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ON THE CONFORMAL MODULUS DISTORTION
UNDER QUASTMÖBIUS MAPPTNGS

V.V. Aseev

0. Introduction
In this paper we shall study some properties of the topological embeddings

/: E -+ ff , E being a compact in E-, under which the distortion of conformal
moduli of rings in E is of a bounded character. Such mappings have been termed
c,.r-BMD embeddings, where ar denotes a bound for modulus distortion. Although
the class of r.r-BMD embeddings of continua in E- is essentially equivalent to that
of a;*-quasimöbius embeddings, there are some problems concerning the modulus
distortion function ar. Does the sequence of ar-BMD embeddings /6: Ex -8"
converge to BMD-embeddings with the same bound a; for the distortion of moduli?
In Sections 2-3 the a,ffirmative answer will be given in the case where E is a locally
equiconnected sequence of continua or the limit continuum is a Jordan arc in E*.
In Section 4 we give a counterexample for the negative answer in a general case.

Section 5 aims to get an analogue of Liouville's theorem for BMD-embeddings.

1. BMD and QM embeddings

We equip the Möbius ,p."" E' with the chordal distance [zy]. The conformal
invariant characteristic r(7) of a quadruplet (an ordered quadruple of distinct
points) T : abcd in E" is defined by

,(r) - l"b\l"dll (1"")[äd]).

1.2. Deffnition ([Vä] or [Asl]). Let t.r: [q"+-) {0, +m) be a homeomor-
phism. An embedding /: E -» .8" of E C R" into 8'" is said to be a cu-QM
(quasimöbius) embedding if r(/?) I cu(r(")) for all quadruplets ? in E.

Given a pair of compact sets .8, F c E^ and a domain D C 8", Lt
M(E;.t,;2) denote the conformal modulus of the family of all arcs joining .E

to F in D. A pair of disjoint continua E, F in .B" is called a ring. We set
M(E,F): M(E,,1l;E").

1.3. Definition ([Asl]). A" embedding /: D + E" of » cff is said to be
o-BMD (of bounded modulus distortion) if

u '(u@,r)) s M(f E,f F) 1w(u@,r))

( r.1)

(1.4)

for all rings (E, F) on ».
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The connection between BMD and QM classes of embeddings has been ascer-
tained [As1, Theorem 5.6, p.22, Theorem 4.3, p. 12] as follows.

1.5. Theorem. (i) Every a,-QM embedding /: E -» E" i" aJso u*-BMD,
where u* depend" "U on u and n. (ii) Every ar -BMD embedding f : E -- E"
of a continuum E C E" is also 6-QM, wåere ö depends only on u and n.

1.6. Remarks. The concept of QM embeddings of subsets in the plane
is actually emplyed in S. Rickman's paper [R, p. 389]. These embeddings were
termed as "quasimöbius" by J. Väisälä [Vä] and the author [As2] in 1984. The
notion of BMD embeddings had been offered for investigation by P. Belinskij in
1976 and was introduced in [AsV1].

2. Convergence theorems

For a compact metric space .t we shall denote by Cont.t the space of all
continua in .t equipped with Hausdorff distance between compact subsets of ,t
(see [K, Chapter 2, Section 21]). The compactness of Cont X lK, Chapter 4,
Section 42] will be employed throughout the paper. An embedding /: E -, E" of
a continuum » C E' may be associated with its graph in E" x E"

t/ : {(a, il eff x E" r a € D, v : fs}

and thereby be considered an element of Cont (8" 
" 

-R"). W" assume the conver-
gence fx - f of embeddings ft: E* *_ E" !o be equivalent to the convergence
I.f* - l/ in the metric space Cont(-R" 1E"). Since the characteristic "(7) itcontinuous on the space of quadruplets in R'", we have the following property.

2.1. If f* - f as k --+ m, .fr being o-QM, the limit embedding / is also
t*r-quasimöbius with the same distortion bound c.r.

