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ON THE REGULARITY OF SOLUTIONS OF
A HOMOGENEOUS DIRICHLET PROBLEM
FOR A NON-HYPOELLIPTIC LINEAR
PARTIAL DIFFERENTIAL OPERATOR

K. Doppel and R. Hochmuth

1. Introduction

1.1. In the study of the regularity of generalized solutions of various problems
for partial differential equations the notion of the hypoellipticity of linear partial
differential operators has a central role. Originally the hypoelliptic operators were
introduced by L. Hérmander in 1955, and for the results of the development one
can today consult his monograph [13], especially chapters 11 and 13.

A linear differential operator P(-,D) defined in some open set £ in R”
through

(1.1) P(z,D)u = Z aq(z)D%u

la|<m
with given coefficients a, € C°(Q) is called hypoelliptic if the relation
(1.2) sing supp u = sing supp P(+, D)u

is valid for all distributions u € D'(Q).
Especially in the case of a differential operator

(1.3) P(D)u= Y caD”

la|<m

with constant coefficients ¢, € C there are several equivalent characterizations
of the hypoellipticity, among them the following: The differential operator (1.3)
is hypoelliptic in R™ (and in every open subset Q of R") if and only if for all
a € Ng and for €] —» oo (£ € R™)

(1.4) P)(i)/P(i€) — 0

(cf. Hormander [13], Theorem 11.1.1, p. 61).
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From the property (1.2) it becomes obvious that for generalized solutions u
(e.g. for u € D'(Q)) of the differential equation

P(z,D)u=f

with a hypoelliptic differential operator P(:,D) one gets from local regularity
properties of the given right-hand side function f (say, from f € C*°(Q;) with
Q1 CC Q) the local regularity of u (u € C®()).

Thus, we have every reason to expect to get for generalized solutions of differ-
ent boundary value problems for hypoelliptic differential operators (and also for
hypoelliptic pseudo-differential operators) regularity results similar to or some-
what weaker than previously known for elliptic operators. Many authors have
published works on the research in this direction.

At the same time the question arises whether it is possible to prove, at least
in some special cases, regularity results for generalized solutions of problems for
differential operators which are not hypoelliptic. From the short remarks above
it should be clear that such results could still be possible to reach if one assumes
global regularity properties of the given data. As far as we know, only a few results
in this direction have been published so far.

1.2. In a series of papers, I.S. Louhivaara and C.G. Simader studied t-
coercive linear partial differential operators of order m (m € N, t e N or t € R,
0 <t < m). There are also non-hypoelliptic differential operators in these classes.

In 1972 they proved the following regularity result [15]: Let P(D) be a 2t-
coercive linear differential operator of order m with constant coefficients (m,t €
N, 2t < m). If u € L}(R") is a weak L?-solution in R"™ of the differential
equation P(D)u = f with f € H¥(R") (k € N), i.e. if u satisfies with the
formal adjoint differential operator P'(D) the relation

(U,PI(D)SO)L%R,,) = (f,S‘O)L?(R.")

for all ¢ € C$(R™), then u € H¥TF(R").

Furthermore, in 1978 the same authors [16] proved a corresponding result for
periodic solutions of a t-coercive differential operator (¢ € R, ¢t > 0) even in the
case of non-constant coefficients periodic in all variables.

We also mention the works by S.J. Greenfield and N.R. Wallach [9], D. Fu-
jiwara and H. Omori [8], and M. Yoshino [23]. They all investigate on the n-
dimensional torus some classes of differential operators which also include opera-
tors not hypoelliptic in the above sense but yet “globally hypoelliptic”.

1.3. In this paper we shall study the regularity of the solutions of a homoge-
neous Dirichlet problem for a bounded domain 2 = ©; xQ, in R™ with 2, C R™»
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(ny, =22, p€{1,2}) and n = n; +n, and for a linear partial differential operator
which is a product of two uniformly elliptic differential operators with smooth co-
efficients defined in ©; and ;. The existence and uniqueness of the generalized
solutions of this problem in the case of a product of Laplace operators was shown
in the paper [4] by one of the present authors together with N. Jacob.

The idea of such Dirichlet problems comes from the research [6] of E.B. Dynkin
on the simplest random fields to several independent Markov processes observed
at different times. He even gave a proof for the existence of a solution of the
Dirichlet problem by methods developed in stochastic analysis.

