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ON THE REGULARITY OF SOLUTIONS OF
A HOMOGENEOUS DIRICHTET PROBTEM

FOR A NON.HYPOETLIPTIC TINEAR
PARTIAL DIFFERENTIAL OPERATOR

K. Doppel and R. Hochmuth

1. Introduction

1.1. In the study of the regularity of generalized solutions of various problems
for partial differential equations the notion of the hypoellipticity of linear partial
differential operators has a central role. Originally the hypoelliptic operators were
introduced by L. Hörmander in 1955, and for the results of the development one
can today consult his monograph [13], especially chapters LL and 1.3.

A linear differential operator P(.,D) defined in some open set O in R"
through

(1.1) P(r,D)u= \ a.(r)D'u
lol<-

with given coefficients oo e C-(O) is called hypoelliptic if the relation

( 1.2) sing supp u, : sing supp P(. , D)u

is valid for all distributions u e 2'(O).
Especially in the case of a differential operator

(1.3) P(D)u: D ".r'
lol<*

with constant coefficients co € C there are severa"l equivalent characterizations
of the hypoellipticity, among them the following: The differential operator (1.3)
is hypoelliptic in Ra (and in every open subset O of R" ) if and only if for all
o€Nf andfor l€l -* ((e R")

(1.4) pt")1,;)lP(if) + 0

(cf. Hörmander [13], Theorem 11.1.1., p. 61).
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From the property
(".g. for u e D' (O) ) of

K. Doppel and R. Hochmuth

(1.2) it becomes obvious that for generalized solutions u
the differential equation

P(r,D)u: f

with a hypoelliptic differential operator P(.,D) one gets from local regularity
properties of the given right-hand side function / (say, from / e C-(O1) with
Or CC O) the local regularity of u (u e C-(Or)).

Thus, we have every reason to expect to get for generalized solutions of differ-
ent boundary value problems for hypoelliptic differential operators (and also for
hypoelliptic pseudo-differential operators) regularity results similar to or some-
what weaker than previously known for elliptic operators. Many authors have
published works on the research in this direction.

At the same time the question arises whether it is possible to prove, at least
in some special cases, regularity results for generalized solutions of problems for
differential operators which are not hypoelliptic. From the short remarks above
it should be clear that such results could still be possible to reach if one assumes
global regularity properties of the given data. As far as we know, only a few results
in this direction have been published so far.

1.2. In a series of papers, I.S. Louhivaara and C.G. Simader studied l-
coercive linear partial differential operators of order m (m € N, i € N or, € R,
0 < , < rn). There are also non-hypoelliptic differential operators in these classes.

In7972 they proved the following regularity result [15]: Let P(D) be a 2t-
coercive linear differential operator of order rn with constant coefficients (m,t e
N, 2, < m). If u € r'(R") is a weak .L2-solution in R" of the differential
equation P(D)u : / with / € äe(R") (k € N), i.e. if u satisfies with the
formal adjoint differential operator P'(D) the relation

- (f ,P)t,(R')

for all 9 € Co-(R"), then, e I/2'+&(R").
Furthermore, in 1978 the same authors [16] proved a corresponding result for

periodic solutions of a J-coercive differential operator (t e R, t ) 0) even in the
case of non-constant coefficients periodic in all rariables.

We also mention the works by S.J. Greenfield and N.R. Wallach [9], D. Fu-
jiwara and H. Omori [8], and M. Yoshino [23]. They all investigate on the n-
dimensional torus some classes of differential operators which also include opera-
tors not hypoelliptic in the above sense but yet "globally hypoelliptic".

1.3. In this paper we shall study the regularity of the solutions of a homoge-
neous Dirichlet problem for a bounded domain O : Or x Q2 in R" with O, C R"r

(u, P'@)e) ,,(R,)
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(nu22, tt e {1,2}) a^nd n: nl* n2 ar,dfor a linearpartial differentialoperator
which is a product of two uniformly elliptic differential operators with smooth co-
efficients defined in O1 and Qz. The existence and uniqueness of the generalized
solutions of this problem in the case of a product of Laplace operators was shoiarn
in the paper [A] by one of the present authors together with N. Jacob.

The idea of such Dirichlet problems comes from the research [6] of E.B. Dynkin
on the simplest ra.ndom fields to several independent Markov processes observed
at different times. He even gave a proof for the existence of a solution of the
Dirichlet problem by methods developed in stochastic analysis.