2.2. Defrnition [As3]. A family of embeddings M = {.f,' Do + E";Do €
Cont-R") is called 

"o*pu"i 
(in the tlass of embedäings) if any sequence in M

has a subsequence converging to an embedding. The family yt4 is termed normal
if any ssqu""g" {/*} C M has a subsequence {fi,} such that I/3. -» I in
Cont (R" x R^'), I being either the graph of an embedding or a compact set
containing none triple of points with distinct projections.

2.3. Theorem [As1, Theorem 6.1, p. 23.] Given a homeomorphism
or: [0,+m) * [0,*-), the famity M = {f, E -, E-;E e Cont-R'} of aJI w-
quasimöbiu s embeddings is normal. Moreover, any subfamily M, C M of u -BMD
embeddings with a common triple of fixed points is compact.

According to 2.1and Theorem 1.5, this immediately implies the following
statement.
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2.4. Theorem. Given a homeomorphism u; [0, +oo) --+ [0, +oo) , the family
,14: {f:E --F";E e Cont-R",f € ar-BMo} ls normaJ. Moreover, a,ny sub-
family M' C M of c,r-BMD embeddings with a common triple of fixed points is
compact. For a convergent sequence {/r} c M the limit embedding f is also

ar* -BMD, u* depending only on u and n.

2.5. Now the question arises whether the limit embedding in the above the-
orem is actually c.r-BMD with the same distortion bound r,.r. We shall answer in
the affirmative in the two special cases and give a counterexample for the general
situation.

2.6. Given E e Cont-R", one may consider ContD to be a continuum in
ContE" (see [K, Chaptel5, Section 47.7,Theorem 3]) as well as a point in the
metric space Cont Cont F.'.

2.?. Theorem. .Lef c.r-BMD embeddings,fr: El;- En ,where Er € ContR:*
for k:7r2r..., approach an embedding f: E - .R''. If Contlr t ContD in
ContCont-R" when k + oo, then f is also c..r-BMD with the same distortion
bound w.

Proof. Let (E,F) be an arbitrary ring on E. The convergence ContDl --+

Cont D immediately implies that each subcontinuum E C E, while being a point
in Cont E, may be approached in Cont -R" with a sequence Ex, (" : 7,2,. . .) "fsubcontinua E*, C 81.. Since ContEl. -» ContE in ContContR* and f1r, -+ f
as s -) oo, we may assurne the subsequence f x, to be the initial sequence .7[1 . Since
the space Cont (8" x ff; ir compact, the sequence fi, may be replaced once more
with a subsequence so as to provide the convergence lft I Ex --lf I E, and so

the convergence fpEy -- f E as & -» m. The same a,rgument gives a subsequence
Fx, € ContEl, such that ,0, - F and fx,Fp, '- fF in Cont-R". Since the
convergences Ep, --r.E and fx,Ep, - f E have been preserved, we may assume
the subsequence .f3, to be the initial one. Thus we have gained a sequence (Ex, F*)
of ringso., & a^ndthe convergencet (Et,Fr) - (E,F), (fxEx,f*Fx) -. (f E,f !)
of rings in E-. The continuity theorem for the conformal capacity of rings in E"
(see [G, Theorem 5, p.228; Theorem 7, p.222)) implies

Iim M(E*,.F'1) - M(8, F),
Ic-oo

_1g 
M(fxEx,fxFr) - M(f E,f F).

Letting k -> oo in

u '(u(Ex,rr)) S M(fxEx, fxril I w(ufEr,,,rr))

yields the desired estimate (1.4) for the embedding f . tr
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2.E. Corollary. Let a sequence f3: Er - ff of o-BMD embeddings with
Er € ContR* convergeto f:E-r8". If Er+r C Et for aJI b- L,2,...,then f
is o-BMD.

