SENSE-REVERSING GENERATORS OF DISCRETE CONVERGENCE GROUPS IN THE PLANE

A. Hinkkanen

Abstract. Suppose that g is a sense-reversing homeomorphism of the 2-sphere S^2 onto itself that generates a discrete convergence group of infinite order. We show that then g is topologically conjugate to $\bar{z}+1$ if g has one fixed point in S^2 . Otherwise, g has two fixed points and is known to be conjugate to $2\bar{z}$.

1. Introduction

Following Gehring and Martin ([2, p. 335]), we say that a group G of homeomorphisms of the two-dimensional sphere S^2 onto itself is a convergence group if every sequence of elements of G contains a subsequence, say g_n , such that

- (i) $g_n \to g$ and $g_n^{-1} \to g^{-1}$ uniformly on S^2 , where g is a homeomorphism; or
- (ii) there are $x_0, y_0 \in S^2$ (possibly $x_0 = y_0$) such that $g_n \to x_0$ and $g_n^{-1} \to y_0$ uniformly on compact subsets of $S^2 \setminus \{y_0\}$ and $S^2 \setminus \{x_0\}$, respectively.

For example, a group of K-quasiconformal mappings, for a fixed $K \ge 1$, is a convergence group. The group G is discrete if it does not contain a sequence of distinct elements tending to the identity mapping Id, and then only (ii) can occur. We allow the elements of G as well as any Möbius transformations that we consider to be sense-reversing. Any group of Möbius transformations is called a Möbius group. When g is a homeomorphism, we write $g^0 = \text{Id}$, and for $n \ge 1$ we set $g^n = g \circ g^{n-1}$ and $g^{-n} = (g^{-1})^n$.

Let the convergence group G be cyclic, generated by g. We assume that $g \neq \text{Id.}$ We ask if g is topologically conjugate to a Möbius transformation, that is, if there is a homeomorphism f of S^2 onto itself such that $f \circ g \circ f^{-1}$ is a Möbius transformation. That this is indeed the case when G is nondiscrete, has recently been proved by Martin and the author [3].

Suppose that G is discrete. Gehring and Martin ([2, p. 340]) showed that g must be of one of the following three types:

- (i) g is called *elliptic* if g has finite order;
- (ii) g is parabolic if g has a unique fixed point x_0 and then $g^n(x) \to x_0$ as $n \to \infty$ or $n \to -\infty$;

Research partially supported by the U.S. National Science Foundation. 1980 Mathematics Subject Classification: Primary 30C60.

A. Hinkkanen

(iii) g is loxodromic if g has exactly two fixed points x_1 and x_2 and then, say, $g^n(x) \to x_1$ and $g^{-n}(x) \to x_2$ as $n \to \infty$, uniformly on compact subsets of $S^2 \setminus \{x_2\}$ and $S^2 \setminus \{x_1\}$, respectively.

As Gehring and Martin observed in [2, p. 354-356], this conjugacy problem has been solved in many cases. A theorem due in part to Brouwer, Kerékjártó, and Eilenberg [1] shows that an elliptic generator g is topologically conjugate to an orthogonal transformation of S^2 and thus to h(z) = cz or $h(z) = c/\bar{z}$ where c is a root of unity. Here and later, we identify S^2 with the extended complex plane $\overline{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$, whenever convenient.

Kerékjártó [7] proved that a sense-preserving loxodromic g is conjugate to h(z) = 2z, and hence to h(z) = cz for any complex nonzero c with $|c| \neq 1$ (cf. [7, p. 235]). In fact, his proof applies to sense-reversing loxodromic functions also and shows that such a function is conjugate to $h(z) = 2\overline{z}$ (cf. [4, p. 366]). If we start with the assumption that g is loxodromic, we only need to use Sections 7 and 8 of [7, p. 261–262].

Kerékjártó [6] proved that a sense-preserving parabolic function g is topologically conjugate to h(z) = z+1 and thus to h(z) = z+b for any complex nonzero b. Sperner [9] obtained an analogous characterization of functions that are topologically conjugate to a translation. Kerékjártó's arguments in [6, Section 6 onwards], seem to apply to sense-preserving functions only. Thus it may be of some interest to give an explicit proof of the corresponding result for sense-reversing parabolic functions.

Theorem 1. Let the sense-reversing function g generate a discrete convergence group of infinite order in S^2 . If g has exactly one fixed point in S^2 , then g is topologically conjugate to $h(z) = \overline{z} + 1$.

This together with the preceding remarks yields the following consequence.