In this connection we also refer to the papers of H.-J. Herrler [10-11], K. Dop-
pel and N. Jacob [5], N. Jacob [14], and B. Schomburg [21]. We would also like to
remark that D. Mangeron [17] already in 1933 studied, by totally classical meth-
ods, a Dirichlet problem where the differential operator could be interpreted as a
special product operator in the sense of [6], [4] and of this paper.

As an example of differential operators to be studied in this note, let us take
the simplest case nt : n2: 2 and

P(D): (#,. #). (#. #.r)
The symbol associated with P(D) is given by P(iO : €?€Z + eZ€? + e?e'z4 + $tZ.
Since for €, -- Llk,€e : &, å € N, and (2 : (a : 0 we have DQ,o,o,o)P(i€)l PUe)
:21c2, it follows by the above-mentioned result (1.4) of L. Hörmander that P(D)
is not hypoelliptic.

Thus the class of differential operators P(., D,) we are studying here includes
non-hypoelliptic differential operators. However, we are able to show that in suit-
able bounded product domains O the homogeneous Dirichlet problem behaves
hypoelliptically, i.e. it is possible to conclude the smoothness of the solution in O
from the smoothness of the right-hand side of the differential equation in 0 and
from the smoothness of the coefficients of. P(.,Dr).

Thus we shall show that there are "globally hypoelliptic" homogeneous Dirich-
let problems for non-hypoelliptic partial diferential operators.

2. Deffnitions and the statement of the problem

2.L. BV N[' we denote the set of all ordered systems of rn nonnegative
integers (multi-indices). For o : (ar,...,a*) € Nf we define its length as

usual by lol :: ot*...*a*. Especially, we defineforeach i e {1,...,rn} the
multi-index e; € N6" by le;l : 1 and the entry 1 in the i-th position. For each
multi-index o: (or,...,a*) € Nf we define the partial differential operator
Do by Do :: Alolf Anft...1n*d^, and for ei with i e {1,...,m} we write
D;:: Dci .

For the euclidean norm of , : (rtr. . , ,t*) € Rm we use the notation lrl ::
(r?+...+*)tt2
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Let T be an arbitrary open set in R- , m e N. By 7 we denote the closure
of ? with respect to the euclidean norm in R- and by 0T:: 7\? we denote the
boundary of ?. For k e Ns the set Cr(T) consists of the functions u: ? + R,
which possess in ? continuous derivatives up to the order &, i.e., for all a € N["
with fal ( & there exists a partial derivative Dou a"nd this is continuous in ?.
By Ck(T) we mean the space of functions u € Ckg) that possess with their
derivatives, up to the order k, continuous extensions to the closure 7. Instead of
Co(T) we write C(T).

A function u: T --+ R is called Hölder continuous to the exponent Å e (0,1]
if there exists a constant C e R+ with

lu(r) - u(y)l
(2.5)

lr - vlÅ

for all o,A € ? with x * y. Consequently, Co;r(?) denotes the subspace of. C(T)
consisting of all functions which are Hölder continuous to the exponent .\.

We further set
C*(T),: 0 C'(T),

t€No

and define Cf;g) as the space of all functions u e C*(T) with compact support
in ?.

Now we define for ,t € No

CI@),: {u e CkQ) I D"u e L2(q for all o € N[" with lal < k].
With the usual scalar product h L2(T),

(u,u)o;r : I u@)r(r) d,r,
Jr

we define in Cf(") by

(u,u)x;rr: ( » (Dou,D'r1o,r)'l', u,u €c:(T),
lolS*

a scalar product with the corresponding norm Il .llr,r. The completion of Cf(f)
with respect to (., ')*;r will be denoted by äk(").

Define the set of all real-valued measurable locally summable functions u on

" 
by Il""(?). As usual, for a € Nfl we call a function uo € .Lil"(") the weak

derivative of u € Iil"(?) if
(u, D" 9)o;r : (-1)l"l (u o, g)o;T

is valid for all g € Cf;(T). In this case we write ädu i: t)a.The space W*g)
is then defined by

W*@) ,: {u e L2(T) | 0'u € L'g) for all a € N[" with lal < &],
and it is well known that the spaces Hk@) and We(?) coincide (cf. Adams [1],
Theorem 3.16, p. 52).
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2.2. For arbitrary open sets O1 C R" and Oz C R'z (nr,,n, > 2) we

define O: Or x Oz € R" (r: nr *nz). By Nn (p € {1,2}) we denote the
sets of all such multi-indices or : (o1,...,r*) e N[' for which o] : 0 for all
j e{ry*1,...,n} and o2k:0 for all & e {1,...,nt},respectively.