In this connection we also refer to the papers of H.-J. Herrler [10-11], K. Dop-
pel and N. Jacob [5], N. Jacob [14], and B. Schomburg [21]. We would also like to
remark that D. Mangeron [17] already in 1933 studied, by totally classical meth-
ods, a Dirichlet problem where the differential operator could be interpreted as a
special product operator in the sense of [6], [4] and of this paper.

As an example of differential operators to be studied in this note, let us take
the simplest case n; = ny = 2 and

o2 92 o2 8?
P(D) = (azf + axg) ° (azg + azg)'
The symbol associated with P(D) is given by P(i€) = £2£2 + £2¢2 + €262 + ¢€2¢2.
Since for ¢ = 1/k,& =k, k € N, and & = & = 0 we have D(29:0.0 P(¢)/P(if)
= 2k?, it follows by the above-mentioned result (1.4) of L. Hérmander that P(D)
is not hypoelliptic.

Thus the class of differential operators P(-, D,) we are studying here includes
non-hypoelliptic differential operators. However, we are able to show that in suit-
able bounded product domains  the homogeneous Dirichlet problem behaves
hypoelliptically, i.e. it is possible to conclude the smoothness of the solution in Q
from the smoothness of the right-hand side of the differential equation in § and
from the smoothness of the coefficients of P(-,D;).

Thus we shall show that there are “globally hypoelliptic” homogeneous Dirich-
let problems for non-hypoelliptic partial differential operators.

2. Definitions and the statement of the problem

2.1. By N7* we denote the set of all ordered systems of m nonnegative
integers (multi-indices). For a = (a1,...,am) € NJ* we define its length as
usual by |a| := a3 + -+ + am. Especially, we define for each : € {1,...,m} the
multi-index ¢; € NI* by |ei| = 1 and the entry 1 in the i-th position. For each
multi-index a = (ai,...,am) € NJ' we define the partial differential operator
D by D* := 9l*1/9z,*1 ... 0z, ®™, and for ¢; with i € {1,...,m} we write
D; := D%,

For the euclidean norm of z = (z;,...,2m) € R™ we use the notation |z| :=

(@1 +- -+ al)2.
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Let T be an arbitrary open set in R™, m € N. By T we denote the closure
of T with respect to the euclidean norm in R™ and by 8T := T\T we denote the
boundary of T. For k € Ny the set C¥(T) consists of the functions u: T — R,
which possess in T continuous derivatives up to the order k, i.e., for all o € Nf*
with |a| < k there exists a partial derivative D®u and this is continuous in T'.
By C*(T) we mean the space of functions u € C¥(T) that possess with their
derivatives, up to the order k, continuous extensions to the closure T. Instead of
C°(T) we write C(T).

A function u: T — R is called Holder continuous to the exponent A € (0,1]
if there exists a constant C € Rt with
[u(z) )] _

|z —y*  ~
for all z,y € T with z # y. Consequently, C%*(T) denotes the subspace of C(T)
consisting of all functions which are Hélder continuous to the exponent .
We further set

(2.5)

c=(T):= [ ¢'(D),
tENy
and define C§°(T) as the space of all functions u € C*°(T) with compact support
in T.
Now we define for k£ € Ny
CHT) := {u € CXT) | D*u € L¥(T) for all & € NJ* with |a| < k}.
With the usual scalar product in L?(T),

(u,v)o;Tz/u(x)v(z)d:c,
T
we define in C¥(T') by
1/2 .
()= ( 3 (D*u,D%)ox) ',  wveCKT),
la| <k

a scalar product with the corresponding norm || - ||x;7. The completion of C¥(T')
with respect to (-,-)x,r will be denoted by H*(T).

