ON THE CONFORMAL MODULUS DISTORTION UNDER QUASIMÖBIUS MAPPINGS

V.V. Aseev

0. Introduction

In this paper we shall study some properties of the topological embeddings $f: \Sigma \to \overline{R}^n$, Σ being a compact in \overline{R}^n , under which the distortion of conformal moduli of rings in Σ is of a bounded character. Such mappings have been termed ω -BMD embeddings, where ω denotes a bound for modulus distortion. Although the class of ω -BMD embeddings of continua in \overline{R}^n is essentially equivalent to that of ω^* -quasimöbius embeddings, there are some problems concerning the modulus distortion function ω . Does the sequence of ω -BMD embeddings $f_k: \Sigma_k \to \overline{R}^n$ converge to BMD-embeddings with the same bound ω for the distortion of moduli? In Sections 2-3 the affirmative answer will be given in the case where Σ is a locally equiconnected sequence of continua or the limit continuum is a Jordan arc in \overline{R}^n . In Section 4 we give a counterexample for the negative answer in a general case. Section 5 aims to get an analogue of Liouville's theorem for BMD-embeddings.

1. BMD and QM embeddings

We equip the Möbius space \overline{R}^n with the chordal distance [xy]. The conformal invariant characteristic r(T) of a quadruplet (an ordered quadruple of distinct points) T = abcd in \overline{R}^n is defined by

(1.1)
$$r(T) = [ab][cd]/([ac][bd]).$$

1.2. Definition ([Vä] or [As1]). Let $\omega: [0, +\infty) \to [0, +\infty)$ be a homeomorphism. An embedding $f: \Sigma \to \overline{R}^n$ of $\Sigma \subset \overline{R}^n$ into \overline{R}^n is said to be a ω -QM (quasimobius) embedding if $r(fT) \leq \omega(r(T))$ for all quadruplets T in Σ .

Given a pair of compact sets $E, F \subset \overline{R}^n$ and a domain $\mathcal{D} \subset \overline{R}^n$, let $M(E; F; \mathcal{D})$ denote the conformal modulus of the family of all arcs joining E to F in \mathcal{D} . A pair of disjoint continua E, F in \overline{R}^n is called a ring. We set $M(E, F) = M(E, F; \overline{R}^n)$.

1.3. Definition ([As1]). An embedding $f: \Sigma \to \overline{R}^n$ of $\Sigma \subset \overline{R}^n$ is said to be ω -BMD (of bounded modulus distortion) if

(1.4)
$$\omega^{-1}(M(E,F)) \le M(fE,fF) \le \omega(M(E,F))$$

for all rings (E, F) on Σ .

doi:10.5186/aasfm.1991.1601

The connection between BMD and QM classes of embeddings has been ascertained [As1, Theorem 5.6, p. 22, Theorem 4.3, p. 12] as follows.

1.5. Theorem. (i) Every ω -QM embedding $f: \Sigma \to \overline{R}^n$ is also ω^* -BMD, where ω^* depends only on ω and n. (ii) Every ω -BMD embedding $f: \Sigma \to \overline{R}^n$ of a continuum $\Sigma \subset \overline{R}^n$ is also $\tilde{\omega}$ -QM, where $\tilde{\omega}$ depends only on ω and n.

1.6. Remarks. The concept of QM embeddings of subsets in the plane is actually emplyed in S. Rickman's paper [R, p. 389]. These embeddings were termed as "quasimöbius" by J. Väisälä [Vä] and the author [As2] in 1984. The notion of BMD embeddings had been offered for investigation by P. Belinskij in 1976 and was introduced in [AsV1].

2. Convergence theorems

For a compact metric space \mathcal{X} we shall denote by $\operatorname{Cont} \mathcal{X}$ the space of all continua in \mathcal{X} equipped with Hausdorff distance between compact subsets of \mathcal{X} (see [K, Chapter 2, Section 21]). The compactness of $\operatorname{Cont} \mathcal{X}$ [K, Chapter 4, Section 42] will be employed throughout the paper. An embedding $f: \Sigma \to \overline{R}^n$ of a continuum $\Sigma \subset \overline{R}^n$ may be associated with its graph in $\overline{R}^n \times \overline{R}^n$

$$\Gamma f = \left\{ (x, y) \in \overline{R}^n \times \overline{R}^n : x \in \Sigma, y = fx \right\}$$

and thereby be considered an element of $\operatorname{Cont}(\overline{\mathbb{R}}^n \times \overline{\mathbb{R}}^n)$. We assume the convergence $f_k \to f$ of embeddings $f_k: \Sigma_k \to \overline{\mathbb{R}}^n$ to be equivalent to the convergence $\Gamma f_k \to \Gamma f$ in the metric space $\operatorname{Cont}(\overline{\mathbb{R}}^n \times \overline{\mathbb{R}}^n)$. Since the characteristic r(T) is continuous on the space of quadruplets in $\overline{\mathbb{R}}^n$, we have the following property.

2.1. If $f_k \to f$ as $k \to \infty$, f_k being ω -QM, the limit embedding f is also ω -quasimobius with the same distortion bound ω .

2.2. Definition [As3]. A family of embeddings $\mathcal{M} = \{f_{\alpha}: \Sigma_{\alpha} \to \overline{R}^{n}; \Sigma_{\alpha} \in Cont \overline{R}^{n}\}$ is called compact (in the class of embeddings) if any sequence in \mathcal{M} has a subsequence converging to an embedding. The family \mathcal{M} is termed normal if any sequence $\{f_k\} \subset \mathcal{M}$ has a subsequence $\{f_{k_*}\}$ such that $\Gamma f_{k_*} \to \Gamma$ in $Cont(\overline{R}^{n} \times \overline{R}^{n}), \Gamma$ being either the graph of an embedding or a compact set containing none triple of points with distinct projections.

2.3. Theorem [As1, Theorem 6.1, p. 23.] Given a homeomorphism $\omega: [0, +\infty) \to [0, +\infty)$, the family $\mathcal{M} = \{f: \Sigma \to \overline{R}^n; \Sigma \in \operatorname{Cont} \overline{R}^n\}$ of all ω -quasimobius embeddings is normal. Moreover, any subfamily $\mathcal{M}' \subset \mathcal{M}$ of ω -BMD embeddings with a common triple of fixed points is compact.

According to 2.1 and Theorem 1.5, this immediately implies the following statement.

2.4. Theorem. Given a homeomorphism $\omega: [0, +\infty) \to [0, +\infty)$, the family $\mathcal{M} = \{f: \Sigma \to \overline{R}^n; \Sigma \in \operatorname{Cont} \overline{R}^n, f \in \omega \operatorname{-BMD}\}$ is normal. Moreover, any subfamily $\mathcal{M}' \subset \mathcal{M}$ of ω -BMD embeddings with a common triple of fixed points is compact. For a convergent sequence $\{f_k\} \subset \mathcal{M}$ the limit embedding f is also ω^* -BMD, ω^* depending only on ω and n.