Proof. If a sequence Ey € ContEl converges to E in ContR*, then .E C
E, E being a continuum. Thus liminf&*-ContDr. C ContE. Since E :
lim&-oo E* : flrE*

ContD: flContlr: &ContEl: liminf ContEr.
k

These inclusions imply that Cont E : limr*oo Cont E1. Hence (see [K, Chapter
5, Section 9,42.2, Remark 1]) ContDn - ContD in ContCont-f as & -» oo.
The assertion now follows from Theorem 2.7. a

3. Special cases of convergence

3.1. Theorem. Let a sequence "fr: Er - R" of c,.r-BMD embeddings of
Er € Cont-R* 

"orrr"rg 
to.an embedding /: E -» t. tt E is a Jordan ic ("

topological image of a closed interval), then f is r.r -BMD with the same distortion
bound u.

Proof. According @ 2.7, it is sufficient to obtain the convergence Cont Et -
Cont E in Cont Cont -R* . Since lim supl*- Er C Cont E, it suffices to derive the
inclusion

(3.2) Cont E . IlAinf Cont 81.

Let g: [0, t] --+ E be a parametrisation of the arc E. Every nongenerated con-
tinuum r C E may berepresented as z = plh,tzl, where 0 ( tr <tz 31. Let
P1 : gQ), Pz: gG2), 11 : gl},ttl, rz: gltz,l]. For a set A C E" denote
by .a(e) its closed e-neighbourhood in E". Given e ) 0, there exists er € (0,e]
such that rr(6r) fl r2(e1) : 0. Hence we may choose 6 > 0 such that

zi : p([0,1] n (rd - 6,t;+ 6)) c B(er),

where i : 1,2. Since the closed ärcs d1 - r, \ ^lt, o =" \ (Zr U^fz), oz : rz\^lz
are mutually disjoint, this is also true for o1(e2), o(ez) and o2(e2) when ez €
(O,er] is sufficiently small. Because E* - E, there exists an integer &6 such that
Er c D(ez), Ek: E* nP1(e1) #0 and tr,r: ErnP2(e1) #0 for all k > Ico.

We shall next show that E; fl r(e1) is connected between E3 and F1 (see [K,
Chapter 5, Section 46.4]). Assume that the statement is false. Then Er Or(e1) is
aunion €Uf of two disjoint closed sets t and.F suchthat Ex Ct, F* Cf .

Consider the closed nonempty subsets t u (Er n ar(ez)) and .F U (»* n o2(e2))
of Er. Since
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(i) tn f:0,
(ii) (»r n 

"1(er)) 
n (»* n "(ur)) C o1(e2) fl o2(e2) : $,

(iii) 6n (Epo2(e2)) c (Pr(er) no2(e2))u(o(e2)nor(rr)): P1(e1)ao2(e2) :0,
(iv) "Fn (D1 na1(e2)) c (rz(er)nar(ez)) u (o(e2)nor(er)) : Pz(er)nor(e2) : 0,

t u (E3 n o1(e2)) and .FU (Eyno2(e2)) *" disjoint. Nevertheless, their union is
Er:

[',

- 83.

This contradicts the connection of Er.
Since Er A r(e1) is connected between Er and F1 , there exists a continuum

7* C E1 Ar(e1) joining Ex to F1 (see [K, Chapter 5, Section 47.2,Theorem 3;

Section 47.L, Theorem 6]). Letting e : Lls for s : 1,2,. .., we obtain the increas-
ing sequence k, and continua T* C E1 n r(1/s) for &" < k < ,t"a1. Obviously
.y* + r as lc + oo, and hence r € liminf*-ooContDl. Thus (3.2) is proved. o

3.3. A family f of continua in E" is called locally equiconnected if for any
given e > 0 thereexists 6 > 0 suchthat everypairof points n,U € D e f with
l*y) < 6 can be joined by a continuum 7 C E of spherical diameter ( e.

3.4. Theorem [As4, Theorem 2.7, p. 79]. Let a sequence fx: Ex - E" of
o-BMD embeddings of continua E* C E" converge to an embedding f : E --8" .

If the family {83 : /c : 1,2,...} i" locilly equiconnected, f € c.r-BMD with the
same distortion bound w.