Corollary 1. Any cyclic convergence group in S^2 is topologically conjugate to a group of Möbius transformations.

We remark that Gehring and Martin ([2, Theorem 7.31, p. 356]) have given an example of a noncyclic discrete convergence group on S^2 that is not topologically conjugate to a Möbius group. A nondiscrete convergence group with the same property can be obtained by modifying their example so that the Fuchsian group acting on the unit disk is replaced by a suitable nondiscrete group, such as the group of all Möbius transformations of the unit disk onto itself.

2. Proof of Theorem 1

2.1. Let g be as in Theorem 1. In view of Kerékjártó's result [6], we may perform a preliminary conjugation and assume that $g(\infty) = \infty$ and that $g^2(z) = z + 2$. (Here $g^2 = g \circ g$.) We need to find a simply connected domain U with $\infty \in \partial U$ such that $\overline{U} \setminus \{\infty\} \subset g(U)$. Then there is a Jordan curve γ going

through infinity such that one of the domains determined by γ contains U while the other one contains $\mathbb{C} \setminus g(U)$, and such that $\gamma \setminus \{\infty\} \subset g(U) \setminus \overline{U}$, so that $(g(\gamma) \setminus \{\infty\}) \cap \overline{g(U)} = \emptyset$. There is a sense-preserving homeomorphism f of the strip $S = \{z : 0 \leq \text{Re} z \leq 1\}$ onto the closure of that domain bounded by γ and $g(\gamma)$ that intersects $\partial g(U)$. Since g is sense-reversing, we can choose f so that

(2.1)
$$f(\bar{z}+1) = g(f(z))$$

when Re z = 0. Now (2.1) and the definition $f(\infty) = \infty$ extend f to a homeomorphism of S^2 onto itself such that $(f^{-1} \circ g \circ f)(z) = \overline{z} + 1$, as required. It will be clear from the construction of U that (2.1) indeed extends f to all of \mathbb{C} .

To find a suitable domain U, we define $H_q = \{z \in \mathbb{C} : \operatorname{Re} z < q\}$ for real qand set $V_q = H_q \cap g(H_q)$. Then $g(V_q) = g(H_q) \cap H_{q+2} \supset V_q$. We claim that for each M > 0 there is $x_M < 0$ such that

(2.2)
$$F_M = \{x + iy : x < x_M, |y| \le M\} \subset V_0.$$

Given M > 0, define $\Omega = \{x + iy : -2 \le x < 0, |y| \le M\}$. Then $g^{-1}(\Omega)$ is a bounded subset of **C**. We write $E + b = \{z + b : z \in E\}$ for $E \subset \mathbf{C}$ and $b \in \mathbf{C}$. Since g commutes with $g^2 = z + 2$, we have $g^{-1}(\Omega - 2n) = g^{-1}(\Omega) - 2n \subset H_0$ for $n \ge n_0$, say. Since $\Omega - 2n \subset H_0$, we have $\Omega - 2n \subset V_0$. Thus (2.2) holds with $x_M = -2n_0$. It follows that V_0 is not empty and that V_0 has a unique component D such that $F_M \subset D$ for all M > 0.

We claim that $g(D) \supset D$. In any case D is contained in some component of $g(V_0)$ since $D \subset V_0 \subset g(V_0)$. There is x_0 such that $x_0 - 2n \in D$ for all $n \ge 0$. Thus $g(x_0 - 2n) = g(x_0) - 2n \in D$ for all large n. Hence $D \cap g(D) \neq \emptyset$ and so $D \subset g(D)$ since g(D) is one of the components of $g(V_0)$.

We note that D, being one of the components of $\mathbb{C} \setminus (\partial H_0 \cup \partial g(H_0))$, is a Jordan domain. This is clear if ∂H_0 and $\partial g(H_0)$ have at most one point in common, and follows from a theorem of Kerékjártó otherwise ([5, p. 87], see also [8, p. 168]).

If $\overline{D} \setminus \{\infty\} \subset g(D)$, we take U = D. Otherwise, we obtain U by modifying D in essentially the same way as in the proof of the loxodromic case given by Kerékjártó in [7, p. 261–262]. However, we have to be slightly more careful since g has no finite attractive fixed point that we could make use of.

