> a-6,7-H 1y1T+H} and
there lF(z)l aTo where A> O is aconstant. Here T ) To,* a a (-L-6,
H : ClolloglogT where 6 is a smill positive constant, a is a constant and To

and C are large positive constants. Put zo : 2 + iy. Then for zr : xo * iyo
where T - +H ( yo ( T + +H with a-dr ( as 12, we havez - 

v- 
- z

l+e)-E
where p runs over all the zeros of F(z) in the disc D : D(2o,2- a*261) defined
by

(4) lr-rolSz-a*2il.
Here fi is arry positive constant. We will suppose 116r < 6.

Proof. This is Lemma 3 of [2].

Lemma 2. Under the conditions of Lemma 7, we have,

FttRe;(ro * iyo): »
peD

ns-p
(ro -P)'*(vo-t)2

+ O(los 7)

wherewehavewritten p= §+il. This åoldsin particularfor a l xs 12.
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4. Another expression for the left-hand side of (5)

LemmaS. Let s:o*it where o*(logX)-l - ol 1o 1t-6 and
a : (log ?)^ with some positi ve constant ) < 1 . Let B(> 100000) be a constant.
Then

(6), = * I=,#u+q(W)*o((,i,$)')a,
: o((los ?)l(log log 

")-').
Proof. We have,

* I=,(#)-*o (('tä)') #: (rogx)-' r", f * r(#),
if n(X a^nd

* I=,(#)- *, ((.'" ä)') #: o(#),
if n2 X.

Hence for any constant 6 (0 < 
" 
( 1), we have,

* I=,((#)'- (#)')"*o(('* #)')#:1* o(#),
ifn(Xand

* I=,( (#) - - (#) 
-) 

"*, ( (,'" 3)) # : o 
" 
((+) "1rog x-' ;),

if X<n1X2 and

* I=,((#)- - (#)')"*o ((.' ;)')# : o(#),
if. n) X2.

Thus if 1 - 6+e < 1 we obtain

,:o(åP*,=8,, e)"+(")- *,I, ffi)
- O(xz-2"(logX)-1),

where we have used Å(n) - logp if n: p-,0 otherwise. This proves the lemma
since 2Å(1 - o) < l.
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Lemma 4. Let 3V be asymptotic to H and lul < V' (V' will be chosen to
be asymptotic to V ). Thenfor (fixed s : o*it and aJl w : u*iu ), u*o 2 a-h ,

we have,

(z) l#,"*,)-D-ll. ,;l <rosr,
P

where p runs over all the zeros of F(z) in the disc D : D(20,2 - a * 261) defined
by lr- zolS2- a*2fi where zo=2+it+iu.

Proof. The proof follows from Lemma 1.

Lemma 5. Let

zt+u-P - 1
p(p) - (t * u - p)2 log2

and

(e) u:lu2),
P

where p runs over a)l the zeros of F(z) in "the rectangle" R defined by

(8)

( 10)

( 12)

Thenfor lrl<V' (Vt will be chosen asymptotic to V) and u*o ) a- 61, we

have,

(11) l#,"* ,u-pl (rog?.

Proof. This is Lemma 6 of [2].

Lemma 6. ft is possible to ehoose V' (asymptotic to V ) such that on

u = *V' and u* o ) a - 1061, we have,

lä p(p)l *(rosr)''

Proof. This is Lemma 7 of.lzl.

Remark. Flom now on we assume fhat F(z) I 0 in {, > o,T - H I y 1
i T+Hj.
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Lemma 7. We have,

(13) r= frtr)*/r* Iz*S+o((log?)l(loglog")-'),

where

(14,),,:*I,=,_,_1,,(#r,*,)_r(W)*n((,i,,,),)o.

(14") ,,: * lu=o-o-roo,r(W)*, (( "i,fi)') a.

and

(14,,,) s: f- 1xz(e-") - xe-s)*, 
((.t" (5:))').?"\ t, - s)2logx

The two integrals in (14) are subject to lul < V' .

Proof. The proof follows by Cauchy's theorem of residues.

Lemma 8. .Ebr a * (logX)-' : o1 1o < 1 - 6, we have,

(15) h: O(1X'"-'"-6r l Ya-o-"/';ffi),

(16) 12: O(@2a-2o-261 l ya-o-lo")ffi)

and

(17) s:Dffi.r(.ffi)
Proof. The estimates (15) and (16) follow from (i1) and the fact that on

1t:ot*o- 1061 wehave pr: O(log?) since ls*u - pl> 61 onthisline.
Lemma g. Fbr o * (logX)-t : o1 1o < 1 - 6, we have,

(18) It:o(.ffi) , Iz:o(ffi)
and

(1e) 5o :, ,. r, ,flru-'" f ̂ *u ,' ,=,- 
?"(logx)((o - 0)2 + (t - t)r)

where.9s denotes fåe sum in (17) and a is a complex nurnber (depending on
other parameters) with lwl < L.
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Proof. The proof follows from Lemma 8.

o-B
?"(o - P)'+ (r - t)2

where w' is real and lr'| S 1 .

Proof. The proof follows from Lemmas 2,3, 7,8 and g.

Lemma 11. We have,

o1 -p O(1og T).