2.5. Now the question arises whether the limit embedding in the above theorem is actually ω -BMD with the same distortion bound ω . We shall answer in the affirmative in the two special cases and give a counterexample for the general situation.

2.6. Given $\Sigma \in \operatorname{Cont} \overline{\mathbb{R}}^n$, one may consider $\operatorname{Cont} \Sigma$ to be a continuum in $\operatorname{Cont} \overline{\mathbb{R}}^n$ (see [K, Chapter 5, Section 47.7, Theorem 3]) as well as a point in the metric space $\operatorname{Cont} \overline{\mathbb{R}}^n$.

2.7. Theorem. Let ω -BMD embeddings $f_k: \Sigma_k \to \overline{R}^n$, where $\Sigma_k \in \operatorname{Cont} \overline{R}^n$ for $k = 1, 2, \ldots$, approach an embedding $f: \Sigma \to \overline{R}^n$. If $\operatorname{Cont} \Sigma_k \to \operatorname{Cont} \Sigma$ in $\operatorname{Cont} \operatorname{Cont} \overline{R}^n$ when $k \to \infty$, then f is also ω -BMD with the same distortion bound ω .

Proof. Let (E, F) be an arbitrary ring on Σ . The convergence $\operatorname{Cont} \Sigma_k \to \operatorname{Cont} \Sigma$ immediately implies that each subcontinuum $E \subset \Sigma$, while being a point in $\operatorname{Cont} \Sigma$, may be approached in $\operatorname{Cont} \overline{\mathbb{R}}^n$ with a sequence E_{k_s} ($s = 1, 2, \ldots$) of subcontinua $E_{k_s} \subset \Sigma_{k_s}$. Since $\operatorname{Cont} \Sigma_{k_s} \to \operatorname{Cont} \Sigma$ in $\operatorname{Cont} \operatorname{Cont} \overline{\mathbb{R}}^n$ and $f_{k_s} \to f$ as $s \to \infty$, we may assume the subsequence f_{k_s} to be the initial sequence f_k . Since the space $\operatorname{Cont}(\overline{\mathbb{R}}^n \times \overline{\mathbb{R}}^n)$ is compact, the sequence f_k may be replaced once more with a subsequence so as to provide the convergence $\Gamma f_k \mid E_k \to \Gamma f \mid E$, and so the convergence $f_k E_k \to f E$ as $k \to \infty$. The same argument gives a subsequence $F_{k_j} \in \operatorname{Cont} \Sigma_{k_j}$ such that $F_{k_j} \to F$ and $f_{k_j} F_{k_j} \to f F$ in $\operatorname{Cont} \overline{\mathbb{R}}^n$. Since the convergences $E_{k_j} \to E$ and $f_{k_j} E_{k_j} \to f E$ have been preserved, we may assume the subsequence f_{k_j} to be the initial one. Thus we have gained a sequence (E_k, F_k) of rings on Σ_k and the convergences $(E_k, F_k) \to (E, F)$, $(f_k E_k, f_k F_k) \to (f E, f F)$ of rings in $\overline{\mathbb{R}}^n$. The continuity theorem for the conformal capacity of rings in $\overline{\mathbb{R}}^n$

$$\lim_{k \to \infty} M(E_k, F_k) = M(E, F),$$
$$\lim_{k \to \infty} M(f_k E_k, f_k F_k) = M(fE, fF).$$

Letting $k \to \infty$ in

$$\omega^{-1}(M(E_k,F_k)) \le M(f_k E_k,f_k F_k) \le \omega(M(E_k,F_k))$$

yields the desired estimate (1.4) for the embedding f. \Box

2.8. Corollary. Let a sequence $f_k: \Sigma_k \to \overline{R}^n$ of ω -BMD embeddings with $\Sigma_k \in \text{Cont} \overline{R}^n$ converge to $f: \Sigma \to \overline{R}^n$. If $\Sigma_{k+1} \subset \Sigma_k$ for all $k = 1, 2, \ldots$, then f is ω -BMD.

Proof. If a sequence $E_k \in \operatorname{Cont} \Sigma_k$ converges to E in $\operatorname{Cont} \overline{\mathbb{R}}^n$, then $E \subset \Sigma$, E being a continuum. Thus $\liminf_{k \to \infty} \operatorname{Cont} \Sigma_k \subset \operatorname{Cont} \Sigma$. Since $\Sigma = \lim_{k \to \infty} \Sigma_k = \bigcap_k \Sigma_k$

$$\operatorname{Cont} \Sigma = \bigcap_{\mathbf{k}} \operatorname{Cont} \Sigma_{\mathbf{k}} = \lim_{\mathbf{k} \to \infty} \operatorname{Cont} \Sigma_{\mathbf{k}} = \liminf_{\mathbf{k} \to \infty} \operatorname{Cont} \Sigma_{\mathbf{k}}.$$

These inclusions imply that $\operatorname{Cont} \Sigma = \lim_{k \to \infty} \operatorname{Cont} \Sigma_k$. Hence (see [K, Chapter 5, Section 9, 42.2, Remark 1]) $\operatorname{Cont} \Sigma_k \to \operatorname{Cont} \Sigma$ in $\operatorname{Cont} \operatorname{Cont} \overline{\mathbb{R}}^n$ as $k \to \infty$. The assertion now follows from Theorem 2.7. \Box

3. Special cases of convergence

3.1. Theorem. Let a sequence $f_k: \Sigma_k \to \overline{R}^n$ of ω -BMD embeddings of $\Sigma_k \in \text{Cont} \overline{R}^n$ converge to an embedding $f: \Sigma \to \overline{R}^n$. If Σ is a Jordan arc (a topological image of a closed interval), then f is ω -BMD with the same distortion bound ω .

Proof. According to 2.7, it is sufficient to obtain the convergence $\operatorname{Cont} \Sigma_k \to \operatorname{Cont} \Sigma$ in $\operatorname{Cont} \operatorname{Cont} \overline{\mathbb{R}}^n$. Since $\limsup_{k\to\infty} \Sigma_k \subset \operatorname{Cont} \Sigma$, it suffices to derive the inclusion

(3.2)
$$\operatorname{Cont} \Sigma \subset \liminf_{k \to \infty} \operatorname{Cont} \Sigma_k.$$