Proof. Let 83. be an arbitrary subsequence of E*. Since the family {Er. t

s : 1,2r...\ remains locally equiconnected, it follows from [As4, Lemma 1.2,
p. 17] that ContD C limsup"--ContD1". Because of the arbitrary choice of a
subsequence Es. we obtain by [K, Chapter 2, Section 29.5 (1)]

ContE C fl[mzupContDk": tiitåf ContEl C limsuf ContEl C ContE,

where the intersection expands over all subsequences 81. of Er. Thus the equality
Cont E : limk-- Cont Et holds and the desired result follows from Theorem2.7.

3.5. Question. Does Theorem 3.1 remain true if E is replaced by a Jordan
curve (a topological image of a circle)?

(»* (1 orler))] u l, " 
(»o i ozt'r))]

(t u f)u (or(tr) n »e) u (or(rr) n »k)

Er fi ["(r1) U or(ez)U rrlrr)] - Er t-l E(er)
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4. Counterexample

All the considerations throughout this section will refer to the extended com-
plex plane ö, z : x * iy : peiv being a complex rrariable.

4.1. A continuous mapping /: E -- e, where E c e, is termed circular with
respect to a point zs if. lfz - frol:lz - zsl for all z :cE.

4.2. Lemma. Let (E,F) be a ring in C and f: EU F --+ C a circular
mapping with respect to zs. Denote by a(a,b) the acute angle between segments
zsa and zob while a,b e c \ {zs}. If

a(ra' rb) { i ;[;:l] N:,;','Å2,7:b e F,

then M(f E,"f.F) > M(E,F).
Proof. Since the distance lo - ål between the points a,b e C \ {ro } with fixed

lo- rol and lb- zsl is increasing to a(a,ö), the estimates

äl as ae E,be F,
äl as a,be Eora,be F

hold. By [AV, Theorem 2, p. 8; Theorem 1, p. 7] we have the inequality md(E,.F)
> md(/E, /.F') for transfinite 2-moduli. Thus by Bagby's theorem [B, Theorem
5, p. 325] the same inequality holds for conformal moduli of these condensers. The
connection between the conformal moduli and the conformal capacity of condensers
gives the desired estimate. o

4.4. h the case where the distortion bound r.r of o-BMD embedding is of the
form c.r(t) : kt, k ) 1 , the coefficient & will be termed the distortion coefficient
of / and denoted bv k[/].

4.5. Question (P.P. Belinskij). Is it true that every BMD-embedding / of a
continuum has a finite distortion coefficient? For a brief discussion of the problem
see [AsV2]. In this connection also see [AsT, Theorem 5.2, p. 547].

4.6. The following construction is a mere modification of the example from
[AsV3, p. 14] (the paper contains a lot of misprints). For some fixed e € (0, zr/8)
set 11 : {z ee : axyz : € * i"}, t, : {z €e : arg z = -e + i"}, 13 : {z ee :

argz:0), » = Ir U l2Uls. The embedding /: E + e is defined by the formula

€ ls,
€ \U12.

tro- /q {; l:-

For k-
Er-hx
going to

(4-7)

!,2,... we set l11': {z € Ir : lrl S k},lzk: {z e 12: lzl> llk},
UlzxU 13 and fx: flDx. Obviously fx - / when fr --+ oo. We are

show that

*r)

f(r): {;, :::
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forall &:1,2r....
Let a pair of disjoint continua in Er be denoted by E,.t' so as to have .E

between F and the endpoinl ilcei" of E*. Note that, for any pair i,j e {1,2,3}
and continua, E; : E il;, Fj : .F l-l I; (possibly empty), the circular mapping

f : E; U Fi - e with respect to 0 preserves angles on -E; arrd 4 separately
and does not increase angles between .E; and 4. BV Lemma 4.2 we obtain the
inequality M(E;,fr) S M(f E;,/.$) for each pair i,j. Hence

rtl rtt

Thus

(4.8) M(E,F)19 S M(f xE, f*F)

holds for all rings (E,F) on 81.
In order to obtain an upper estimate for M(fxE,fxF) we consider the fol-

lowing five cases.