Define the set of all real-valued measurable locally summable functions u© on
T by Li,.(T). As usual, for a € NJ* we call a function vq € L} (T) the weak
derivative of u € L} (T) if

(U, Da‘P)O;T = (_1)Ia|(va7 SO)O;T

is valid for all ¢ € C§°(T). In this case we write 3%u := v,. The space W*(T)
is then defined by

WH(T) := {u € L*(T) | 0*u € L*(T) for all a« € NJ* with |a| < k},

and it is well known that the spaces H*(T) and W¥(T) coincide (cf. Adams [1],
Theorem 3.16, p. 52).
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2.2. For arbitrary open sets Q; C R" and Q2 C R"2 (ny,ny > 2) we
define Q = Q; x Q; € R" (n = n; +ny). By N* (p € {1,2}) we denote the
sets of all such multi-indices o* = (af,...,a%) € N§ for which a} = 0 for all
j€{n1+1,...,n} and af =0 for all k € {1,...,n;}, respectively.

For s,t € Nj let C**(Q) be the linear space of all functions u: {2 - R whose
partial derivatives Dfu for B = o' + o with a* € N*, |a!| < s and |a?| < ¢
exist in Q and are continuous. The linear space of functions u € C**(Q) for which
the derivatives Dfu with 8 = a! +a?, a* € N*, |o!| < s, |a?| < t belong to
C%X(Q) (X €(0,1]) will be denoted by C*%*(9).

We further define the (anisotropic) Sobolev space H**(Q) (s,t € Np) as the
completion of C2**(Q) with respect to the norm

1/2
lulls 0 ==< > IID°UH§;Q>

tx:ozl-i:-cr2
lat|<s,|a?|<t

and H,'' () as the smallest closed subspace of H}(Q) including C§°(2). Anal-
ogously to subsection 2.1 we define W**(Q) by

W*{(Q) =
{ueL?}Q)|8%ue L*(Q) for all a = a' + o? with a* € N*,|a!| < 5,]a?| < t}.

Then we have
Theorem 2.1. The spaces H*'(Q}) and W**(§) are equal.

For the proof see Adams [1], Theorem 3.16, p. 52, and Hochmuth [12], Satz
4.3, p. 59. We remark that, for star-shaped domains, J. Rakosnik has proved this
result for more general anisotropic Sobolev spaces (cf. [19], Theorem 2, p. 60).

2.3. Let now Q; and Q; be bounded domains in R"* and R"? (n;,n; > 2)
with boundaries 0, (u € {1,2}) of class C*® (cf. e.g. Wloka [22], p. 46).
Thus the domains (1, satisfy the uniform cone condition and the product domain
Q:=Q x Q2 C R® (n =n; + ng) has the same property (cf. Hochmuth [12],
Satz 3.1, p. 21).

On each of the domains 2, we consider a uniformly elliptic differential oper-
ator P,(-,Dg,),

Pu(,Dey)i= 3 =Dy (D) + I ()Ds + (),

i,j=1 i=1
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where a;]"),b(“) c® € C=(Q,) are given real-valued functions with a(") = a(”)

Note that then there are constants p, € Rt with

Z o (2,)€:65 > o4 25, for all z, € Q, and (£1,...,6n,) € R™.

1]— =1

On the product domain = ; X Q; we define the product operator P(-, D,)
by
P(z,D,) := Pi(z1,D;,)P2(z2,D,,) for z = (z1,22) € Q1 X Q.
For the product operator P(-, D,) we consider the following Dirichlet problem
in the product domain .

Problem (). For f € C(Q) find a function u € C?»?(Q) N CY(Q) such that

(2.6) P(z,D;)u(z) = f(z) for z € ,
(2.7) D¥u(z) =0 forz € Q x 09y,
(2.8) Du(z) =0  forz € 0D x Oy

is valid for all a* € N'* with |o!|,|a?| < 1.

We remark that for each solution of Problem (§2) the assumption u € C'(f2)
and the boundary conditions (2.7), (2.8) give D"’lu(z) = D“zu(a:) = 0 for all
a* € N* with |a!|,|e?| <1 at the boundary points z € 8Q; x 89, .

2.4. To give a weak formulation of Problem (Q) we define
(2.9) [':= {01 €N |]o1]| <1} x {02 € N§? | |o3] < 1}.

A simple calculation shows that there are functions a,, € C*®(Q) (0,7 € T') with
which we can write the operator P(-,D,) in the form

(2.10) P(,D.)= 3 (~1)FID? (a,r()D").

o, 7€l
Thus, partial integration on C§°(Q) x C§°(Q) gives the bilinear form b(-,-):
(2.11) b(u, ) i= (P(, D2 )u,0).q = D (30rD7u, D7¢)oiq

o,7€l
Because of the boundedness of the functions a,,, there exists a constant
C € Rt with
|b(u, 0)| < Cllully g0 llelly 1 for all u, 0 € C2(Q),
and the bilinear form b(-,-) can be continuously extended to Hy''(R2) x Hy' ().

