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THE COMPONENTS OF A JULIA SET

A.F. Beardon

Let R be a rational map of degree d of the complex sphere Co onto itself,
and let J and F be the Julia and Fatou sets of R respectively. We assume
throughout that d > 2; then J is the smallest compact set E which contains at
least three points, and which satisfies

R(E) = E = R™Y(E).

We call this property the complete invariance of E, and the fact that J is the
smallest such set is referred to as the minimality of J. For details of the general
theory, we refer the reader to [1], [2] and [3]. It is known that J is a perfect set (so
J is uncountable, and no point of J is isolated), and also that if J is disconnected,
then it has infinitely many components. The following result, which seems not to
have been noticed before, contains both of these results (when J is disconnected)
and more.

Theorem. If J is disconnected, then it has uncountably many many com-
ponents, and each point of J is an accumulation point of distinct components

of J.

In [4], McMullen gives an example in which J has a buried component (that
is, a component of J which is not on the boundary of any component of F').
If each component of F has finite connectivity, and if J is disconnected, then
there are only countably many components of J which lie on the boundary of
some component of F', and our Theorem immediately yields the following general
result.

Corollary. Suppose that J is disconnected, and that every component of F'
has finite connectivity. Then J has a buried component.

The major part of the proof of the Theorem is contained in the following

Proposition. Let K be a compact connected subset of Co,. Then R7!(K)
has at most d components, and each is mapped by R onto K.

The proof of the Proposition is easier if we first discuss some preliminary
results. The complement of a set A with respect to the plane C and the sphere
Co are denoted by C — A and C. — A respectively. First, we quote
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Lemma 1 ([5], p. 144). A compact subset W of Cq is connected if and
only if every component of Co, — W is simply connected.

Next, consider a bounded domain D in C which is bounded by a finite number
of Jordan curves ;. The winding number of 7; about any 2z not on +; is denoted
by n(v;,z), and if z € 0D we write

n(0D,z) = Z n(v;j, z).

J

Obviously,
(1) D={z:2¢3dD,n(dD,z) #0}.

Finally, let A and B be disjoint, non-empty, compact subsets of C. We
put a rectangular grid on C which is fine enough so that no square in the grid
meets both A and B, and we let {Q;} be the set of those (closed) squares that
meet A. Now let 2 be the interior of UQ;: then Q is a bounded open set with a
finite number of components ;, each being bounded by a finite number of Jordan
curves, and (1) holds with D replaced by §2;. Further,

(2) ACQ, BNQ =4, N N(AUB)=0.

We now give the

Proof of the Proposition. Let D = Co, — K, and let D; be the components
of D; Lemma 1 shows that each D; is simply connected. Next, it is easy to see
that each component of R™'(D;) is mapped by R onto D;, and because each D;
is simply connected, we see that any component of R~!(D;) is either a simply
connected domain, or it is a domain of finite connectivity which contains a critical
point of R (for if such a component, say A, does not contain a critical point then,
by the monodromy theorem, the map R of A onto D, is a homeomorphism). As
R™Y(D) is the union of the R™!(D;), it follows that R™!(D) is the union of a
finite number of multiply (but finitely) connected domains, say M;,..., My, and
a number (possibly infinite) of simply connected domains S;.

When there are no multiply connected domains M; present, all of the com-
ponents of R~1(D) are simply connected and then Lemma 1 implies that the
complement of R~!(D), namely R™!(K), is connected: thus the conclusion of
the Proposition holds in this case.

We now assume that at least one domain M; exists, and we consider the
minimal, and necessarily finite, set of components Ei,...,E; of R~}(K) such
that

(3) JoM; c Eyu---UE,.
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Next, we show that E,,...,E, are all of the components of R~1(K). Suppose,
then, that @ is another component of R™!(K) and write E = E; U---U Ey:
then E and Q are disjoint compact subsets of R™1(K), so from [5] (Theorem 5.6,
p. 82), there are compact subsets A and B of R™!(K) such that

(4) AUB=RYK), ANB-=4, QCcA, EcCB.

