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ON THE ESSENTIAI MAXIMATITY OF
TINEAR OPERATORS IN A HITBERI SPACE

Bernhard Steinig

Introduction

In this paper we want to define and study the essential maximality of a linear
(not necessarily bounded) operator in a Hilbert space. The concept of essential
maximality is a generalization of the essential self-adjointness of a symmetric op-
erator in the sense that an essentially maximal symmetric operator is essentially
self-adjoint. To the author's knowledge, the essential maximality has been previ-
ously defined and studied only by R.A. Goldstein [1], P. Hess [2], and J. Tervo [7]
for linear partial diflerential operators (cf. also I.S. Louhivaara and C.G. Simader

[4]; for a survey of results on the essential self-adjointness of differential opera-
tors of mathematical physics we refer to H. Kalf, U.-W. Schmincke, J. Walter and
R. wiist [3]).

In 1 we shall define the essential maximality of a linear operator in view
of a second one. We also give a method for verifying the essential maximality
of given operators. From a corollary of this result it follows that the methods
developed in the literature for the verification of the essential self-adjointness of
symmetric operators can be applied to the proof of the essential maximality of
linear operators.

In 2 the methods of L will be applied for a tensor product of linear operators,
and we shall prove the relation

(T@Tz).:Ti uTi

for two densely defined closable operators 7r and T2; in this relation the right
side means the closure of the tensor product f{ @T; in the Hilbert space ä1§ä2
which is defined as the completion of the tensor product Ht @ Hz. K. Vala [8]
has proven this result in the case of bounded operators, and he has also showed
Ti @T; C (T@Tz)* for general linear operators. The result is also known at least
for unbounded self-adjoint operatorsl cf. J. Weidmann [9], pp. 259-268, who has
proved the result using the spectral theorem. We do not use the spectral theorem
in our considerations.

In 3 the results of 1 and 2 will be formulated for linear partial differential
operators.
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1. A characterization of the essential maximality of
linear operators in a Hilbert space

Let T and ?' be two densely defined linear operators in the complex Hilbert
space .E[ (with the domains D(7) and Dg')) such that the relation

(TP,rl,) : (9,7.'rb)

is valid for all I e D(T) and all ,h e O1f'1 (i.e. the operators ? and T' are
formal adjoints of each other). The operators ? and 7' are closable, because
the adjoint operators ?* and T'* of ? and Tt ia H are densely defined (e.g.
T' CT* ), and we have the closures 7: ?** and T - Tt** .

We say that the operator T essentially maximal in view of the operator Tt
if the relation 

T* :T
is valid. Of course, in this case also 7' is essentially maximal in view of 7 (since
the above relation implies T:T'*).

A closable densely defined operator ? in a Hilbert space is of course essentially
maximal in view of the adjoint operator 7*.

If the relation 7 : ?* holds for a symmetric operator ?, we call ? essentially
self-adjoint.

We shall refer to the following result several times (for the proof cf. e.g.

F. Riesz a^nd B. Sz.-Nagy [5], pp. 322-323):

Theorem 1.1. Let H be a complex Hilbert space. Let T: D(T) --+ H,
D(T) C H , be a densely defined closed linear operator. Then the linear operator
T*T + I,

(T.T + I): D(T.T) + H,

D(T.T);: {z € D(T) lTr e D(T.)},

is densely defined, bijective a.nd self-adjoint.

Theorem L.2. Let T and T' be two densely defrned operatorc in a Hilbefi
space H with the dense domains D(T) and D(T') so that T and Tt are formal
adjoints to each other. Then the operator 7 is essentially maximal in view of T'
if and only if the condition

R(TT * I): s
is satisfed.
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Proof. A. Let ? be essentially maximal in view of. Tt . Then by Theorem l..L
one has 

R(TT+.r) = R(T.T * I):1.
B. Let now rt(77+.f) : .EI. Because T C?*, one has

TT+IcT*T+1.