For s,t € No let C"'t(O) bethelinearspaceof allfunctions u: O --+ R whose

partialderivatives DFufor §=aL *a2 with ar eNp, lotl S s and lo'l<t
exist in O and are continuous. The linear space of functions u e C"'t(Q) for which
the derivatives Dgu with B: cYl * a2, et' e Alt,, lorl S ",lorl 

( t belong to
C0'^(O) ( Å e (0, 1]) will be denoted by C",';^(O).

We further define the (anisotropic) Sobolev space I/"''(O) (s,t € N6) as the
completion of Cf+'(O) with respect to the norm

ll" lls,r;o
0:o'+o'

l*'l<s,lo'l<t

ana .Aj'r(O) as the smallest closed subspace of ff1'l(O) including Co-(Q). Anal-
ogously to subsection 2.1 we define I,I/"'I(Q) by

Ir7''t(O) ::

{ueLz(o)lloue L'(a) forall o:or *a2 with ap e.Np,l"'l<s,lo2l <t}.

Then we have

Theorem 2.1. The spaces ä",'(O) and W"'t({l) are equal.

For the proof see Adams [1], Theorem 3.16, p.52, and Hochmuth [12], Satz
4.3, p. 59. We remark that, for star-shaped domains, J. Rr{kosnfk has proved this
result for more general anisotropic Sobolev spaces (cf. [19], Theorem 2, p. 60).

2.3. Let now O1 and Oz be bounded domains in R"' and R"' (n1,n2 ) 2)
with boundaries äO, (1, e {1,2}) of class C- (cf. e.g. Wloka 1221, p. a6).

Thus the domains Ou satisfy the uniform cone condition and the product domain
O:: Or x Oz C R" (, : nt* n2) has the same property (cf. Hochmuth [12],
Satz 3.1., p. 21).

On each of the domains O, we consider a uniformly elliptic differential oper-
ator Pr(., D"*),

nF np

pr(., D, r) :- » -D i@ll(.)D,) + » u\d(.)D, * c(r)(.),

::( llD 
oullS,n 

)"'

i, j:l 'd:1
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where "i?,tld,c(ti e C-(Ou) are given real-valued functions with a[f) : 
"t':) 

.

Note that then there are constants p, € R+ with
llrL lll

y 
"l;){"rX;(i 2 er»€? for all u* e d2, and ((1, ...,€n,) € R",.

i,i=l i=l

On the product domain O : Or X f,12 we define the product operator P(., D,)
by

P(x,D"):: Pr(cr, Drr)P2(x2,Drr) for x: (ar,xz) € Or x Oz.

For the product operator P (. , D ,) we consider the following Dirichlet problem
in the product domain O.

Problem (O). For f e C o1 find a function u e C2,2(dl) n Cl(O) such that

(2.6) P(r,D,)u(a):f(r) forx€dl,
(2.7) Do'u(x):g for r € Q1 x äO2,

(2.8) D"'u(r):g forr.-äQrxOz
is valid for all at, e Np with lal l,lorl < t.

We remark that for each solution of Proble* (O) the assumption u € C|(O)
and the boundary conditions (2.7), (2.8) give Do'u(n) : Do'u(r) : 0 for all
au €. NP with lall,l"'l < 1 at the boundary points a e l0,t x lC,z.

2.4. To give a weak formulation of Problem (ft) we define

(2.9) l:: {or € Nf' I l"'l< 1} x {o2 € Nf, I l"rl S ti.
A simple calculation shows that there are functions ao7 € C""(O) (o,r € I) with
which we can write the operator P(.,D,) in the form

(2.10) P(.,D,): » Qt1l"tp"(o,,(.)D').
o'r€l

Thus, partial integration on Co*(O) x Co-(O) gives the bilinear form å(., .):

(2.11) b(u,p):: (P(., D,)u,p)o;o : l. (o,,D"u,D"g)o;a.
o,rQl

Because of the boundedness of the functions ao,, !,here exists a constant
C e R+ with

lb(",d|< C llrllr,r,o llrllr,r,o for all u,e € Co-(o),

and the bilinear form å(.,.) can be continuously extended to äf ,1(O; x ffj,l1O).
This extension will also be denoted by ä(., .). Thus we can give the following weak
formulation of Problem (O).
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Problem (B). .t.br f e L2@) find a function z € ä01'1(O) such that

b(u,p): ("f,p)o;o for all g e ä01'110;.