Let $\varphi: [0,1] \to \Sigma$ be a parametrisation of the arc Σ . Every nongenerated continuum $\tau \subset \Sigma$ may be represented as $\tau = \varphi[t_1, t_2]$, where $0 \leq t_1 < t_2 \leq 1$. Let $P_1 = \varphi(t_1), P_2 = \varphi(t_2), \tau_1 = \varphi[0, t_1], \tau_2 = \varphi[t_2, 1]$. For a set $A \subset \overline{R}^n$ denote by $A(\varepsilon)$ its closed ε -neighbourhood in \overline{R}^n . Given $\varepsilon > 0$, there exists $e_1 \in (0, \varepsilon]$ such that $\tau_1(\varepsilon_1) \cap \tau_2(\varepsilon_1) = \emptyset$. Hence we may choose $\delta > 0$ such that

$$\gamma_{i} = \varphi([0,1] \cap (t_{i} - \delta, t_{i} + \delta)) \subset P_{i}(\varepsilon_{1}),$$

where i = 1, 2. Since the closed arcs $\sigma_1 = \tau_1 \setminus \gamma_1$, $\sigma = \tau \setminus (\gamma_1 \cup \gamma_2)$, $\sigma_2 = \tau_2 \setminus \gamma_2$ are mutually disjoint, this is also true for $\sigma_1(\varepsilon_2)$, $\sigma(\varepsilon_2)$ and $\sigma_2(\varepsilon_2)$ when $\varepsilon_2 \in (0, \varepsilon_1]$ is sufficiently small. Because $\Sigma_k \to \Sigma$, there exists an integer k_0 such that $\Sigma_k \subset \Sigma(\varepsilon_2)$, $E_k = \Sigma_k \cap P_1(\varepsilon_1) \neq \emptyset$ and $F_k = \Sigma_k \cap P_2(\varepsilon_1) \neq \emptyset$ for all $k \geq k_0$. We shall next show that $\Sigma_k \cap \tau(\varepsilon_1)$ is connected between E_k and F_k (see [K, Chapter 5, Section 46.4]). Assume that the statement is false. Then $\Sigma_k \cap \tau(\varepsilon_1)$ is a union $\mathcal{E} \cup \mathcal{F}$ of two disjoint closed sets \mathcal{E} and \mathcal{F} such that $E_k \subset \mathcal{E}$, $F_k \subset \mathcal{F}$. Consider the closed nonempty subsets $\mathcal{E} \cup (\Sigma_k \cap \sigma_1(\varepsilon_2))$ and $\mathcal{F} \cup (\Sigma_k \cap \sigma_2(\varepsilon_2))$ of Σ_k . Since (i) $\mathcal{E} \cap \mathcal{F} = \emptyset$, (ii) $(\Sigma_k \cap \sigma_1(\varepsilon_2)) \cap (\Sigma_k \cap \sigma(\varepsilon_2)) \subset \sigma_1(\varepsilon_2) \cap \sigma_2(\varepsilon_2) = \emptyset$, (iii) $\mathcal{E} \cap (\Sigma_k \cap \sigma_2(\varepsilon_2)) \subset (P_1(\varepsilon_1) \cap \sigma_2(\varepsilon_2)) \cup (\sigma(\varepsilon_2) \cap \sigma_2(\varepsilon_2)) = P_1(\varepsilon_1) \cap \sigma_2(\varepsilon_2) = \emptyset$, (iv) $\mathcal{F} \cap (\Sigma_k \cap \sigma_1(\varepsilon_2)) \subset (P_2(\varepsilon_1) \cap \sigma_1(\varepsilon_2)) \cup (\sigma(\varepsilon_2) \cap \sigma_1(\varepsilon_2)) = P_2(\varepsilon_1) \cap \sigma_1(\varepsilon_2) = \emptyset$, $\mathcal{E} \cup (\Sigma_k \cap \sigma_1(\varepsilon_2))$ and $\mathcal{F} \cup (\Sigma_k \cap \sigma_2(\varepsilon_2))$ are disjoint. Nevertheless, their union is Σ_k :

$$\begin{split} \left[\mathcal{E} \cup \left(\Sigma_k \cap \sigma_1(\varepsilon_2) \right) \right] \cup \left[\mathcal{F} \cup \left(\Sigma_k \cap \sigma_2(\varepsilon_2) \right) \right] \\ &= \left(\mathcal{E} \cup \mathcal{F} \right) \cup \left(\sigma_1(\varepsilon_2) \cap \Sigma_k \right) \cup \left(\sigma_2(\varepsilon_2) \cap \Sigma_k \right) \\ &= \Sigma_k \cap \left[\tau(\varepsilon_1) \cup \sigma_1(\varepsilon_2) \cup \sigma_2(\varepsilon_2) \right] = \Sigma_k \cap \Sigma(\varepsilon_2) = \Sigma_k. \end{split}$$

This contradicts the connection of Σ_k .

Since $\Sigma_k \cap \tau(\varepsilon_1)$ is connected between E_k and F_k , there exists a continuum $\gamma_k \subset \Sigma_k \cap \tau(\varepsilon_1)$ joining E_k to F_k (see [K, Chapter 5, Section 47.2, Theorem 3; Section 47.1, Theorem 6]). Letting $\varepsilon = 1/s$ for $s = 1, 2, \ldots$, we obtain the increasing sequence k_s and continua $\gamma_k \subset \Sigma_k \cap \tau(1/s)$ for $k_s \leq k \leq k_{s+1}$. Obviously, $\gamma_k \to \tau$ as $k \to \infty$, and hence $\tau \in \liminf_{k \to \infty} \operatorname{Cont} \Sigma_k$. Thus (3.2) is proved. \Box

3.3. A family \mathcal{F} of continua in $\overline{\mathbb{R}}^n$ is called locally equiconnected if for any given $\varepsilon > 0$ there exists $\delta > 0$ such that every pair of points $x, y \in \Sigma \in \mathcal{F}$ with $[xy] < \delta$ can be joined by a continuum $\gamma \subset \Sigma$ of spherical diameter $\leq \varepsilon$.

3.4. Theorem [As4, Theorem 2.1, p. 19]. Let a sequence $f_k: \Sigma_k \to \overline{R}^n$ of ω -BMD embeddings of continua $\Sigma_k \subset \overline{R}^n$ converge to an embedding $f: \Sigma \to \overline{R}^n$. If the family $\{\Sigma_k : k = 1, 2, ...\}$ is locally equiconnected, $f \in \omega$ -BMD with the same distortion bound ω .

Proof. Let Σ_{k_s} be an arbitrary subsequence of Σ_k . Since the family $\{\Sigma_{k_s} : s = 1, 2, ...\}$ remains locally equiconnected, it follows from [As4, Lemma 1.2, p. 17] that Cont $\Sigma \subset \limsup_{s \to \infty} \operatorname{Cont} \Sigma_{k_s}$. Because of the arbitrary choice of a subsequence Σ_{k_s} we obtain by [K, Chapter 2, Section 29.5 (1)]

$$\operatorname{Cont} \Sigma \subset \bigcap \limsup_{s \to \infty} \operatorname{Cont} \Sigma_{k_s} = \liminf_{k \to \infty} \operatorname{Cont} \Sigma_k \subset \limsup_{k \to \infty} \operatorname{Cont} \Sigma_k \subset \operatorname{Cont} \Sigma_k$$

where the intersection expands over all subsequences Σ_{k_s} of Σ_k . Thus the equality $\operatorname{Cont} \Sigma = \lim_{k \to \infty} \operatorname{Cont} \Sigma_k$ holds and the desired result follows from Theorem 2.7.