This extension will also be denoted by b(-,-). Thus we can give the following weak
formulation of Problem ().
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Problem (B). For f € L*(Q) find a function w € Hy'(Q) such that
b(u,0) = (f,¢)osa  for all p € Hy'' ().

We call the bilinear form b(-,-) Hy''(2)-coercive if there are constants p € Rt
and ¢ € R with which

b(u,u) > ollull} 1.0 —allullsg  forallu € Hy'(Q).

3. Regularity results

3.1. To show regularity for the solutions of the Problems (2) and (B) we
shall use the classical elliptic theory. So let the domains €, (p = 1,2) and the
uniformly elliptic operators P,(-,D;,) be defined as in subsection 2.3. We then
consider the following classical homogeneous elliptic Dirichlet problems:

Problem (Q,) (1 =1,2). For f, € CO%*Q,)N C(Q,) (A € (0,1]) find a
function u, € C*(Q,) N C(Q,) such that

Pu(zp, Dz, Jup(zp) = fulzu) for z, € Q,,
uu(z,) =0  for z, € 02,.

From C. Miranda [18], 21.VI, p. 80, and A. Friedman [7], Theorem 17.3, p. 68,

one gets

Theorem 3.1. Let Q, be a bounded domain with boundary 0%, of class
C°°. Let further Problem (2,) be uniquely solvable. Then there exists a mea-
surable Green’s function g,: Q, x 2, — R (= RU {oo}) such that the solution
of Problem () is given by

(3.1) uu(zp) :=/ 9u(@us Y ) fu(yu) dyu for z, € €.
The function g, satisfies in the domain §, x €2, the estimate
(3.2) |gu(zu’yu)| < const [z, — y, | 7.

For f, € C*®(Q,) the solution u, of Problem () lies in the class C*°(,). In
this case there exists for each k € N a constant ¢y € R* (independent of f, )
such that

(3.3) lunlleran, < ckllfullia, -
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3.2. The above theorem is now the main argument for the regularity of the
solutions of Problem (Q2).

Theorem 3.2. Assume that Problems (2,) (1 = 1,2) are uniquely solvable.
Then there exists for each f € C*®(Q) a solution u of Problem () with

(i) u € C=(),

(ii) for each (s,t) € N2 there exists a constant ¢,y € Rt (independent of
f € C*=(Q)) such that

(3.4) ”“”3+2,t+2;9 < Gt ”f“a,t;ﬂ .

Furthermore, the boundary conditions (2.7) and (2.8) are satisfied for all
multi-indices a* € N*.

Proof. Take Green’s function g, of Theorem 3.1,
g92: Q2 x Q2 — R, (z2,92) = g2(z2,¥2).

Fix y; € Q; and define a function z(y;,-) by

(3-5) Z(yla'): 2; - R, Iy / 92(x2’y2)f(y1ay2)dy2-
Q,

Obviously z(y1,-) is a solution of Problem (2, ). Since we have f(y;,-) € C®(£;)
for all y; € Q; by assumption, we get z(y1,-) € C*®(Q2) by Theorem 3.1, and
thus we have the function z: ; x Q2 — R, (y1,22) — 2(y1,22).

Now we show that

(3.6) D“lz(yl, ) € C=(Q2) for all y; € 2 and o' € M.
Fix z; € Q;. Because of (3.2) and f € C*®(Q) we get for o' € N!
(3.7 |92(22,y2)D™ f(y1,y2)| < const|zs — yo|'™™  for all y, € Dy,

which is valid uniformly on Q;. Since the right side of (3.7) is summable over 2,
we get for all y; €

Dsi/n 92(z2,y2) f(y1,92) dy2 =/9 92(22,92)D% f(y1,v2) dy2

(cf. Dieudonné (3], 13.8.6, p. 124), whereby the partial derivatives D* only act
on the variable y;. By induction with respect to the order of the multi-index a?!
we further get