We may assume that co € R™!(D); then A and B are disjoint, compact subsets
of C, so we can find an open set Q (as described above) satisfying (2), and hence
from (4), also

(5) 0 c RY(D).

Now let {2g be the component of Q that contains the connected set Q. Using
(3) and (4), we find that for each r,

OM,. C E C B,

and so we see from (2) that Q¢ and OM, are disjoint. Now g is arcwise
connected, and this means that either Qg C M, or Qo N M, = §. Now the first
possibility cannot occur because if it does, then

Q C Qo C M, c RTY(D)

which violates the fact that @ C R™!(K); thus Qg is disjoint from each M,. As
each M, is open, we deduce that the closure of Q¢ is disjoint from UM, .

As a consequence of this, each boundary component v; (a Jordan curve) of
§2q lies in some simply connected domain Sy, for, by (5), it lies in R™!(D); thus
one side of v; lies in Sy, while the other side contains R™!(K) and each M,. It
follows that for any z; in M,, and any z; in Q,

n(7J, 21) = n(7]) 22)7

and hence that
n(0Qq, z1) = n(0Qg, z2) # 0.

This shows that z; is in (1q, contrary to the fact that g and M, are disjoint.
It follows that no such component @ exists, and so we have proved that

RV K)=EU---UE,.

As R7(K) is compact, so is each E;, and hence R(E;) also: thus R(E;j)
is a closed subset of K. We shall now show that each R(E;) is relatively open
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in K: then, as K is connected, we find that R(E;) = K. Clearly, this implies
that ¢ < d and the proof of the Proposition will then be complete.

To show that R(E;) is relatively open in K, we take any ( in R(Ej), say
¢ = R(w), where w € Ej. We find a neighbourhood N of w not meeting any
other E; (this is possible because R™!(K) has only finitely many components)
and observe that

KN R(N) = R(E; N N) C R(E;).

This shows that R(E;) is relatively open in K, and the proof of the Proposition
is complete.

We end with the

Proof of the Theorem. Let K be the set of points in J at which infinitely
many components of J accumulate. Our first objective is to show that J = K
and to do this, we prove
(a) K is closed,;

(b) K is completely invariant, and
(¢) K has at least three points.
With these, the minimality of J shows that J C K, and hence that K = J.

Obviously, K is closed, so (a) holds. By assumption, J has infinitely many
components so K is not empty, and with this, (b) implies (¢) (for, from the general
theory of iteration, any non-empty finite completely invariant set lies in F'). We
shall now show that (b) holds.

First, take ¢ in K, so there is a sequence Jy, Jz, ... of distinct components
of J which accumulate at (. Obviously, the components R(J,) accumulate at
R(¢), and from the Proposition we see that at most d of the J, can map to
any given component of J. We deduce that infinitely many components of J
accumulate at R((), and hence that R(K) C K.

Next, take any ¢ in K and w such that R(w) = (: then find neighbourhoods
U of w and V of ¢ such that for an appropriate k£, R is a k-fold map of U
onto V. Again, there is a sequence Jy, Jz, ... of distinct components of J
which accumulate at (, and we may assume that all of these meet V. It follows
that some component of each R™!(J,) meets U, and these components must be
distinct as the J, are. As U and V can be chosen arbitrarily small, this shows
that R~1(K) C K, and hence that (b) holds. We have now shown that J = K
and so, in particular, no component of J is isolated.

It only remains to prove that J has uncountably many components. We argue
by contradiction, so suppose that the components of J are J,, Jz, .... Now J
is a compact metric space, and J is the countable union of the J, so, by Baire’s
category theorem not every J, is nowhere dense in J. We may suppose that J;
is not, so the closure of J; has a non-empty interior (all in the relative topology
on J). But J; is a component of J, so it is closed in J. We deduce that J;
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has a non-empty interior in J, and as this violates the statement at the end of
the previous paragraph, we can conclude that J must have uncountably many
components.
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