3.5. Question. Does Theorem 3.1 remain true if Σ is replaced by a Jordan curve (a topological image of a circle)?

V.V. Aseev

4. Counterexample

All the considerations throughout this section will refer to the extended complex plane $\overline{\mathbf{C}}$, $z = x + iy = \rho e^{i\varphi}$ being a complex variable.

4.1. A continuous mapping $f: \Sigma \to \overline{\mathbf{C}}$, where $\Sigma \subset \overline{\mathbf{C}}$, is termed circular with respect to a point z_0 if $|fz - fz_0| = |z - z_0|$ for all $z \in \Sigma$.

4.2. Lemma. Let (E, F) be a ring in C and $f: E \cup F \to C$ a circular mapping with respect to z_0 . Denote by $\alpha(a, b)$ the acute angle between segments z_0a and z_0b while $a, b \in \mathbb{C} \setminus \{z_0\}$. If

$$lpha(fa,fb) igg\{ egin{array}{cc} \leq lpha(a,b) & ext{as } a \in E, b \in F, \ \geq lpha(a,b) & ext{as } a, b \in E ext{ or } a, b \in F, \end{array} igg\}$$

then $M(fE, fF) \ge M(E, F)$.

Proof. Since the distance |a-b| between the points $a, b \in \mathbb{C} \setminus \{z_0\}$ with fixed $|a-z_0|$ and $|b-z_0|$ is increasing to $\alpha(a, b)$, the estimates

$$|fa - fb| \begin{cases} \le |a - b| & \text{as } a \in E, b \in F, \\ \ge |a - b| & \text{as } a, b \in E \text{ or } a, b \in F \end{cases}$$

hold. By [AV, Theorem 2, p. 8; Theorem 1, p. 7] we have the inequality $md(E, F) \ge md(fE, fF)$ for transfinite 2-moduli. Thus by Bagby's theorem [B, Theorem 5, p. 325] the same inequality holds for conformal moduli of these condensers. The connection between the conformal moduli and the conformal capacity of condensers gives the desired estimate. \Box

4.4. In the case where the distortion bound ω of ω -BMD embedding is of the form $\omega(t) = kt$, $k \ge 1$, the coefficient k will be termed the distortion coefficient of f and denoted by k[f].

4.5. Question (P.P. Belinskij). Is it true that every BMD-embedding f of a continuum has a finite distortion coefficient? For a brief discussion of the problem see [AsV2]. In this connection also see [AsT, Theorem 5.2, p. 547].

4.6. The following construction is a mere modification of the example from [AsV3, p. 14] (the paper contains a lot of misprints). For some fixed $\varepsilon \in (0, \pi/8)$ set $l_1 = \{z \in \overline{\mathbf{C}} : \arg z = \varepsilon + \frac{1}{2}\pi\}, \ l_2 = \{z \in \overline{\mathbf{C}} : \arg z = -\varepsilon + \frac{1}{2}\pi\}, \ l_3 = \{z \in \overline{\mathbf{C}} : \arg z = 0\}, \ \Sigma = l_1 \cup l_2 \cup l_3$. The embedding $f: \Sigma \to \overline{\mathbf{C}}$ is defined by the formula

$$f(z) = egin{cases} z & ext{as } z \in l_3, \ iar{z} & ext{as } z \in l_1 \cup l_2. \end{cases}$$

For $k = 1, 2, \ldots$ we set $l_{1k} = \{z \in l_1 : |z| \le k\}, \ l_{2k} = \{z \in l_2 : |z| \ge 1/k\}, \Sigma_k = l_{1k} \cup l_{2k} \cup l_3 \text{ and } f_k = f |\Sigma_k.$ Obviously $f_k \to f$ when $k \to \infty$. We are going to show that

(4.7)
$$k[f_k] \le \frac{8}{7} \left(\frac{\pi}{2\varepsilon} + 9\right)$$

for all k = 1, 2, ...

Let a pair of disjoint continua in Σ_k be denoted by E, F so as to have E between F and the endpoint $ike^{i\epsilon}$ of Σ_k . Note that, for any pair $i, j \in \{1, 2, 3\}$ and continua $E_i = E \cap l_i$, $F_j = F \cap l_j$ (possibly empty), the circular mapping $f: E_i \cup F_j \to \overline{\mathbb{C}}$ with respect to 0 preserves angles on E_i and F_j separately and does not increase angles between E_i and F_j . By Lemma 4.2 we obtain the inequality $M(E_i, F_j) \leq M(fE_i, fF_j)$ for each pair i, j. Hence

$$M(E,F) \leq \sum_{i,j} M(E_i,F_j) \leq \sum_{i,j} M(fE_i,fF_j) \leq 9M(fE,fF).$$

Thus

$$(4.8) M(E,F)/9 \le M(f_k E, f_k F)$$

holds for all rings (E, F) on Σ_k .

In order to obtain an upper estimate for $M(f_k E, f_k F)$ we consider the following five cases.

Case 1. Let $E \subset l_3 \cup l_2$. Then $F \subset l_3 \cup l_2$. The embedding $f|(l_3 \cup l_2)$ extends to a quasiconformal mapping $g_1: \varrho e^{i\varphi} \mapsto \varrho e^{i\beta(\varphi)}$, where $\beta(0) = 0$, $\beta(-\varepsilon + \frac{1}{2}\pi) = \varepsilon$, $\beta(2\pi) = 2\pi$, the function β being linear on $[0, -\varepsilon + \frac{1}{2}\pi]$ and $[-\varepsilon + \frac{1}{2}\pi, 2\pi]$. Since $\varepsilon < \pi/8$, the dilatation of g_1 is $(\pi - 2\varepsilon)/2\varepsilon$. Hence

$$M(f_k E, f_k F) = M(g_1 E, g_1 F) \le (-1 + \pi/2\varepsilon)M(E, F).$$

Case 2. Let $F \subset l_1 \cup l_3$. Then $E \subset l_1 \cup l_3$. The restriction $f \mid (l_1 \cup l_3)$ extends to a quasiconformal mapping $g_2: \varrho e^{i\varphi} \mapsto \varrho e^{-i\beta(\varphi)}$, where $\beta(0) = 0$, $\beta(\varepsilon + \frac{1}{2}\pi) = \varepsilon$, $\beta(2\pi) = 2\pi$, the function β being linear on $[0, \varepsilon + \frac{1}{2}\pi]$ and $[\varepsilon + \frac{1}{2}\pi, 2\pi]$. Since the dilatation of g_2 is $(\pi + 2\varepsilon)/2\varepsilon$, the estimate

$$M(f_k E, f_k F) = M(g_2 E, g_2 F) \le (1 + \pi/2\varepsilon)M(E, F)$$

holds.