We call the bilinear form å(., .) Eot''(O)-coercive if there are constants p € R+
andg€Rwithwhich

b(u,u) > pll"ll?,r,o -qll"llfi,n for all u e äor'11Q).

3. Regularity results

3.1. To show regularity for the solutions of the Problems (O) and (B) we

shall use the classical elliptic theory. So let the domain. O, (p :1,2) and the
uniformly elliptic operators Pr(.,D,,) be defined as in subsection 2.3. We then
consider the following classical homogeneous elliptic Dirichlet problems:

Problem (0r) (p : 1,2). For f , e Co;)(Or) n C(O,,) () e (0,11) find a

function u, e C2(dtr) n C(O,,) such that

Pr(rp,D,,)uu(r) : f p@p) for tr € Op,

ur(ur):0 for xr € AOp.

From C. Miranda [18], 21.VI, p. 80, and A. Friedman [7], Theorem L7.3, p. 68,

one gets

Theorem 3.L. Let Qr be a bounded domain with boundary 0Q, of class

C*. Let further Problem (Or) be uniquely solvable. Then there exists a mea-
surable Green'sfunction 9p:dlr x O, --+ -R (: RU {oo}) suchthat the solution
of Problem (Qu) is given by

(3.1) ur(*u) ,: [ 9t(xt,,y)f t@t)dyt, for ru € Or.
JQ,

The function gr satisfies in the domain Ou x O, the estimate

(3.2) lsr(*r,yr)l a const lr, - yrll-"r.

For f , € C""(O,,) the solution uu of Problem (Or) Iies in the class C-(0 ) . In
tåis case tåere exists for each å e No a constant c* € R* (independent of f *)
such that

(3.3) llrrllr+r,o, < 
"* ll"frllo,n, .
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3.2. The above theorem is now the main argument for the regularity of the
solutions of Problem (O).

Theorem 3.2. Assume that Problems (Or) (p = 1,2) are uniquely solvable.
Then there exists for eae)t / e C-(O) a solution u of Problem (O) witå

(i) u € C'"(O),
(ii) &r each (s,r) € NB tåere exists a constantt crt € R* (independent of

/ e C-1O; ) such that

(3.4) llrll"+r,r+r,n < 
""r ll.f ll",r,o .

Furthermore, the boundary conditions (2.7) and (2.8) arc satisfied for aJl
multi-indices aP e NF .

Proof. Take Green's function 92 of Theorem 3.L,

gz: dlz x O2 --r -f,., (rz,Yz) ,+ gz(tz,Yz).

Fix y1 € Or and define a function z(n,.) by

(3.5) z(W,.): O2 --+ R, 12,- [ 9z(a2,yz)f(yr,yz)dyz.
Jez

Obviously z(U,.) is a solution of Problem (Q2 ). Since we have f (yr,.) € C-(G)
for all ur € O1 by assumption, we get z(y1,.) e C-(G) by Theorem 3.1, and
thus we have the function zt dl1 x Oz --+ R, (yr , *r) - z(h, az) .

Now we show that

(3.6) Do' 
"(yr,.) e C-(G) for all yr e Or and ar e Nr.

Fix x2 € O2. Because of (3.2) and / € C""(O) we get for or € ,Å/1

(3.7) lorl*r,az)D"' |1rr,a)l < const le2 - azlr-", for all Uz € dlz,

which is valid uniformly on Or. Since the right side of (3.7) is summable over O2,
we get for all Ur € O,

rf
D"' I 9z(t2,yz)f (yr,az) d'y2 : | 9z(a2,az)D"' 71or,Uz) d.y2

Ja, Ja.