Case 7. Let E C Ig U12. Then .F C ls UIz. The embedding /l(t, U12) extends
to a quasiconformal mapping gt eeie *+ pei?@), where 6(0) : O, B(e+lT) : e ,

|Qd - 2r , the function B being linear on [0, -e + lrl and [-e + io,2z']. Since
e < rf8, the dilatation of 91 is (zr'- 2e)12e. Hence

M(fxE,fxP): M(grE,gr^F') < (-1+ rlze)M(E,F).

Case2. Let.FC IrUIs. Then EchUIs. Therestriction/ l(rrUI3) extends
to a quasiconformal mapping gzi Qeie r-+ ge-iqk), where 0(0) : 0, B(e**n) : ,,
§(2") - 2r , the function B being linear on [0, e + Lrrl and [e * io,2zr]. Slnce the
dilatation of 92 is (tr *2e)12e, the estimate

M$on, fxF) : M(grE,grP) < (1+ rlze)M(E,F)

holds.

Case 3. Let E C Ir U 13 and F C ls U lz. The circular mapping 9{z) :
{z olalsUl2;Z or\ U13} preserves angles on .E as well as on F and does not
decrease angles between .E and F. By Iremma 4.2 M(E,F) < M(E,F), where
E : gs9. The mapping 9$ geie ,- psi?@), where p?il - -7r, P(-e - L") :
-e, Bee + *") : e, B(o) = 0, 9(,r) = r, § being linear on the segments

l-n,-e - *"| [-e - år,0], [0, -e * id, l-, * Lo,zr], tra,nsfor*r .8 into f E
arrd .F into /F. Since e < r.l8, the dilatation of ga is equal to (zr +2e)12e.
Hence

M(fro,.frF) = Mue,/r') s (L+rl2e)M(fr,4 < (1 + rlze)M(E,F).
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Case 4. Let 13 C E. Then F C lz. Denote Ez : Enlz and ,S : kU f h. The
mapping gsi peie r+ pei?k),where g@):0, §(e):e,0(2r -e):2r, § being
linear on segments [O,e] ,le,2tr-e), has dilatation K[95] : (2r-e)12(tr-e) < 817
and transforms the domain D: {z:0 < arg z <-2n -e} into e \ lr. Hence

M(f g, f F) < M(s u IEz, fF) : M(S u fEz, f F;D)
< (817)M(lsu f Ez,f F;ssD): (817)M(er(Is U lr),srP)
< (8/7x-1 + r lze)M(ts u Ez, F) S (8/7)(-1 + r l2e)M(8, F).

Thus
M(frn, fxF) 3 (8/7x-1 + r /ze)M(8, F).

Case 5. Let Is C .t,. Then E Clt. Denote Fr: F O 11, .9': ls U flz. The
mapping 1a(z) :9r(z) tr.rr.forms the domain D' : {z : 6 < arg z < 2r} into
e \1, andhasthesamedilatationas 9s. Thatis, K[su):Klgul<8/7. Hence

MUn, f F) S MU n,S' u /rr) : M(f E,S' u f Fr;o')
S (8 / 7) M (f E, f fi u ts; s6(D' )) : (8 I 7) M (f n, f @, u,s ))
: (817)M(szU,sz(Fr u r')) < (817)(L +rl2e)M(E,F1uts)
< (8i7)(1 + r l2e)M(8, F).

Thus 
M(fxE,fxl) s(8/TX1 +trl2e)M(E,F).

The estimates in Cases 1-5 together give the inequality

MUrn, fxP) 3 (817)(1 + r l2e)M(8, F)

for all rings (.O,.F') on E1 . On the strength of (a.8) it implies the announced
upper bound (4.7).