We write H for H_0 . We have $D \subset H$, $\partial D \subset \partial H \cup \partial g(H)$ and $\partial g(D) \subset \partial g(H) \cup \partial H_2$. So if $z \in \partial D \setminus \partial g(H)$, then $z \in \partial H$ and so $z \notin \partial g(D)$. Since $\partial D \subset \overline{D} \subset \overline{g(D)}$, we thus have $z \in g(D)$. Therefore $\partial D \setminus g(D) \subset \overline{H} \cap \partial g(H)$. Note that $g(H) \setminus \overline{H} \neq \emptyset$ and thus both $\partial H \cap \partial D$ and $\partial H \setminus \partial D$ are nonempty.

The subset $H \cap \partial D$ of ∂D is open and consists of at most countably many disjoint open arcs. The same applies to the interior of $\partial D \cap \partial H \cap \partial g(H)$. Let all these arcs, if there are any, be numbered as I_i for $i \geq 1$. Let F be a homeomorphism of \overline{H} onto \overline{D} with $F(\infty) = \infty$, for example a conformal mapping. Then

A. Hinkkanen

the arcs $F^{-1}(I_i) = I'_i \subset \partial H \setminus \{\infty\}$ are open and disjoint. Let L_i be the open semicircle in H joining the endpoints of I'_i .

Note that $I_i \subset \partial g(H)$ and so $g(I_i) \subset \partial H_2$ for all *i*. Thus $g(F(L_i))$ is an arc in $g(D) \cap H_2$ joining two points a_i and b_i that lie on ∂H_2 . Now the segment $a_i b_i$ together with $g(F(L_i))$ bounds a Jordan domain Ω_i contained in g(D). Let γ_i be a Jordan arc in $\Omega_i \setminus \overline{H_1}$ joining a_i to b_i , and set $\gamma'_i = g^{-1}(\gamma_i)$. The unbounded component W of $D \setminus \bigcup_i \gamma'_i$ is a Jordan domain. We have

$$g(W) \supset g(D) \setminus \bigcup_{i} (\Omega_i \setminus \overline{H_1}) \supset D \supset W.$$

Furthermore, the set $E_1 = \partial W \setminus g(W)$ is a compact nowhere dense subset of ∂H in the topology of $\overline{\mathbf{C}}$. Let F_1 be a homeomorphism of \overline{H} onto \overline{W} with $F_1(\infty) = \infty$.

For each integer $n \geq 1$, we cover $E_1 \cap \{iy : n-1 \leq |y| \leq n\}$ by finitely many vertical open segments J_{ni} of length less than ε , where $\varepsilon \in (0,1)$ is chosen so that $|g(F_1(z)) - g(F_1(w))| < \frac{1}{2}$ if $z, w \in \overline{H_0} \setminus H_{-1}$ with $|z|, |w| \leq n+1$ and $|z-w| \leq \varepsilon$. Let L_{ni} be the semicircle contained in H_0 and joining the endpoints of J_{ni} . The component U_1 of $H_0 \setminus \bigcup_n \bigcup_i L_{ni}$ containing H_{-1} is a Jordan domain, and $U = F_1(U_1)$ is a domain with the required properties. This completes the proof of Theorem 1.

References

- EILENBERG, S.: Sur les transformations périodiques de la surface du sphère. Fund. Math. 22, 1934, 28-41.
- [2] GEHRING, F.W., and G.J. MARTIN: Discrete quasiconformal groups I. Proc. London Math. Soc. (3) 55, 1987, 331-358.
- [3] HINKKANEN, A., and G.J. MARTIN: Abelian nondiscrete convergence groups in the plane. - Preprint.
- [4] HOMMA, T., and S. KINOSHITA: On the regularity of homeomorphisms of Eⁿ. J. Math. Soc. Japan 5, 1953, 365-371.
- [5] VON KERÉKJÁRTÓ, B.: Vorlesungen über Topologie I: Flächentopologie. Springer-Verlag, Berlin, 1923.
- [6] VON KERÉKJÁRTÓ, B.: Über die fixpunktfreien Abbildungen der Ebene. Acta Litt. Sci. Szeged 6, 1934, 226-234.
- [7] VON KERÉKJÁRTÓ, B.: Topologische Charakterisierung der linearen Abbildungen. Acta Litt. Sci. Szeged 6, 1934, 235-262.
- [8] NEWMAN, M.H.A.: Elements of the topology of plane sets of points. Cambridge Univ. Press, Cambridge, 1964.
- [9] SPERNER, E.: Über die fixpunktfreien Abbildungen der Ebene. Abh. Math. Sem. Hamburg 10, 1934, 1-47.

University of Illinois at Urbana-Champaign Department of Mathematics Urbana, Illinois 61801 U.S.A. Received 20 July 1990