(cf. Dieudonn6 [3], 13.8.6, p.724), whereby the partial derivatives D"i only act
on the variable yr. By induction with respect to the order of the multi-index o1
we further get

(3.8) Do'r(yr,*r): I nr@r,az)D" !1ur,az)d,y2 for all Ur € O1,
Jez
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arrd thus the partial derivatives D'" Do' z of the function z exist for all qp e Np .

Flom Theorem 3.1 a,rrd f € C'"(O) we finally conclude Do' ,(yr,.) e C-(O2) for

Ur€O1 andar eNr.
Next we show that the function s Do' Do' z are continuous and therefore mea-

surable on O. Fix (y16, azo) e O and choose a sequence {(yr*,,r2*)} ^r* 
of.

points in O converging to (yn, azo) € O . Then one gets by the tria^ngle inequality

(3.9) lD"'p"' z(yn,o2o) - D"' D"'z(yr*,oz^)l
< lD"'P"' z(yn,*rr) - Do' D"' z(yn,,rz^)l

* lD"' P" z(ynrazm) - Do' Do' z(yt*rxz*)l

for rn € N.
Since Do'z(yro,.) € C'"(O2), we have

(3.10) lD"' D"' ,1yro, czo) - Do" Do' z(yn,r2*)l + 0

fot m -+ oo.

To estimate the second term in (3.9), we choose t € N with t , in, + lo'1.
By the Sobolev embedding theorem there is a constant c € R+, independent of
rn € N, with

llo"' 1o"' ,(yro,.) - Do' ,(yr^,.))ll_,n, 
= "lloo ,tyro,.) - D"' ,(yr*,.)ll,,n, .

Now by definition we have

Do'r(aro,rr) - Oo z(yr*,r»: I gz(x2,az)Do' (/(yro, yz) - f(am,az)) dy,
Jaz

for x2 € Oz. By Theorem 3.1 we get

llo"' ,@ro,.) - D" ,(y,-,.)ll,,n, 1 ct-z llr"'(r(r,, ,.) - f (yr^,.))ll,_r,n,

for rn, I oo and thus

(3.11) lD"'Do'z(yr;tn2*) - Do'Do'z(yrmtnz-)l -» 0

and, since f e C@(0), it follows

ll" "' (f (vr, , ') - f @,,,n,')) ll t-2;e2 0
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for m ---+ oo. This shows the continuity of the functions Do'Do'z in {1.
We next define for arbitrary chosen t € No and o1 g .A/1 the function

I/: Or * RöF, y, ,- llo"' ,(rr, 
.)lll*, 

n,

and show that
(i) I/ is measurable on O1,
(ii) fI satisfies the estimate

ln,ln till dv, < .l llo"/ll:,,," .

To prove the first statement we note that the functions

(yr, *r),- lDo" Do' r(yr, *r)l'
are measurable for all ap €.Å/,' on O. From this we conclude (cf. Bauer 121,22.6,
p. 100) that the functions

and thus

(8.12) lr(y,)l = "?llo" t(r,,.)ll]n, ror au er € o1.

The measurability of .[J on O1 and the summability of y, ', llD.'f@r,.1lllr.n,
over O1, together with the theorem of Fubini (cf. Bauer l2l, Satz 22.6, p. 100),
lead to

(3.13) llr""ll.,,*,,n : ( l.,llo",rr,,')ll"*,,n, dvt)

= ( l*,la(v')l d,t)' ",llo"' fllo,,,n'

Thus we get Do2 D"' z e L2(Q) for all at' e Np and therefore z e Wk(O) for all
/c e No . By the Sobolev embedding we have z e C-(0).

yt,- [ lDo' 
p" z(y1,x2)12 dr2

Jar'
are measurable on O1 . Since each finite sum of measurable functions is measurable,
we get (i).

To prove the second statement we replace (3.1) in Theorem 3.1 by (3.8) and
get analogously to (3.3)

llo"' ,(r,,')ll,*r,n, s.,llD" f{u,,')ll,.n, ror all vr € or
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Finaily, we construct a solution of Problem (O):

(3.14) u(q,*):: | 9r(rr,u)z(yr,rz)dar for all (*r,,*r)€ Or x Oz.
JA,

Obviously this function u: O + R is an element in C-(0). tr'or a2 e N2 we
have analogously to (3.8)

(3.15) D" u(r1,r» : [ qr(x1,a)Do'z(yy,xz)dyr for all (rr,xz)€ O1 x O2,
Ja,

i.e., for each x2 € Oz the function Do'r(',r2) is the solution of Problem (O1),

Pr(qrD,r)Do'u(ntrcz) : D"' z(xt,xz) for all o1 € O1,

D"'u(a1,az) :0 for all o1 € AO1,

from which (2.8) follows for all o,2 e Al2 .