Since by Theorem 1.1 the operator (T.T + I): D(T.T) + H is bijective and
R(TT +.f) : If , it follows that

TT+I:T*T+I
and consequently

TT:T*7.
Because of the self-adjointness of T*T the operator TT i" densely defined and
we have

(TT). :TT.
From the relation

TT cT*T'* c(TT). :TT
we get

(1.1) TT : T*T'*.

Take y e D(7.). By Theorem l.L there exists an element u e D(?'.7') with

y:(7,*T*I)o,

which means
y-u=T'*Tu.

Because D(T) C D(7.), the differeace y -u is an element of. D(T*), and we
have by (1.1) the following equations

r*(v _, 

=T;:f,.,.,1To2,: (TT)(TI)
:T(TTy).

Since one has D(7) c D(Tt*), we get

T. (y - a) : T(T'*7f.u) :T(v - 4.
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Therefore the difference y - u is an element of D(T). Because u e D(T),
it follows y e D(T) and one has D(?.) C D(T). Thus we have shown

D(7.): D(T) and T* :7.

Corollary 1.3. Let T and Tt be two densely defined operators, formal
adjoints to eaeh other, in a Hilbert space H as in Theorem 7.2.

Each of the following conditions implies the essential maximality:
1i1firT7+ ]_-: n,
(ii) T'T is essentially self-adjoint.

Thereby the domain D(TiT) is defrned by

D(T'T);: {c € D(") I tu e D(T')}.

Proof. In both cases one can easily show that the relation

R(TT r I): s
is valid ([6], p. 19).

2. The adjoint operator of the tensor product of operators

For two complex Hilbert spaces Ifr and H2 one defines the (algebraic) tensor
product Hr I Hz equipped with the usual scalar product. The completion of
H1sHz in the topology induced by this scalar product will be denoted by Htdilz.
Thetensorproduct TrSTz of twooperators Tt, Tz (Ti: D(71)- Hj, j:L,2)
is defined as an operator in Hrdffiz by

D(", O T2) :: D@r) e D(Tz)

and
(T ETz)(ar I o2) :: Ttot STzaz for ri e Dgj).

For the complete definitions we refer to J. Weidmann [9], pp. 47-49,259-268.
We shall prove the following theorem.

Theorem 2.L. Let H1 and Hz be two Hilbert spaces. By Ti we denote a
densely defined closable linea.r operator from D(71) G Hi) into Hi 0 :1,2).
Then the operator Tt @ Tz in the Hilbert space är 6 H2 is essentially maximal in
view of the operator Ti I Ti :

(?i s"r). :Ti @Ti'

Remark 2.2. (i) The statement of the theorem is reasonable since by a direct
use of the definition of the tensor product of operators we have

(2.1) ((n e Tr)v,rl,) s,6u, = (e,("i e Ti)rb) s,6r,
for all e e D(\ @ 72) and dl d e D(Ti @T;).



On the essential maximality of linear operators in a Hilbert space 203

(ii) Through induction it is of course possible to prove a corresponding re-
sult for the tensor product of r operators (r € N), since the tensor product is

associative.

Proof. A. By a direct calculation one easily verifies the relation

EeT cTLwz'

B. As the second step we shall consider the operator

V ::TiTr e7;6.

It is in Hr6Hz densely defined with the domain

D(v): D(rIT) s D(r;T),

and 7 as a tensor product of two symmetric operators is symmetric in Htdilz
(cf. [8], p. e).

We shall now prove the relation

(2.2) v - r{T sr;T' - ("i sr;xr 8T).

Let us take two elements uj € Dg;fi) U- L,2).We get

(TIT, a TiT)(u, @ uz) : TiT''r, I TiTuz
: (Ti I Til(Tur aB"z)
: ("i sr;)(T a6)(q I uz).

Since the corresponding relation is valid also for all finite linear combinations of
elements of the form u1 I u2, we get the relation (2.2).