Case 3. Let $E \,\subset \, l_1 \cup l_3$ and $F \,\subset \, l_3 \cup l_2$. The circular mapping $g_3(z) = \{z \text{ on } l_3 \cup l_2; \bar{z} \text{ on } l_1 \cup l_3\}$ preserves angles on E as well as on F and does not decrease angles between E and F. By Lemma 4.2 $M(\tilde{E}, F) \leq M(E, F)$, where $\tilde{E} = g_3 E$. The mapping $g_4: \varrho e^{i\varphi} \mapsto \varrho e^{i\beta(\varphi)}$, where $\beta(-\pi) = -\pi$, $\beta(-\varepsilon - \frac{1}{2}\pi) = -\varepsilon$, $\beta(-\varepsilon + \frac{1}{2}\pi) = \varepsilon$, $\beta(0) = 0$, $\beta(\pi) = \pi$, β being linear on the segments $[-\pi, -\varepsilon - \frac{1}{2}\pi]$, $[-\varepsilon - \frac{1}{2}\pi, 0]$, $[0, -\varepsilon + \frac{1}{2}\pi]$, $[-\varepsilon + \frac{1}{2}\pi, \pi]$, transforms \tilde{E} into fE and F into fF. Since $\varepsilon < \pi/8$, the dilatation of g_4 is equal to $(\pi + 2\varepsilon)/2\varepsilon$. Hence

$$M(f_k E, f_k F) = M(f E, f F) \le (1 + \pi/2\varepsilon)M(\tilde{E}, F) \le (1 + \pi/2\varepsilon)M(E, F).$$

Case 4. Let $l_3 \subset E$. Then $F \subset l_2$. Denote $E_2 = E \cap l_2$ and $S = l_3 \cup fl_1$. The mapping $g_5: \varrho e^{i\varphi} \mapsto \varrho e^{i\beta(\varphi)}$, where $\beta(0) = 0$, $\beta(\varepsilon) = \varepsilon$, $\beta(2\pi - \varepsilon) = 2\pi$, β being linear on segments $[0, \varepsilon]$, $[\varepsilon, 2\pi - \varepsilon]$, has dilatation $K[g_5] = (2\pi - \varepsilon)/2(\pi - \varepsilon) < 8/7$ and transforms the domain $\mathcal{D} = \{z: 0 < \arg z < 2\pi - \varepsilon\}$ into $\overline{\mathbb{C}} \setminus l_3$. Hence

$$\begin{split} M(fE, fF) &\leq M(S \cup fE_2, fF) = M(S \cup fE_2, fF; \mathcal{D}) \\ &\leq (8/7)M(l_3 \cup fE_2, fF; g_5\mathcal{D}) = (8/7)M(g_1(l_3 \cup l_2), g_1F) \\ &\leq (8/7)(-1 + \pi/2\varepsilon)M(l_3 \cup E_2, F) \leq (8/7)(-1 + \pi/2\varepsilon)M(E, F). \end{split}$$

Thus

$$M(f_k E, f_k F) \le (8/7)(-1 + \pi/2\varepsilon)M(E, F)$$

Case 5. Let $l_3 \subset F$. Then $E \subset l_1$. Denote $F_1 = F \cap l_1$, $S' = l_3 \cup fl_2$. The mapping $g_6(z) = \overline{g_5(\overline{z})}$ transforms the domain $\mathcal{D}' = \{z : \varepsilon < \arg z < 2\pi\}$ into $\overline{\mathbb{C}} \setminus l_3$ and has the same dilatation as g_5 . That is, $K[g_6] = K[g_5] < 8/7$. Hence

$$\begin{split} M(fE, fF) &\leq M(fE, S' \cup fF_1) = M(fE, S' \cup fF_1; \mathcal{D}') \\ &\leq (8/7) M (fE, fF_1 \cup l_3; g_6(\mathcal{D}')) = (8/7) M (fE, f(F_1 \cup l_3)) \\ &= (8/7) M (g_2E, g_2(F_1 \cup l_3)) \leq (8/7)(1 + \pi/2\varepsilon) M(E, F_1 \cup l_3) \\ &\leq (8/7)(1 + \pi/2\varepsilon) M(E, F). \end{split}$$

Thus

$$M(f_k E, f_k F) \le (8/7)(1 + \pi/2\varepsilon)M(E, F).$$

The estimates in Cases 1–5 together give the inequality

$$M(f_k E, f_k F) \le (8/7)(1 + \pi/2\varepsilon)M(E, F)$$

for all rings (E, F) on Σ_k . On the strength of (4.8) it implies the announced upper bound (4.7).

Provided ε is sufficiently small, we can show that the limit embedding $f: \Sigma \to \overline{\mathbf{C}}$ is not of the class ω -BMD with the same distortion bound $\omega(t) = (8/7)(9 + \pi/2\varepsilon)t$ as that of f_k . Consider the continua $E = l_1 \cup l_2$, $F(\delta) = \{z \in l_3 : \delta < |z| < \delta^{-1}\}$, where $\delta \in (0, 1)$. It is easy to get the crude estimates for the capacities of rings $(E, F(\delta))$ and $(fE, fF(\delta))$

$$\begin{split} M\big(E,F(\delta)\big) &\leq \left[(-\varepsilon + \frac{1}{2}\pi)^{-1} + (-\varepsilon + 3\pi/2)^{-1}\right] 2\log 1/\delta + \frac{8(\pi - \varepsilon)}{\pi - 2\varepsilon} \\ &= \frac{16(\pi - \varepsilon)}{(\pi - 2\varepsilon)(3\pi - 2\varepsilon)}\log\frac{1}{\delta} + \frac{8(\pi - \varepsilon)}{\pi - 2\varepsilon}; \\ M\big(fE, fF(\delta)\big) &\geq M\left(fE, fF(\delta); \left\{\delta < |z| < \delta^{-1}\right\}\right) = (4/\varepsilon)\log 1/\delta. \end{split}$$

Since

$$\lim_{\delta \to 0} \frac{M(fE, fF(\delta))}{M(E, F(\delta))} \ge \frac{(\pi - 2\varepsilon)(3\pi - 2\varepsilon)}{4\varepsilon(\pi - \varepsilon)}$$

and

$$\frac{(\pi-2\varepsilon)(3\pi-2\varepsilon)}{4\varepsilon(\pi-\varepsilon)}\approx\frac{3\pi}{4\varepsilon}>\frac{4\pi}{7\varepsilon}\approx\frac{8}{7}\Big(9+\frac{\pi}{2\varepsilon}\Big)$$

as $\varepsilon \to 0$, there exists, for a sufficiently small ε , a $\delta = \delta(\varepsilon) < 1$ such that the strict inequality

$$M(fE, fF(\delta)) > (8/7)(9 + \pi/2\varepsilon)M(E, F(\delta))$$

holds. It shows that for such ε the embedding f is not of the class ω -BMD with $\omega(t) = (8/7)(9 + \pi/2\varepsilon)t$.