By definition (3.5) we have

Pz(*2,D,")z(x1,*r): f(q,q) for all (q,uz) € Or x Oz

and we further get

P(x,D,)u(x): f(a) for all r € O.

The theorem of F\rbini yields

u(x 1, x2) : 
Ir,9 r(x1, a)z(yr,, xz) dyr

: 
In,er(q,r)( I.,ez(r2,yz)f 

(yr,vz) dvz) dyr

: I I n, *n, 
e r(a 1' a r) s 2 (a 2'' a') f (v 

" 
az) d'v 1 d'v'

for each (q,*z) € Or x O2 , from which we get for or € .Å/1 analogously to (3.15)

Do' u(* 1, r r) : 
In, nr@r, a) (o"' f n, 

n r@ r, y ) f (y r, az) d,yr) dyr,

and from this follows

Do'u(a1,xz) :0 for all (c1, o2) € O1 x 0Q2,
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i.e. (2.7), for all o1 € .Å/r.
Thus we have proved that the function u: O + R, defined by the product of

the Green's functions g,

u(x1,x2) = I lr,rn,g'("'ar)gz(cz'vz)f(u'vz) 
dw dvz for (c1'cz) € orxoz'

is a solution of Problem (0).
The relations

llp""ll < ""llD" ,ll r"r art a2 e N2ll lls+z,o;o - - ll llr,o;o

which are analogous to (3.13), yield by (3.13) the estimates (3.4) with c"1 i: cact

because of

ll,ll?+,,,+,,n :,.8*, 
llr"'"lll.,.r,o,o S 

"= rE *rllr"',ll],,,"
: 

"3 ,.ä" ll,"',lll,,* ,,n s'?"?,.»,o" ll'"'/ll:,,,"
: c2"c? ll/113,,,n .

We remark that the solution u defined by the product of Green's functions
is the orly Q2'2;\(O)-solution (Å e (0,11) of Problem (O). Assuming that u €
gz,z;r(O) is a non-trivial solution of Proble* (O) for / - 0, we define a function
u € C2'o;)(O) by the relation

u(a1,x2):: Pz(xz,D,r)u(a1,a2) for all (*r,*r) € Or x Qz.

Because of the uniqueness of Problem ( O2 ) there is

u(r1,q): 
tnrgz(x2,az)u(ar,vz)dyz 

for all (*r,rr) € Or x Oz

and therefore

Pt(q, D,,)u(u 1, x z) : I n rn 
r@ r, Uz) P1(a 1, D,,)u (x 1, Az) dyz : 0.

Now the uniqueness of Problem (O1) gives for each a2 € dl2

u(q,x2) :0 for all c1 € o1,

arrd thus u(x) :0 for c € Q.
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3.3. Now we are able to prove some regularity results for the weak Problem
(B). Our proofs require that the domain O is star-shaped, i.e., there exist a point
z € O and a continuous function h: {a e n"llul : 1} * R,+ with

n: {, € n," \ {,}llu - cl < ^(ffi)} , t,t.
It is easy to see that O is star-shaped if and only if Or and O2 a,re star-shaped.

Theorem 3.3. Fbr a star-shaped domain dl every solution of the classicaJ

Problem (O) for a given f e C($n I2(O) is also a solufion of the weak Problem
(B).

Flom this theorem it will be clear that the solution u of Problem (O), con-
structed in the proof of Theorem 3.2, is a smooth solution of Problem (B) for a
given / € C""(O).

Proof. Let u e C2,2(Q) n CI(O) be a solution of Problem (O) belonging to a
given function / € C(O) n L'@). Then for all tp € C.-(O) one has

b(u,p): » (ao,D'u,D"p)o,a: (P(., D)u,p)o;n: (.f,9)o;n.
o'rEl

Since C6-(O) is dense in äol'l1Q), we get

b(",p): ("f, p)o;o

for all «p € f/å'r(O). Thus we only need to show u € IIå'r(0).
To do this, we extend the function u by

(3.16) il(a):{ä,', f:;;:-*.,ro.
Partial integration gives fi € Wr,r(R'). As the domain O is star-shaped, the
assertion u e äj'l(O) follows in the sarne way as in J. Rr{.kosnik [20], Lemma 6,

p. 136.