C. Now we have to prove the statement that the operator

w:-(WXzIsE)
is symmetric. Since Tr & Tz is densely defined a.nd closed, the operator

(7, ETz).(7I s-6)

is self-adjoint by Theorem 1.1. From

(ffiExrc)c(",812).(71 st)
the statement then follows.
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D. We will further prove that the operator W :: (11 ATI)(E S?2) is closed.
Therefore we choose a sequence

{"r} cD((mE)(m-7T))

with elements 't.t, ) f e Hr6tt, having the properties

and

ll"o - ullr, 6n, + o

il(7f@XZIEE)ur- fllr,6a, + o.

By (2.1) it follows

ll(fu-T;X ur - rill'n,6,, : ((ry sq)(T afi)("* - rt),ux - ut) u,6n, * 0.

This means that {(T@T)uo}*.* is a Cauchy sequence in Htdilz, and this
sequence has a limit element u € HrdFz. Since the operators TEE and

W; are closed, we see that

ffiTr), -f
and, furthermore,

(W)(M)u:.r.
Thus the operator (ffi!»(M) is closed.

E. Now we introduce two (densely defined) operators in är6äz:

A:= TiT I Iz with the domain D(A) :: D(V),

B :: It @f;T with the domain D(B) :: D(V).

(We denote the identity operator of. H1 Q : 1,2) by I; and the identity operator
of H :: Htdilz by Ir.)

Let us note that ,4, is here defined as the restriction of the symmetric operator
Ti7[gt, with the maximal domain D(T|T)SH1 to the domain D(V) of V, and
B is defined analogously. As restrictions of symmetric operators the operators ,4.

and B are symmetric on If .

F. The operators A, B and V fulfill for u e D(A) : D(B) : D(V) the
relations

(2.3) (Au,u)n ) 0, (B",u)ru > 0, (Vu,u)H > 0
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and

(2.4) (Au,Vu)u ) 0, (Bu,Vu)p > 0.

OnIy the latter relation will proved here.
An element u e D(V) has a representation

t :irt,r I u2,r
r=1

with ui,r e D(T;T). By the bilinearity of the scalar product one gets the follow-
ing estimation:

(Br,Vu)n: (» ur,, sr;T,ur,", I ri4.ul,s I rifi"r,,) ,r:1 s:l

- i (rr," E rifiuz,rtriTrrr,s I rifiuz,,) 
n

f,S:L

rn

- » (r, ,,,TlTur,") ,r(r;Trur,,,TiTur,,) r,,,:,

- » (T"1,r E Ti6"2,r tTul,s I riW"r,r),

- » @ut,rtTur,") ,r(r;6ur,,,TiBuz,,) n,
frS=1

tTl

rrc:l

- ÖF.ur,rB rifuu.,rti T.ur,s I Tifiur,,),
\t=l 

<; -'z-t'Lt 
g:l

G. For the symmetric operator

,S:: V + A+ B * Iru

with the domain D(S) :- D(V) the relations (2.3) imply

(2.5)

We will show here that

(2.6) n(s) : f{.
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Let h; be an arbitrary element in ä; (, :1,2). By Theorem 1.1 there exists an
element ui e D(TiTi) with

hj:(T;4*I)ui.
One further gets

fu @ hz : (TiTyu) I (TiTzuz)* ur I @iTiuz)+ ("if,u1) @ uz * ur @ uz

: ,S(ur 6 ur).

As the completion of the linear hull of all elements h @ hz is the space .[/, we get
the statement (2.6).

From (2.5) and (2.6) it follows that already

(2.7) .E(s): ä.
H. By the relations (2.3) and (2.4) we get for all u e D(V)

(2.8) lls"ll, ll(y + In)"lln, l(s", (v + Iru)u) rl
:(Vu*Au*BuIu,Vu*u)n
> ll(v * Iru)ull2,

and furthermore

lls"llr > ll(Y + In)ull, .

The last relation implies
a(§) c D(G7;).