L45

(20)

(21 )

Proof. Put
01-alor-p

Jo:

Jo:f-tr I O.t
PeD \ 4

o:oL
and so

-0)'+(t-t)2
ir (20). We have 0 - ot I a - o1 - -(1oS X)-' and also

01 -p

+ it)

7,8,9, 11 and LZ)

r/ . (o,
p€D \ r

:,.,)"(å . å) n + o(ros ?),
- P)'+ (t - t)2

where lr" l S 1

Lemma L2. For ,So defined by (19) we have,

(22)

with larll< 1.

Proof. Thelemmafollowsfrom (logX)-1 = or-aIot-0 andalso o) o1.

Lemma L3. With ot: d, * (logX)-1 , we have,

(23) los F(o,+it)-o(tl#l
Proof. The lemma follows from

f 1-6r

l.',-o1 io+it)dt-o(ffi) -ros F(',

and the fact that here the left-hand side is (by Lemmas 2, 3,

O((los"Xtoglog ?)-t).
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(24) (o,-o)#@,+it)-o(ffi1
Proof. The proof follows from Lemmas 2,3, 7,8,9, 11 and L2.

(25)
1,"' 

R" (1f",+it) - iA+n1) au

does not exceed Cg(t"S 
"Xlog 

log ?)-1 , but exceeds

Cro(log")(loglos?)-1 - C11(log")(loglog?)-r tog ((C12(loglog?)(o - "))-t),
where Cs, Crc, C1 and Cp are positive constants,

Prcof. By Lemma 2 the quantity in question is

1,"' 
(rt ot) - r (u)) du + o( ffi )

peD

where

r(") = » u- B

P€D Y-

Now

J(or) - J(u) :5- (or -uX' -r)2 + I W3" Y peD

where y : ((u - P)' + (t - i')((", - P)' + (t - i'). Denote the two sums in
J(or)- J(u) by D, *d !r. Wehave

and so

§
?"(o'
|(log x

* to(tos

1,"'r, d'u I *(", - o)2

)r+

»
peD
-1 :

p)

1\
I
p

)-:

)-

x

+ (, -Y)2

o1 -p
- P)'+ (t - t)2
,l"S 

")(log 
log ?)-').

(o

o

;
(t:
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Now D, is negative and

- 1,"' D, d'u: 1,"'n Y

(u - P)'(o,

147

u)
du

p)
)Y

du

-o(rffirosffi)du

u-q,

This proves the lemma.

Lemma 16. Fbr a S o 1o1 , we have,

(26) 
1,"' 

r*{#o,+i,)- #r*n1\a,:o(ffi)
Proof. For a I o 1d1 w€ see that the integrand is (apart from a term of the

type O(log 
") 

), by Lemma 2,

r(
PCD

-(, -'r)
(u - B)'+ (t - .y)2

- (u - P)')

?"Y
and hence its absolute value is

peD

Hence the absolute value of the integral in question is

(u-p),+(r-.y)z
It-tl o")'

.f 2(ot-0) \I'\(oL-p)\(t-^tY)l

s #ä{U,* ou)

./ al-B \\
\(o, - B), + (, -,y), t t

- 
rJo 

- o( los? 
1logX "\loglogT)'

This proves the Lemma.
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5. Proof of Theorem 1

Flom the results of Section 4 Theorem 1 follows from the identity (valid for
alo3or:o*(logX)-r)

(27) los F(o + it)

where

just as in [1].

tog F(o, + it) - (r,, - o)+(o,, + it) + 
1,"' 

K(u) d,u

K(u) = !O, + it) - ifu * it),

APPENDIX
1. We can in this paper replace .F.(s) by any function

6

»ff,
z=1

where 1 : År < Åz < ... is any increasing sequence of real numbers and {ar}
with ar = 1 is any sequence of complex numbers such that the series

is absolutely convergent at some point of the complex plane. The condition a ) |
is unimportant. Any a will do. The only change is in place of Lemma 3 we
have (by fixing u to be large instead of u : 2) I : O(X2"(logX)-1) since
(F' /F)(sfur) can be proved to be O(1) for all u exceeding some suitable us. We
can now choose .{ = (log ?)1, where Å is a sufficiently small positive constant.
The rest of the proof is unaltered.

2. In our paper [2], in the condition o ) ], ] do"r not play any serious role,
and the condition can be relaxed to any o ( 1 - 6.

3. In [2], we can (instead of the Euler product) work with the condition
f(l +it) = 9(11oEr.)A) for ?- H < t < T +Ir where

ä : C(loglog 7)(logloglog?).

For, it follows that in (o ) 1,7 -3H14 <, < T +3H14) we have Relog.F,(") <
C log log 7 (not the same C at all places) and by the Borel-Carathdodory theorem
we can prove that in (o 2 f * 1/(loglog T),7 - Ln S t < T + iH) there holds
loglt'(s): O((loglogf)2). Now we carr apply convexity arguments to obtain a
bound for llog.F(s)l in (a ) o * C' /loglogT,T - HlT < t < T + H/3), not very
different from the resuits proved in paper [2].

S""
?,);
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4. Without stating the most general results obtainable by the results of this
paper, we can state results like this for example. Let

r(r)-((r)+å #,

where

D"* - O(xol2)-6)
n3,

where 6 > 0 is a consta,nt. Let T ) To. Then F(s) has 2 ?1-' zeros in
@ > i-C"lloglog?,7 < t S2?.) where C" depends only on e and other
constant like 6. The same is also true of the function F(s) defined in a > 0 by

S(-r)"-'3 ); '|

where 1= )r ( Å2 ( )s (...and ln*1 -,\,n isboth ) a^nd < 1. (It maybe
noted that both a,n and l, can depend on ?).
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