(38)  Dz(ys,za) = / 02(22,92)D* f(y1,v2)dys  for all 1 € O,

Q2
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and thus the partial derivatives D" D*' 2 of the function z exxst for all a* € NH.
From Theorem 3.1 and f € C*(Q) we finally conclude D 2(yy,-) € C=(y) for
y1 € Qy and ol € N1,

Next we show that the functions D®* D’ z are continuous and therefore mea-

surable on Q. Fix (y10,Z20) € © and choose a sequence {(ylm,zZm)}meN of

points in Q converging to (y10,20) € . Then one gets by the triangle inequality
2 1 2 1
(3.9) |D°' D* 2(y10,%20) — D* D® z(ylm,xgm)l
2 1 2 1
< lDa D~ Z(ylo,fl?zo) - D% D* 2(y10,$2m)|
2 1 2
+|D*" D* z(y10,22m) — D* Dalz(ylmax2m)l

for m € N. . _
Since D* 2(y10,-) € C*(£22), we have

(3.10) |D°2Da12(ylo,$2o) - Dazpalz(ylo,rzm” -0

for m — oo.

To estimate the second term in (3.9), we choose t € N with t > 1n, + |a?|.
By the Sobolev embedding theorem there is a constant ¢ € R*, independent of
m € N, with

Now by definition we have

D’ (D“IZ(ylo, ) - D* 2(y1m, ) H Sc ”Dalz(ym’ )= D" z(y1m, ')“t;ﬂz

L)

1 1
D? z(y10,22) — D® z(y1m,T2) = /Q g2(z2,y2) D% (f(y10,y2) — f(y1m,y2)) dy2
2
for z2 € 3. By Theorem 3.1 we get

|D=" 210, ) = D stsm, )|, < cema [P (Fa0,) = FCwam, )|

t—2;92

and, since f € C®(Q), it follows

HDQ1 (f(ylo")_f(ylm,'))H -0

1—2;92

for m — oo and thus

(3.11) |D** D% 2(y10,23m) — D* D*' 2(y1m, T2m)| = 0



192 K. Doppel and R. Hochmuth

for m — oo. This shows the continuity of the functions D¥*D* 7 in Q.

We next define for arbitrary chosen t € Ny and a! € AM'! the function
. 2
B —RY, w0

and show that

(i) H is measurable on Q,
(ii) H satisfies the estimate

2

Da‘f‘

/ﬂ ()| dys <<t .

To prove the first statement we note that the functions
2 1 2
(y1,22) — |D* D* z(y1,22)|

are measurable for all a# € N* on Q. From this we conclude (cf. Bauer [2], 22.6,
p. 100) that the functions

2 1 2
Y1 |D*" D™ 2(y1,22)|" dz»
Q,

are measurable on §;. Since each finite sum of measurable functions is measurable,
we get (i).

To prove the second statement we replace (3.1) in Theorem 3.1 by (3.8) and
get analogously to (3.3)

<Ct

[0 2
| Z(yla ) t+2:2, =

D' f(yl,.)“ for all y; € O
t;Q2
and thus

2
(3.12) |H(y1)| <l Do‘lf(yl, ')“19 for all y; € Q.

2

The measurability of H on §; and the summability of y; + “D"lf(yl")”inz
over {1, together with the theorem of Fubini (cf. Bauer [2], Satz 22.6, p. 100),

lead to
- (/Q |H(y1)|dy1)1/2 <
1

Thus we get D* D*' z € L?(Q) for all a* € N'* and therefore z € Wk(Q) for all
k € No. By the Sobolev embedding we have z € C*(Q).

(3.13) “Da‘z

D™ f

0,t;Q



Dirichlet problem for non-hypoelliptic differential operator 193

Finaily, we construct a solution of Problem (§):
(3.14) u(zy,z2):= / g1(z1,y1)2(y1,z2) dya for all (z1,z2) € Q1 X Q.
2

Obviously this function u: @ — R is an element in C*®°(Q?). For a? € N? we
have analogously to (3.8)

(3.15) D“zu(a:l,xz) = / g1($1,y1)Da22(y1,1?2)dy1 for all (z1,z2) € 1 x Q2,

Q

i.e., for each z; € 22 the function D“zu(', z3) is the solution of Problem (£, ),

Pl(:cl,D,I)Dazu(zl,xg) = Do‘zz(zl,a:z) for all z; € (4,
Dazu(:cl,xg) =0 for all z; € 99,

from which (2.8) follows for all a? € N2,
By definition (3.5) we have

Py(z2,D;,)z2(z1,22) = f(z1,22) for all (z1,z2) € 21 x Qs
and we further get
P(z,D;)u(z) = f(z) for all z € Q.