If Problem (B) is uniquely solvable, it follows as a conclusion of Theorem 3.3
that there exists at most one solution of Proble* (O).

To the end of this section we assume that the assumptions of Theorem 3.2
are fulfilled.

Corollary 3.4. If O is a star-shaped domain and if / € C-(O) , there exists
a solution u of Problem (B) witå

u e C-(O)nrrol'1(o).

In the next theorem we formulate a weak regularity result for the weak Prob-
lem (B).
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Theorem 3.5, Suppose that the domain O is star-såaped, the bilinear form
ö(.,.) is ä01'1(O)-"oercive and that Problem (B) is uniquely solvabhe. Then the
solution u belongingto afunction f e H",t(Q) (r,, e No) satjsfies

(9.12) ,, gs*2,t+'(o) n rrot,t(o),

and there is a constant c"t € R+, indepen dent of f e H",t(Q), su&. that
(3.18) llull"+r,r+r,n ( ""r ll.fll",r,o.

Proof. For a function / € .F/',t(O), there exists a sequence {.f-}-erv C
C-(O) with

_1!L ll/- - /ll",r;o : o

(cf. J. Rr{kosnik [19], Theorem 2, p. 60).
For each ne € N, Corollary 3.4 gives a (unique) solution

u*ec*(§;naor,l10;
of Problem (B) belonging to /-, i.e.

b(u*,g): (f*,p)o;a for all p € äå;1(O).

Here the functions u,m ate the solutions of Proble* (O) for f* as constructed
in the proof of Theorem 3.2. Thus there is a constant c"1 € R+, independent of
rn € N, such that
(3.19) llu^ll"+r,r+z;e 3 cet ll.f,,;;",r,n .

Analogously we have

llu*, - u*zlls+z,t+2;o S c"t ll.f-, - f*rll",t;e.
Therefore (u*)*eN is a Cauchy sequence in ä'''(O) and there exists a function
fi E ltc*2,t*2(O) with
(8.20) _lIL llt - u*lls+z,t+z;o : 0.

Let u € IIå't(O) be the solution of Problem (B) belonging to the given function l.
Then u - un are the solutions of Problem (B) belonging to / - f^ , and because
of the coerciveness and uniqueness one can show that there is a constant c € R+
with

llu* _ ullo,o S "llf^ 
_ 

"fllo,o ,

i.e.

(3.21) _lg5llu- - ,llo,o : 0.

Flom the inequality

lla - "llo,n < llt - u-llo;o * Jl"- - ullo;o

for all rn € N and from the estimates (3.20) und (3.21) it follows u : fi and
therefore u e Hc+2,t+2(Q).

The assertion (3,18) is then an irnmediate conclusion of (3.19).
From Theorem 3.5 a further regularity result immediately follows:
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Theorem 3.6. If the assumptions of Theorem 3.5 are vaJid with k -ftnl+t
) 0 and if f e I/&,&(O), the solution u of Problem (B) satisfes

u e ck_li"t+r (o) n ä01,r (o).

Proof. By Theorem 3.5 we have u 6 1k*2ft*2(o)nlI01'r(o). By ,7*+2,*+z(Q)

C II&+2(O) and by the Sobolev embedding it follows u e Ck-li"l+1(O)näå't(O).
We remark that, by some additional and quite restrictive geometrical condi-

tions on the domains f)p, one can directly get further regularity results by using
J. Rrikosnik [20], Theorem 1, p. 129, and Adams [1], Theorem 5.4, pp. 97-98.

The next Theorem 3.7 tells that, under the assumptions of Theorem 3.6 with
tt - l|"l + 1 > 2, solutions of Problem (B) are also solutions of Problem ( Sl ).

Theorem 3.7. For u € Ifrl'l(O) n Cl(O) one has

(3.22) Do'u(a):g forallr€Orx0Q2,
(3.23) D"u(r):g for aJl z € 0Or x Oz

for aP e Alr with lo'l,lo'l < 1 (cf. K. Doppel, N. Jacob [4], Theorem 4, p.380).
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