THE COMPONENTS OF A JULIA SET

A.F. Beardon

Let \(R \) be a rational map of degree \(d \) of the complex sphere \(\mathbb{C}_\infty \) onto itself, and let \(J \) and \(F \) be the Julia and Fatou sets of \(R \) respectively. We assume throughout that \(d \geq 2 \); then \(J \) is the smallest compact set \(E \) which contains at least three points, and which satisfies

\[
R(E) = E = R^{-1}(E).
\]

We call this property the complete invariance of \(E \), and the fact that \(J \) is the smallest such set is referred to as the minimality of \(J \). For details of the general theory, we refer the reader to [1], [2] and [3]. It is known that \(J \) is a perfect set (so \(J \) is uncountable, and no point of \(J \) is isolated), and also that if \(J \) is disconnected, then it has infinitely many components. The following result, which seems not to have been noticed before, contains both of these results (when \(J \) is disconnected) and more.

Theorem. If \(J \) is disconnected, then it has uncountably many many components, and each point of \(J \) is an accumulation point of distinct components of \(J \).

In [4], McMullen gives an example in which \(J \) has a buried component (that is, a component of \(J \) which is not on the boundary of any component of \(F \)). If each component of \(F \) has finite connectivity, and if \(J \) is disconnected, then there are only countably many components of \(J \) which lie on the boundary of some component of \(F \), and our Theorem immediately yields the following general result.

Corollary. Suppose that \(J \) is disconnected, and that every component of \(F \) has finite connectivity. Then \(J \) has a buried component.

The major part of the proof of the Theorem is contained in the following

Proposition. Let \(K \) be a compact connected subset of \(\mathbb{C}_\infty \). Then \(R^{-1}(K) \) has at most \(d \) components, and each is mapped by \(R \) onto \(K \).

The proof of the Proposition is easier if we first discuss some preliminary results. The complement of a set \(A \) with respect to the plane \(\mathbb{C} \) and the sphere \(\mathbb{C}_\infty \) are denoted by \(\mathbb{C} - A \) and \(\mathbb{C}_\infty - A \) respectively. First, we quote

Lemma 1 ([5], p. 144). A compact subset W of C_{∞} is connected if and only if every component of $C_{\infty} - W$ is simply connected.

Next, consider a bounded domain D in C which is bounded by a finite number of Jordan curves γ_j. The winding number of γ_j about any z not on γ_j is denoted by $n(\gamma_j, z)$, and if $z \not\in \partial D$ we write

$$n(\partial D, z) = \sum_j n(\gamma_j, z).$$

Obviously,

$$D = \{ z : z \not\in \partial D, n(\partial D, z) \neq 0 \}.$$

Finally, let A and B be disjoint, non-empty, compact subsets of C. We put a rectangular grid on C which is fine enough so that no square in the grid meets both A and B, and we let $\{Q_j\}$ be the set of those (closed) squares that meet A. Now let Ω be the interior of $\cup Q_j$: then Ω is a bounded open set with a finite number of components Ω_j, each being bounded by a finite number of Jordan curves, and (1) holds with D replaced by Ω_j. Further,

$$A \subset \Omega, \quad B \cap \Omega = \emptyset, \quad \partial \Omega \cap (A \cup B) = \emptyset.$$

We now give the

Proof of the Proposition. Let $D = C_{\infty} - K$, and let D_j be the components of D; Lemma 1 shows that each D_j is simply connected. Next, it is easy to see that each component of $R^{-1}(D_j)$ is mapped by R onto D_j, and because each D_j is simply connected, we see that any component of $R^{-1}(D_j)$ is either a simply connected domain, or it is a domain of finite connectivity which contains a critical point of R (for if such a component, say Δ, does not contain a critical point then, by the monodromy theorem, the map R of Δ onto D_j is a homeomorphism). As $R^{-1}(D)$ is the union of the $R^{-1}(D_j)$, it follows that $R^{-1}(D)$ is the union of a finite number of multiply (but finitely) connected domains, say M_1, \ldots, M_t, and a number (possibly infinite) of simply connected domains S_j.

When there are no multiply connected domains M_j present, all of the components of $R^{-1}(D)$ are simply connected and then Lemma 1 implies that the complement of $R^{-1}(D)$, namely $R^{-1}(K)$, is connected: thus the conclusion of the Proposition holds in this case.