Provided e is sufficiently small, we can show that the limit embedding f : D +
e is not of the class c.r-BMD with the same distortion bound tr(t) : (8/7X9 +
rl1e)t as that of "fr. Consider the continua E: hUlz, .t,(6) : {z €$:6 I
lrl < 6-' ) , where 6 e (0, 1). It is easy to get the crude estimates for the capacities
of rings (a, r1a;) and (/8, /r(6))

M(E,r(6))s[{-,**n)-,+(-€+3trl2)-1]21ogtl6+H

'9(L, 
t) 

. r
1 8(r - €).

-öcTllr(tr - 2r)(3" - 2e) '"o 
6 r -2e '

MUn,/r(6)) > M Un,f F(o); {6 <
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MUn,/r(6)) (n -2r)(3" -2e)
Since

M(E,r(6)) 4e(n - e)

and
(tr -2r)(3r -2u)

ae(r - €)

as e + 0, there exists, for a sufficiently small € )

strict inequality

lim
6-+0

31 4r
4e - 7e

M(f E, f F) - M(E,F)

i(,* *)
a 6-6(r)

M(f E,rr(0)) > (8/zxe + rlze)M(a,r10;)

holds. It shows that for such e the embedding / is not of the class c,;-BMD with
o(t): (8/7Xe *rl2e)t.

5. id-BMD embeddings

According to Definition 1.3, the embedding /: E -- E" is id-BMD if

(5.1)

for any ring (.O, F) on E. We use the term Möbius embedding for any id-
quasimöbius embedding. Note that every Möbius embedding in P may be trans-
formed by a suitable Möbius mapping into an isometric embedding and hence it
may be extended to an isometry over all E". So in order to obtain a Möbius
extension of an id-BMD embedding one only needs to prove that it is a Möbius
embedding.

5.2. Conjecture (P.P. Belinskij; see the-final remark in [As5, p. 1529]). Every
id-BMD embedding of a continuum into .8" is a Möbius embedding.

We will commence with a two-dimensional case.

5.3. Theorem (see also [As6]). If » C ff nu a positive topological
dimension at each point of a d.ense subset E' C E C fl , then every id-BMD
embedding /: E -» -C i" a Möbius one.

Proof. Choose a decreasing sequence 6r \ 0. By [K, Chapter 5, Section
47.2,, Theorem 9] there exists at each point a € E' a continuum 7r C E such that
a e'y* and 0 q diamTr < 61. Hence for an arbitrarily given quadruplet ayo,2aso,4

in E' we may contruct a sequence of continua 7ir (i : 1r2,3r4; lc : 1r2,. . .)
such that a; C ^f;x C E and 0 < diamT* ( 6r. By [AV, Theorem 5, p. 14] and

[8, Theorem 5, p. 325] we have

(5.3.1) 
*1]x "(2,*) "Oix)exp 

mod(7; x,lix) - lo; - oil' ,
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where r(.8) denotes the transfinite diameter of .E in -C 
""rd 

mod(7;s, ^tik) :
2trfM(t;x,li*). Thus the characteristic r(7) of the quadruplet T : otazasdt
may be derived as follows:

r (T)2 : 
*l|!g "*O I mod(71 1, 7z r ) * mod(7s*, Ta* ) - mod(7, r, Ts * ) - mod( lz*, I nx)).

The same arguments for the condensers (f l;x, hi*) giu. the following expression
of r(/?) :

,ffT)z = *!1Xu*n Imod(/713, ftzx) + mod(/731,/7a1)

- mod(/711 ,lt*) - mod(/Zzr , f tex)).

Since mod(fl;x,flix) : mod(7;1,zir), it follows that r(7) : r(fT) for any
quadruplet ? in E', so that f I »' € id-QM. Hence the continuous extension /
of / | E' or", -»' is also a Möbius embedding.

5.4. Deflnition (cf. [417, p. 201]). A continuum 7 C E" ir said to be
raylike at a point a e 'y n .B'" if for any stretching sequence E"Jt*l t t+ a *
t*(a - a), pr"ftyl: oo H oo, f I -+ oo of Möbius self-mappings in .8" the limit set
limr*- p,ltkl^l in ContE", if any, is a ray origined at a. o

5.4.1. Remark. The raylike property of a continuum 7 at o € 7 does

not imply the existence of a tangent ray at a point a. The counterexample was
communicated to me by V.A. Vasilenko in 1986.