5. id-BMD embeddings

According to Definition 1.3, the embedding $f: \Sigma \to \overline{R}^n$ is id-BMD if

(5.1)
$$M(fE, fF) = M(E, F)$$

for any ring (E, F) on Σ . We use the term Möbius embedding for any idquasimöbius embedding. Note that every Möbius embedding in $\overline{\mathbb{R}}^n$ may be transformed by a suitable Möbius mapping into an isometric embedding and hence it may be extended to an isometry over all $\overline{\mathbb{R}}^n$. So in order to obtain a Möbius extension of an id-BMD embedding one only needs to prove that it is a Möbius embedding.

5.2. Conjecture (P.P. Belinskij; see the final remark in [As5, p. 1529]). Every id-BMD embedding of a continuum into \overline{R}^n is a Möbius embedding.

We will commence with a two-dimensional case.

5.3. Theorem (see also [As6]). If $\Sigma \subset \overline{R}^2$ has a positive topological dimension at each point of a dense subset $\Sigma' \subset \Sigma \subset \overline{\Sigma}'$, then every id-BMD embedding $f: \Sigma \to \overline{R}^2$ is a Möbius one.

Proof. Choose a decreasing sequence $\delta_k \searrow 0$. By [K, Chapter 5, Section 47.2, Theorem 9] there exists at each point $a \in \Sigma'$ a continuum $\gamma_k \subset \Sigma$ such that $a \in \gamma_k$ and $0 < \operatorname{diam} \gamma_k < \delta_k$. Hence for an arbitrarily given quadruplet $a_1 a_2 a_3 a_4$ in Σ' we may contruct a sequence of continua γ_{ik} ($i = 1, 2, 3, 4; k = 1, 2, \ldots$) such that $a_i \subset \gamma_{ik} \subset \Sigma$ and $0 < \operatorname{diam} \gamma_{ik} < \delta_k$. By [AV, Theorem 5, p. 14] and [B, Theorem 5, p. 325] we have

(5.3.1)
$$\lim_{k \to \infty} \tau(\gamma_{ik}) \tau(\gamma_{jk}) \exp \operatorname{mod}(\gamma_{ik}, \gamma_{jk}) = |a_i - a_j|^2,$$

where $\tau(E)$ denotes the transfinite diameter of E in \overline{R}^2 and $\operatorname{mod}(\gamma_{ik}, \gamma_{jk}) = 2\pi/M(\gamma_{ik}, \gamma_{jk})$. Thus the characteristic r(T) of the quadruplet $T = a_1 a_2 a_3 a_4$ may be derived as follows:

$$r(T)^2 = \lim_{k \to \infty} \exp\left[\operatorname{mod}(\gamma_{1k}, \gamma_{2k}) + \operatorname{mod}(\gamma_{3k}, \gamma_{4k}) - \operatorname{mod}(\gamma_{1k}, \gamma_{3k}) - \operatorname{mod}(\gamma_{2k}, \gamma_{4k}) \right].$$

The same arguments for the condensers $(f\gamma_{ik}, f\gamma_{jk})$ give the following expression of r(fT):

$$r(fT)^{2} = \lim_{k \to \infty} \exp\left[\operatorname{mod}(f\gamma_{1k}, f\gamma_{2k}) + \operatorname{mod}(f\gamma_{3k}, f\gamma_{4k}) - \operatorname{mod}(f\gamma_{1k}, f\gamma_{3k}) - \operatorname{mod}(f\gamma_{2k}, f\gamma_{4k}) \right].$$

Since $\operatorname{mod}(f\gamma_{ik}, f\gamma_{jk}) = \operatorname{mod}(\gamma_{ik}, \gamma_{jk})$, it follows that r(T) = r(fT) for any quadruplet T in Σ' , so that $f \mid \Sigma' \in \operatorname{id-QM}$. Hence the continuous extension \tilde{f} of $f \mid \Sigma'$ over $\overline{\Sigma}'$ is also a Möbius embedding.

5.4. Definition (cf. [As7, p. 201]). A continuum $\gamma \subset \overline{R}^n$ is said to be raylike at a point $a \in \gamma \cap \overline{R}^n$ if for any stretching sequence $\mu_a[t_k]: x \mapsto a + t_k(x-a), \ \mu_a[t_k]: \infty \mapsto \infty, \ t_k \to \infty$ of Möbius self-mappings in \overline{R}^n the limit set $\lim_{k\to\infty} \mu_a[t_k]\gamma$ in Cont \overline{R}^n , if any, is a ray origined at a. \Box

5.4.1. Remark. The raylike property of a continuum γ at $a \in \gamma$ does not imply the existence of a tangent ray at a point a. The counterexample was communicated to me by V.A. Vasilenko in 1986.

5.5. Lemma. Let Jordan arcs $\gamma_1, \gamma_2 \in \overline{R}^n$ be raylike at points $x_1 \in \gamma_1$ and $x_2 \in \gamma_2$, respectively. Then for any sequences $\{\gamma_{ik} \subset \gamma_i : k = 1, 2, ...\}$ of subarcs such that $x_i \in \gamma_{ik}$ (i = 1, 2) and $\delta_{ik} = \max\{|x_i - x| : x \in \gamma_{ik}\} \to 0$ as $k \to \infty$ the equality

(5.5.1)
$$\lim_{k \to \infty} \delta_{1k} \delta_{2k} \operatorname{exp} \operatorname{mod}(\gamma_{1k}, \gamma_2 k) = \lambda_n |x_1 - x_2|^2$$

holds. Here λ_n denotes the Grötzsch constant in \overline{R}^n .

Proof. We may assume $x_2 = x_1 + e$, where |e| = 1. Denote by $\psi(t)$ the conformal modulus of the Teichmüller ring in $\overline{\mathbb{R}}^n$. Given $\varepsilon > 0$, since $\log \lambda_n t^2 - \psi(t^2 - 1)$ decreases to 0 as $t \to \infty$ [G, (a), (c), p. 225], there exists $\alpha = \alpha(\varepsilon) > 1$ such that

(5.5.2)
$$0 < \log \lambda_n \alpha^2 - \psi(\alpha^2 - 1) < \varepsilon.$$

When k is sufficiently large, the spheres $S_{ik} = \{x : |x_i - x| = \alpha \delta_{ik}\}$ (i = 1, 2) are disjoint. For any line segments τ_{ik} of length δ_{ik} origined at x_i (x = 1, 2) we have (see [V, Lemma 5.53, p. 66])

(5.5.3)
$$\operatorname{mod}(\tau_{ik}, S_{ik}) = 2^{-1}\psi(\alpha^2 - 1), \quad i = 1, 2.$$