The theorem of Fubini yields
U(xl,ﬂiz) =/ gl(ﬂfl,yl)z(yl,xz)dyl
2
=/Q g1(av1,yl)(/Q 92(x2,y2)f(y1,y2)dy2) dy;
1 2

= // 91(z1,91)92(z2,y2) f(y1, y2) dy1 dy2
91 Xﬂz

for each (z1,z2) € Q1 X Q2, from which we get for a! € M1 analogously to (3.15)

Dalu(fﬂl,.’l}z) = /

92($2,y2)(D01/ gl(xlyyl)f(ylvy2)dyl) dy2,
92 Q1

and from this follows

Dalu(zl,zz) =0 for all (z1,z2) € 2 x 09y,
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ie. (2.7), for all o' € M.
Thus we have proved that the function u: @ — R, defined by the product of
the Green’s functions g,,

u(zy,z2) = // g1(z1,y1)92(z2,y2) f(y1,y2) dy1 dy2 for (z1,72) € Q1xQy,
leﬂz

is a solution of Problem ().
The relations
Dz

“Dazu for all o? € N?

<cs

$+2,0;Q

3,0;9

which are analogous to (3.13), yield by (3.13) the estimates (3.4) with ¢, := c,c¢
because of

2

2 _ o? o’
||u||.9+2,_t+2;ﬂ - Z ||D u s+42,0:Q S ¢ Z HD z
|a2|<t+2 Y |a2|<t+2

1 2 1
=c? E HD" z‘ <cie? z HD" f
0,t4+2;Q

[at|<s lal|<s
2
= 0303 “f“s,t;ﬂ :

We remark that the solution u defined by the product of Green’s functions
is the only C?%*(Q)-solution (A € (0,1]) of Problem (). Assuming that u €
C*%(Q) is a non-trivial solution of Problem () for f = 0, we define a function
v € CH%X(Q) by the relation

@ N

2
s

,0;Q

l2

0,t;Q

v(l‘l,.’tg) = Pz(mz,Dzz)u(xl,:l:z) for all (131,1132) € Q1 x Qs.

Because of the uniqueness of Problem (2 ) there is

u(xl,ivz) = / gz(Iz,yz)U(xl,yz)dyz for all (931712) €N xQ

Q2

and therefore

Py(z1, Dy, Ju(z1,72) =/ 92(z2,y2)P1(z1, Dz, Jv(21,y2) dy2 = 0.

Q2

Now the uniqueness of Problem (2, ) gives for each z; € Q2
u(zy,22) =0 for all z, € Q4,

and thus u(z) =0 for z € Q2.
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3.3. Now we are able to prove some regularity results for the weak Problem
(B). Our proofs require that the domain 2 is star-shaped, i.e., there exist a point
z € Q and a continuous function h: {y € R"||y| =1} —» Rt with

l )}U{z}.

It is easy to see that  is star-shaped if and only if Q; and Q; are star-shaped.

9={y€R"\{z}|ly—wI<h(z:z|

Theorem 3.3. For a star-shaped domain ) every solution of the classical
Problem () for a given f € C(Q2)N L2?(Q) is also a solution of the weak Problem
(B).

From this theorem it will be clear that the solution u of Problem (), con-
structed in the proof of Theorem 3.2, is a smooth solution of Problem (B) for a
given f € C=(Q).

Proof. Let u € C*?(2) N C'(R) be a solution of Problem () belonging to a
given function f € C(f2) N L%(Q2). Then for all ¢ € C§°(2) one has

b(ua‘P) = E (aarDTusDaﬁa)O;Q = (P(, D)uaﬂo)o;n = (fa‘P)O;Q-
o,7€T

Since C°(R) is dense in Hy''(Q), we get
b(u, ¢) = (f,9)o0

for all ¢ € Hy''(Q). Thus we only need to show u € Hy"'(Q).
To do this, we extend the function u by

v fu(z) forzef
(3.16) i) = { 0 forz e R"\ Q'
Partial integration gives & € WH1(R"™). As the domain § is star-shaped, the
assertion u € H,''(Q) follows in the same way as in J. Rékosnik [20], Lemma 6,
p. 136.