5.5. Lemma. Let Jordan axcs 'y1)lz e E" be raylike at points q e 11 and
az e lz, respectively. Thenfor any sequences {1;p C1i:b:\,,2r...} of subarcs
suejn that si € ^lix (i :L,2) anddi& : max{lr, - rl : r €Tit} -t 0 as & -» m
the equality

(5.5.1)

åolds. Here \n denotes the Grötzsch constanst in R" .

Proof. We may assume n2 -- nt {e, where l"l : t. Denote by r/(l) the
conformal modulus of the Teichmiiller ring in E". Given e ) 0, since log ),nt2 -
,lr(t'- 1) decreases to 0 as t -+ - [G, (.), ("), p.225J, there exists a: o(e) > 1

such that

(5.5.2) 0 <log \nd2 -rh@'- 1) <e.

When & is sufficiently large, the spheres S;r : {x : lr; - rl: a6;1} (i :7,2)
are disjoint. For any line segments 4s of length 6;3 origined at x; (a:1,2) we
have (see [V, Lemma 5.53, p. 66])

(5.5.3) mod(6s, Si*) : 2-r$@2 - L), i : L,2.

.lim 6r r 6zx exp mod(7 rx, jzlc) - ), lr, - n2l2
Ic*oo
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After a suitable subsequence has been chosen and relabelled, it may be assumed
by the raylikeness condition that p,; lll6;x)l;* + Jio in ContR-, 7;s being a unit
line segment origined at r;. The uniform convergence of rings

(p,,llli;*ltikt Px;[1/6r*],sr*) - (?ro,s, : {, : lri - ol : a})

combined with the continuous property of ring moduli [G, Theorem 5, p. 228] and
the equality (5.5.3) together imply

(5.5.4) mod(711, Srr) + mod(721, ^92*) 
: ,!@' - 1) * Or

with Or + 0 as & -» oo. Since the ring (Srr,§zr) may be transformed by a
Möbius map into a spherical ring {c : 1 < lol a f*} with ft : eXpmod(,S11,,S2p)
+ oo as & + oo, the direct calculation yields
(5.5.5)

mod(^e11'"-':i':»;:llr-;iäl''.;b,Ea26*621'-2rog(1+";')

where Oz + 0 as ,t -+ oo. The extremal property of the Teichmiiller ring [G,
Section 2, Theorem 4, p. 2261and the asymptotics for its conformal modulus [G,
Section 2, ("), p.2251imply the estimate

(5.5.6) mod(711, uzx) 1rt,(w) : ros #*Os,
where Os + 0 as & -) oo. It follows from (5.5.4), (5.5.5) and

mod(711, .fzx) ) mod(71p, Sr*) + mod(^911, Szr) + mod(721,,S21)

that
mod(711, ^tzx) > ,b@' - 1) - log \na2 *log(),nf 6192*) * O+,

where Ot + 0 as & + oo. The latter estimate, together with (5.5.2), (5.5.6),
implies the double bound

1og.\,. * Oe -e ( mod(71 k,'l2k)f log611623 ( log.\,, * Os.

Letting lc -» oo and e -» 0 yields

as desired. tr

.lim 6rt 6zx exp mod(7lkt'Y2r) : ),
k+rc
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5.6. Lemma. Let /: E --+ E" b" an id-BMD embedding. A point a e E
will be regarded as a regular point for f if there exists an a,rc ? C » origined at
a such that both 1 and fl *" ruylike at points a and f a, respectively. If the
set E' of aJI regular points for f is dense in E, then f is a Möbius embedding.