After a suitable subsequence has been chosen and relabelled, it may be assumed by the raylikeness condition that $\mu_{x_i}[1/\delta_{ik}]\gamma_{ik} \to \gamma_{i0}$ in Cont $\overline{\mathbb{R}}^n$, γ_{i0} being a unit line segment origined at x_i . The uniform convergence of rings

$$\left(\mu_{x_i}[1/\delta_{ik}]\gamma_{ik},\mu_{x_i}[1/\delta_{ik}]S_{ik}\right) \to \left(\gamma_{i0},S_i = \left\{x: |x_i - x| = \alpha\right\}\right)$$

combined with the continuous property of ring moduli [G, Theorem 5, p. 228] and the equality (5.5.3) together imply

(5.5.4)
$$\operatorname{mod}(\gamma_{1k}, S_{1k}) + \operatorname{mod}(\gamma_{2k}, S_{2k}) = \psi(\alpha^2 - 1) + O_1$$

with $O_1 \to 0$ as $k \to \infty$. Since the ring (S_{1k}, S_{2k}) may be transformed by a Möbius map into a spherical ring $\{x : 1 < |x| < T_k\}$ with $T_k = \exp \operatorname{mod}(S_{1k}, S_{2k}) \to \infty$ as $k \to \infty$, the direct calculation yields (5.5.5)

$$\begin{aligned} \operatorname{mod}(S_{1k}, S_{2k}) &= \log T_k \\ &= \log \left(1 - \alpha^2 (\delta_{1k} - \delta_{2k})^2 \right) - \log \alpha^2 \delta_{1k} \delta_{2k} - 2 \log (1 + T_k^{-1}) \\ &= \log (1/\delta_{1k} \delta_{2k}) - \log \alpha^2 + O_2, \end{aligned}$$

where $O_2 \rightarrow 0$ as $k \rightarrow \infty$. The extremal property of the Teichmüller ring [G, Section 2, Theorem 4, p. 226] and the asymptotics for its conformal modulus [G, Section 2, (c), p. 225] imply the estimate

(5.5.6)
$$\operatorname{mod}(\gamma_{1k}, \gamma_{2k}) \le \psi\left(\frac{1+\delta_{1k}+\delta_{2k}}{\delta_{1k}\delta_{2k}}\right) = \log\frac{\lambda_n}{\delta_{1k}\delta_{2k}} + O_3,$$

where $O_3 \rightarrow 0$ as $k \rightarrow \infty$. It follows from (5.5.4), (5.5.5) and

$$\operatorname{mod}(\gamma_{1k}, \gamma_{2k}) \ge \operatorname{mod}(\gamma_{1k}, S_{1k}) + \operatorname{mod}(S_{1k}, S_{2k}) + \operatorname{mod}(\gamma_{2k}, S_{2k})$$

that

$$\mathrm{mod}(\gamma_{1k},\gamma_{2k}) \ge \psi(\alpha^2 - 1) - \log \lambda_n \alpha^2 + \log(\lambda_n/\delta_{1k}\delta_{2k}) + O_4,$$

where $O_4 \rightarrow 0$ as $k \rightarrow \infty$. The latter estimate, together with (5.5.2), (5.5.6), implies the double bound

$$\log \lambda_n + O_4 - \varepsilon \leq \operatorname{mod}(\gamma_{1k}, \gamma_{2k}) + \log \delta_{1k} \delta_{2k} \leq \log \lambda_n + O_3.$$

Letting $k \to \infty$ and $\varepsilon \to 0$ yields

$$\lim_{k \to \infty} \delta_{1k} \delta_{2k} \operatorname{exp} \operatorname{mod}(\gamma_{1k}, \gamma_{2k}) = \lambda_n$$

as desired. \square

V.V. Aseev

5.6. Lemma. Let $f: \Sigma \to \overline{R}^n$ be an id-BMD embedding. A point $a \in \Sigma$ will be regarded as a regular point for f if there exists an arc $\gamma \subset \Sigma$ origined at a such that both γ and $f\gamma$ are raylike at points a and fa, respectively. If the set Σ' of all regular points for f is dense in Σ , then f is a Möbius embedding.

Proof. To prove this assertion we just need to modify the arguments from the proof of Theorem 5.3 slightly as follows. We may think of γ_{ik} as subarcs in γ_i such that $a_i \in \gamma_{ik}$ and $\delta_{ik} = \max_{x \in \gamma_{ik}} |x - a_i|$, while γ_i is just the arc mentioned in the above definition of a regular point for f. Because of the raylikeness of γ_i and $f\gamma_i$ at the respective points, Lemma 5.5 yields the asymptotics

(5.6.1)
$$\lim_{k \to \infty} \delta_{ik} \delta_{jk} \exp \operatorname{mod}(\gamma_{ik}, \gamma_{jk}) = \lambda_n |a_i - a_j|^2,$$
$$\lim_{k \to \infty} \delta'_{ik} \delta'_{jk} \exp \operatorname{mod}(f\gamma_{ik}, f\gamma_{jk}) = \lambda_n |fa_i - fa_j|^2$$

where $\delta'_{ik} = \max |x - fa_i|$ over $f\gamma_{ik}$. The asymptotics (5.3.1) and similar asymptotics for $\operatorname{mod}(f\gamma_{ik}, f\gamma_{jk})$ should now be replaced by (5.6.1). \Box

5.7. Theorem. If $\Sigma \subset \overline{R}^n$ is a circle or circular arc, every id-BMD embedding $f: \Sigma \to \overline{R}^n$ is a Möbius embedding.

Proof. If Σ is a circle, the theorem has been proved in [As5] by arguments quite similar to [G, Section 5, p. 241-243]. Thus we may assume Σ to be a ray origined at 0 and the points 0, ∞ to be fixed under f. Let $a \in \Sigma \setminus \{0, \infty\}$ and $\gamma_a \subset \Sigma$ be the ray origined at a. In order to prove that $f\gamma_a$ is raylike at fa we consider an arbitrary stretching sequence $\{\mu_{fa}[t_k]\}$ such that $\mu_{fa}[t_k]f\gamma_a \to \gamma$ in Cont $\overline{\mathbb{R}}^n$ as $k \to \infty$. Let $\tilde{z}_k = f z_k$ be a point at the Jordan arc $\tau \subset f \Sigma$ with endpoints 0 and fa such that $|\mu_{fa}[t_k]\tilde{z}_k - fa| = |fa|$. Since $\tilde{z}_k \to fa$ as $k \to \infty$, there may be found an increasing sequence $t'_k \to \infty$ such that $a + t'_k(z_k - a) = \frac{1}{2}a$. The sequence of rays $\Sigma_k = \mu_a[t'_k]\Sigma$ converges to a circle $\Sigma_0 \subset \overline{R}^n$ in Cont \overline{R}^n as $k \to \infty$. Since the sequence $\{\nu_k = \mu_{fa}[t_k] \circ f \circ \mu_a^{-1}[t'_k]: \Sigma_k \to \overline{R}^n\}$ of id-BMD embeddings is normed by the conditions $\nu_k(a) = f(a), \ \nu_k(\infty) = \infty, \ |\nu_k(\frac{1}{2}a) - \nu_k(\infty)| < \infty$ |fa| = |fa|, it is a normal family. If we apply Theorem 2.3 to choose a subsequence ν_{k_s} that converges to an BMD embedding $\nu: \Sigma_0 \to \overline{R}^n$ of a circle $\Sigma_0 \subset \overline{R}^n$, then, because $t'_{k+1} > t'_k$ and $\Sigma_k \subset \Sigma_{k+1}$, we get the equality $M(E, F) = M(\nu E, \nu F)$ for all rings (E, F) on $\Sigma_0 \setminus \{\infty\} = \bigcup_k \Sigma_k$. Since $\nu | \Sigma_0 \setminus \{\infty\}$ is an id-BMD embedding of the line $\Sigma_0 \setminus \{\infty\}$, we have the situation as in [As5, Lemma 4]. Thus ν is a Möbius embedding of a line $\Sigma_0 \setminus \{\infty\}$ and hence $\gamma = \nu \gamma_a$ is a ray origined at fa. Thus $f\gamma_a$ is raylike at fa and the point a is a regular point for f. So by Lemma 5.6 f is a Möbius embedding. \Box