If Problem (B) is uniquely solvable, it follows as a conclusion of Theorem 3.3
that there exists at most one solution of Problem ().
To the end of this section we assume that the assumptions of Theorem 3.2

are fulfilled.

Corollary 3.4. If Q is a star-shaped domain and if f € C®(Q), there exists
a solution u of Problem (B) with

u e C®(Q)N Hy' (Q).

In the next theorem we formulate a weak regularity result for the weak Prob-

lem (B).



196 K. Doppel and R. Hochmuth

Theorem 3.5. Suppose that the domain Q) is star-shaped, the bilinear form
b(-,-) is Hy''(R)-coercive and that Problem (B) is uniquely solvable. Then the
solution u belonging to a function f € H>*(Q) (s,t € Ny ) satisfies

(3.17) u € Ht2H2(Q)n Hy ' (Q),
and there is a constant c,s € RT, independent of f € H**(f), such that
(3.18) ”u||3+2,t+2;9 < Cat ”f”s,t;ﬂ .

Proof. For a function f € H*'(2), there exists a sequence {fm}men C
C>(Q) with
17}E»noo ”fm - f”s,t;ﬂ =0
(cf. J. Rékosnik [19], Theorem 2, p. 60).
For each m € N, Corollary 3.4 gives a (unique) solution
um € C(Q)N Hy''(Q)
of Problem (B) belonging to fr,, i.e.
b(um, @) = (fm,)osa  for all o € Hy'' ().
Here the functions u,, are the solutions of Problem () for f,, as constructed
in the proof of Theorem 3.2. Thus there is a constant c,; € R, independent of
m € N, such that
(3.19) ||“m||s+2,t+2;ﬂ < Cot ”fm”s,t;ﬂ .
Analogously we have

um, — umz||s+2,t+2;n < est || fmy = fmo ”3,t;9 .
Therefore (um)men is a Cauchy sequence in H**(£2) and there exists a function
@ € H*t2H2(Q) with

(3.20) lim ||& — um||s+2,t+2;n =0.

m—0o0
Let u € Hy''(R) be the solution of Problem (B) belonging to the given function f.
Then u — uy, are the solutions of Problem (B) belonging to f — f,,, and because
of the coerciveness and uniqueness one can show that there is a constant ¢ € Rt
with

llum — “”();n <c|fm— f“o;Q )
ie.
(3.21) lim |jum —ullpq = 0.

From the inequality
& —ullo,q < 1% — umllo,q + llum — ullq

for all m € N and from the estimates (3.20) und (3.21) it follows v = @ and
therefore u € H*t2+2(Q).

The assertion (3.18) is then an immediate conclusion of (3.19).
From Theorem 3.5 a further regularity result immediately follows:



Dirichlet problem for non-hypoelliptic differential operator 197

Theorem 3.6. If the assumptions of Theorem 3.5 are valid with k—[3n]+1
> 0 and if f € H**(Q), the solution u of Problem (B) satisfies

1 —_
we CF (@) N HIY(Q).

Proof. By Theorem 3.5 we have u € H**25t2(Q)nH}' (Q). By H*+25+2(Q)

C H**%(Q) and by the Sobolev embedding it follows u € Ck_[%"]"'l(ﬁ)ﬂH&’l(Q).
We remark that, by some additional and quite restrictive geometrical condi-
tions on the domains Q,, one can directly get further regularity results by using
J. Rékosnik [20], Theorem 1, p. 129, and Adams [1], Theorem 5.4, pp. 97-98.
The next Theorem 3.7 tells that, under the assumptions of Theorem 3.6 with
k —[in] + 1> 2, solutions of Problem (B) are also solutions of Problem ().

Theorem 3.7. For u € H&’I(Q) N CY(Q) one has
(3.22) Dalu(z) =0 for all z € Q; x 093,
(3.23) D¥u(z) =0  for all z € 8 x
for a* € N'* with |a!|,|a?| <1 (cf. K. Doppel, N. Jacob [4], Theorem 4, p. 380).
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