Prcof. To prove this assertion we just need to modify the arguments from the
proof of Theorem 5.3 slightly as follows. We may think of 7;r as subarcs in 7;
such that ai € lix and 6i* : rräxs67,. l, - orl, while 7; is just the arc mentioned
in the above definition of a regular point for /. Because of the raylikeness of 7;
md .f.y; at the respective points, Lemma 5.5 yields the asymptotics

-|g 6;x6ixexp mod(7 ik,'lik) - Å nlai - oil' ,

where 6l* : *"* l, - f ";l over f 7;7,. The asymptotics (5.3.1) and similar asymp-
totics for mod(/76p,.fti*) should now be replaced by (5.6.1). o

5.7. Theorem. If » C E- is a circle or circular arc, every id-BMD embed-
ding f : E -- E" is a Möbius embedding.

Proof. If E is a circle, the theorem has been proved in [As5] by arguments
quite similar to [G, Section 5, p.247-243]. Thus we may assume I to be a ray
origined at 0 and the points 0, oo to be fixed under f. Let a € » \ {0,oo} and
1o CE be the ray origined at o. In order to prove that fy is raylike at fa we
consider an arbitrary stretching sequence {prlt*l} such that pryoltx)f1" --+ 1 in
Cont-R" as /c + oo. Let 2p: fzp be a point at the Jord.an arc r C /E with
endpoints 0 and /o suchthat lfy,ltklZk-f"l: l/ol. Since 21, --+ fa as k -» oo,
there may be found an increasing sequence t'o -+ m such that a*tt1r(zp - a) : la.
The sequence of rays I,1, = p,oltt*lD converges to a circle Eo c E" in Cont -R" as

embeddings is normed by the conditions vp(a) : f (a), uy(a) : - , lr*(i") -
f ol : l/ol, it is a normal family. If we apply Theorem 2.3 to choose u rrrb""qrr"*""
21. that converges to an BMD embedding z: E6 --+ E" of a circle Eo C E-, then,
because t'*+, > t'* and Er C Er+r, weget the equality M(E,F) : M(uE,vF) for
all rings (E,F) on E6 \ {*} : UrE* . Since ylDo \ {m} is an id-BMD embedding
of the line Eo \ {*}, we have the situation as in [As5, Lemma 4]. Thus u is a
Möbius embedding of a line »o \ {m} and hence 1 = u^ld is a ray origined at f a.
Thus /7" is raylike at /a and the point a is a regular point for 

"f 
. So by Lemma

5.6 / is a Möbius embedding. o

5.8. Lemma. Let an arc 1 Cff A" raylike at a point a e 1. Then for any
id-BMD embedding f,^f -.8" its image f1 isalsoraylikeat fa.
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Proof. Consider an arbitrary stretching sequence pf"ltkl such that t3 ---+ oo

and pry,[tr]ll - 7' in Contn:". For every h there exists a point 2p: f 21, Q f1
such that lprltxli*- fol:1. Since 22 + fa as & -» oo, we have zp --+ o a^nd

may considet Lrla: p"llll"- rxll u stretching sequence for 7. Choosing a suitable
relabelled subsequence gives the convergetce vk.y + 7s in Cont-R", where 76 is a
ray origined at o. The sequence {ry: Fto[tr] o/ ouf,t: u*,y + E"] of id-BMD
embeddings is normed by conditions r&o : fa, ro(-) : oo and lrxbx - f ol: l.

for ö1 : ukzk with låp - al :1. By Theorem 2.3 we may assume the convergence
rk --+ ri .lo + .lt of id-BMD embeddings 4 to a BMD embedding r of a, ray 70.
By Theorem 3.1, r is also a.n id-BMD embedding. Hence by Theorem 5.7 it is a
Möbius embedding and 7' : r'fo is a ray. Thus the raylikeness of. f1 at the point
/a has been proved. o

5.9. Theorem. Let E CE" have a dense subset E' sucå that for every
point a e Et there exisfs an arc 1o C D which is raylike at a. Then every id-BMD
embedding f: E --+ ff ;t a Möbius one.

Proof. By Lemma 5.8 the situation satisfies the conditions of Lemma 5.6,
which implies the desired assertion. o
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