5.8. Lemma. Let an arc $\gamma \subset \overline{R}^n$ be raylike at a point $a \in \gamma$. Then for any id-BMD embedding $f: \gamma \to \overline{R}^n$ its image $f\gamma$ is also raylike at fa.

Proof. Consider an arbitrary stretching sequence $\mu_{fa}[t_k]$ such that $t_k \to \infty$ and $\mu_{fa}[t_k]f\gamma \to \gamma'$ in Cont $\overline{\mathbb{R}}^n$. For every k there exists a point $\tilde{z}_k = fz_k \in f\gamma$ such that $|\mu_{fa}[t_k]\tilde{z}_k - fa| = 1$. Since $\tilde{z}_k \to fa$ as $k \to \infty$, we have $z_k \to a$ and may consider $\nu_k = \mu_a[1/|a-z_k|]$ a stretching sequence for γ . Choosing a suitable relabelled subsequence gives the convergence $\nu_k\gamma \to \gamma_0$ in Cont $\overline{\mathbb{R}}^n$, where γ_0 is a ray origined at a. The sequence $\{\tau_k = \mu_{fa}[t_k] \circ f \circ \nu_k^{-1} \colon \nu_k\gamma \to \overline{\mathbb{R}}^n\}$ of id-BMD embeddings is normed by conditions $\tau_k a = fa$, $\tau_k(\infty) = \infty$ and $|\tau_k b_k - fa| = 1$ for $b_k = \nu_k z_k$ with $|b_k - a| = 1$. By Theorem 2.3 we may assume the convergence $\tau_k \to \tau \colon \gamma_0 \to \gamma'$ of id-BMD embeddings τ_k to a BMD embedding τ of a ray γ_0 . By Theorem 3.1, τ is also an id-BMD embedding. Hence by Theorem 5.7 it is a Möbius embedding and $\gamma' = \tau\gamma_0$ is a ray. Thus the raylikeness of $f\gamma$ at the point fa has been proved. \Box

5.9. Theorem. Let $\Sigma \subset \overline{R}^n$ have a dense subset Σ' such that for every point $a \in \Sigma'$ there exists an arc $\gamma_a \subset \Sigma$ which is raylike at a. Then every id-BMD embedding $f: \Sigma \to \overline{R}^n$ is a Möbius one.

Proof. By Lemma 5.8 the situation satisfies the conditions of Lemma 5.6, which implies the desired assertion. \square

Bibliography

- [As1] ASEEV, V.V.: Quasisymmetric embeddings and the mappings that boundedly distort moduli. - Report no. 7190-84, VINITI, Moscow, 1984 (Russian).
- [As2] ASEEV, V.V.: Quasisymmetric embeddings and BMD-homeomorphisms of Jordan arcs and curves. - Report no. 3209-84, VINITI, Moscow, 1984 (Russian).
- [As3] ASEEV, V.V.: Normal families of topological embeddings. Dinamika Sploshn. Sredy 76, 1986, 32-42 (Russian).
- [As4] ASEEV, V.V.: Convergence and stability of bounded modulus distortion mappings. -Siberian Math. J. 25, 1984, 15–23 (English translation).
- [As5] ASEEV, V.V.: On homeomorphisms of k-dimensional spheres that preserve n-dimensional space moduli. - Soviet Math. Dokl. 19, 1978, 1526–1529.
- [As6] ASEEV, V.V.: Plane mappings that preserve moduli. Dokl. Akad. Nauk SSSR 310, 1990, 1033-1034 (Russian).
- [As7] ASEEV, V.V.: On quasiconformally double homogeneous continua. Sibirsk. Mat. Z. 26, 1985, 201-203 (Russian).
- [AsV1] ASEEV, V.V., and A.K. VARISOV: On a test for quasi-conformality of mappings of smooth surfaces. - Soviet. Math. Dokl. 18, 1977, 800-803.
- [AsV2] ASEEV, V.V., and A.K. VARISOV: On a conjecture for plane topological embeddings that boundedly distort moduli. - Dokl. Akad. Nauk UzSSR 7, 1988, 8–9 (Russian).
- [AsV3] ASEEV, V.V., and A.K. VARISOV: On removable singularities of plane topological embeddings that boundedly distort moduli. - Izv. Acad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 4, 1988, 10-15 (Russian).
- [AsT] ASEEV, V.V., and D.A. TROTSENKO: Quasisymmetric embeddings, quadruples of points and distortion of moduli. - Siberian Math. J. 28, 1988, 543–548 (English translation).
- [AV] ANDERSON, G.D., and M. VAMANAMURTHY: The transfinite moduli of condensers in space. - Tôhoku Math. J. 40, 1988, 1-25.

V.V. Aseev

- [B] BAGBY, T.: The modulus of a plane condenser. J. Math. Mech. 17, 1967, 315-329.
- [G] GEHRING, F.W.: Quasiconformal mappings. In Complex Analysis and Applications, Trieste, 1975, Volume 2, Vienna, 1976, 213–268.
- [K1] KURATOWSKI, K.: Topology, V.1. Academic Press, 1966.
- [K2] KURATOWSKI, K.: Topology, V.2. Academic Press, 1968.
- [R] RICKMAN, S.: Quasiconformally equivalent curves. Duke Math. J. 36, 1962, 387-400.
- [Vä] VÄISÄLÄ, J.: Quasimöbius maps. J. Analyse Math. 44, 1985, 218–234.
- [V] VUORINEN, M.: Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics 1319, Springer-Verlag, 1988.

Siberian Branch of the U.S.S.R. Academy of Sciences Institute of Mathematics 630090, Novosibirsk, 90 U.S.S.R.

Received 15 June 1990