We now assume that at least one domain M_j exists, and we consider the minimal, and necessarily finite, set of components E_1, \ldots, E_q of $R^{-1}(K)$ such that

$$\bigcup \partial M_j \subset E_1 \cup \cdots \cup E_q.$$
Next, we show that E_1, \ldots, E_q are all of the components of $R^{-1}(K)$. Suppose, then, that Q is another component of $R^{-1}(K)$ and write $E = E_1 \cup \cdots \cup E_q$: then E and Q are disjoint compact subsets of $R^{-1}(K)$, so from [5] (Theorem 5.6, p. 82), there are compact subsets A and B of $R^{-1}(K)$ such that

$$A \cup B = R^{-1}(K), \quad A \cap B = \emptyset, \quad Q \subset A, \quad E \subset B.$$

We may assume that $\infty \in R^{-1}(D)$; then A and B are disjoint, compact subsets of C, so we can find an open set Ω (as described above) satisfying (2), and hence from (4), also

$$\partial \Omega \subset R^{-1}(D).$$

Now let Ω_Q be the component of Ω that contains the connected set Q. Using (3) and (4), we find that for each r,

$$\partial M_r \subset E \subset B,$$

and so we see from (2) that Ω_Q and ∂M_r are disjoint. Now Ω_Q is arcwise connected, and this means that either $\Omega_Q \subset M_r$ or $\Omega_Q \cap M_r = \emptyset$. Now the first possibility cannot occur because if it does, then

$$Q \subset \Omega_Q \subset M_r \subset R^{-1}(D)$$

which violates the fact that $Q \subset R^{-1}(K)$; thus Ω_Q is disjoint from each M_r. As each M_r is open, we deduce that the closure of Ω_Q is disjoint from $\bigcup M_r$.

As a consequence of this, each boundary component γ_j (a Jordan curve) of Ω_Q lies in some simply connected domain S_m for, by (5), it lies in $R^{-1}(D)$; thus one side of γ_j lies in S_m, while the other side contains $R^{-1}(K)$ and each M_r. It follows that for any z_1 in M_r, and any z_2 in Q,

$$n(\gamma_j, z_1) = n(\gamma_j, z_2),$$

and hence that

$$n(\partial \Omega_Q, z_1) = n(\partial \Omega_Q, z_2) \neq 0.$$

This shows that z_1 is in Ω_Q, contrary to the fact that Ω_Q and M_r are disjoint. It follows that no such component Q exists, and so we have proved that

$$R^{-1}(K) = E_1 \cup \cdots \cup E_q.$$

As $R^{-1}(K)$ is compact, so is each E_j, and hence $R(E_j)$ also: thus $R(E_j)$ is a closed subset of K. We shall now show that each $R(E_j)$ is relatively open.
in K: then, as K is connected, we find that $R(E_j) = K$. Clearly, this implies that $q \leq d$ and the proof of the Proposition will then be complete.

To show that $R(E_j)$ is relatively open in K, we take any ζ in $R(E_j)$, say $\zeta = R(w)$, where $w \in E_j$. We find a neighbourhood N of w not meeting any other E_i (this is possible because $R^{-1}(K)$ has only finitely many components) and observe that

$$K \cap R(N) = R(E_j \cap N) \subset R(E_j).$$

This shows that $R(E_j)$ is relatively open in K, and the proof of the Proposition is complete.

We end with the

Proof of the Theorem. Let K be the set of points in J at which infinitely many components of J accumulate. Our first objective is to show that $J = K$ and to do this, we prove

(a) K is closed;

(b) K is completely invariant, and

(c) K has at least three points.

With these, the minimality of J shows that $J \subset K$, and hence that $K = J$.

Obviously, K is closed, so (a) holds. By assumption, J has infinitely many components so K is not empty, and with this, (b) implies (c) (for, from the general theory of iteration, any non-empty finite completely invariant set lies in F). We shall now show that (b) holds.

First, take ζ in K, so there is a sequence J_1, J_2, \ldots of distinct components of J which accumulate at ζ. Obviously, the components $R(J_n)$ accumulate at $R(\zeta)$, and from the Proposition we see that at most d of the J_n can map to any given component of J. We deduce that infinitely many components of J accumulate at $R(\zeta)$, and hence that $R(K) \subset K$.

Next, take any ζ in K and w such that $R(w) = \zeta$: then find neighbourhoods U of w and V of ζ such that for an appropriate k, R is a k-fold map of U onto V. Again, there is a sequence J_1, J_2, \ldots of distinct components of J which accumulate at ζ, and we may assume that all of these meet V. It follows that some component of each $R^{-1}(J_n)$ meets U, and these components must be distinct as the J_n are. As U and V can be chosen arbitrarily small, this shows that $R^{-1}(K) \subset K$, and hence that (b) holds. We have now shown that $J = K$ and so, in particular, no component of J is isolated.

It only remains to prove that J has uncountably many components. We argue by contradiction, so suppose that the components of J are J_1, J_2, \ldots. Now J is a compact metric space, and J is the countable union of the J_n so, by Baire’s category theorem not every J_n is nowhere dense in J. We may suppose that J_1 is not, so the closure of J_1 has a non-empty interior (all in the relative topology on J). But J_1 is a component of J, so it is closed in J. We deduce that J_1
has a non-empty interior in J, and as this violates the statement at the end of the previous paragraph, we can conclude that J must have uncountably many components.

References