I. It follows from part F of this proof that the symmetric operator V * In
fulfills the relation

(2.e) ({r, * rs)u,u), > ll"ll}
for all u € D(V). We shall show that

@Tfi:n.
Lel z e If be an element with

(2.10) (r,(V*lru)u)u:g forallueD(V).

By (2.7) there exists an element u e D(3) c D(WG) with z : Su. The
relation (2.10) implies

(5u,(v + I-g)r)r :0.
Since (2.8) is valid also for the closures 3 and [[, we get

(V+Is)u=9.
Finallg the relation (2.9) implies u : 0. Thus the element z e H must be the
zero element, a^nd the relation R(V + Ix) : ä is proved.
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J. Since we have

(v + Iru)u - (ri[ s r;T * Is)u

for u € D(V) , we can conclude that the range

R(r{Tsr;Ta In) - R((ry ar;Xf sE) * rru)

is dense in the space H .

K. Now we can apply Corollary L.2 to the operator

Tt 8Tz,

and we get the essential maximality "f 4 O 6 i" view of Ti S T;1 because

Tt E^Tz: 7r I72, Theorem 2.1 is proved.

Finally, Iet us remark that the above proof could be somewhat shorter if we
had used the well-known corresponding result for self-adjoint operators.

3. The essential maximality of linear partial differential operators

Let G be an arbitrary domain in R". We now consider in G a linear partial
differential operator

L(',D): D o"(.)r"
lol<-

of order nz € N. Here we have defined D :: (Dtr...,Dn) with D; : -i?l1ai
and Do :: D?r...D|" for o:: (or,...,o,,) € Nä: (NU{O})" and lel ::
or * . .. * qn. We suppose that, for the complex-valued coefficient functions aa,
all derivatives D'ao for u e N[' with u 1a (i.e. for all u: (rr,...,2,,) € Nä
with yr S or , . . .s vn < on) are continuous in G. On this condition we have for
the formal adjoint linear partial differential operator L'(., D) defined through the
equation

(f,(.,O)p,rb)o: (p,L'(.,O)rb)o for all p,tb e Co-(G)

(with the L'(G) scalar product (.,')o ) the expression

L' (*, D)rh@) - » Do(il6r!@))
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(;) :: (;l) (::)
The differential operators L(., D) and L'(., D)

L'(G) the linear operators L and L' defined by
induce in the Hilbert space

D(L):: Co-(G), D(L'):: Co-(G),

Lg:= L(.,D)V for g e D(L),
L'tp:= L'(.,D)rb for g e D(L').

The operators tr and .D' are closable as in the abstract setting in 1. In the
literature normally the closures Z and T of L a.rd, Lt are called the minimal
realizations of .D(. , D) and L' (. , D), and the adjoints .D'* and L* of, .t' and .D the
maximal realizations of .D(.,D) and L'(.,D) (namely, 

".8. 
L CZ C L'*).

Since in our present case the domain D(L') of the operator .C' coincides with
the domain D(L) of L in a canonical way, we do not need the words "in view
of the operator Z"' (which we needed in the abstract setting) in the following
definition of the essential maximality of the differential operator L(.,D) (cf. e.g.

[2], [4], [6]).

Deflnition 3.1. ?åe differential operator L(.,D) is caJled essentially maxi-
mal if the relation L* :T is valid.

We now have the following results as corollaries of Theorem 1.2 and of Theo-
rem 2.1:

Theorem 3.2. For the essential maximality of the differential operator
L(.,D) it is necessary and suffi,cient that the range of the operatorTT+t i"
the whole space L2(G).

Theorem 3.3. Let GiCRni (L< j Sr, r €N) be domainsin R"i . The
linear pa,rtial differential op er ators

L i(', D) - aai(.)D"t, ai €Nä',t Sj1r,,

are defined in the domainl Gi. We suppose that the derivatives D,' aoi(ui) for
all ui eN[i witå ui l ai exist and are continuous funcfions in Gi

Then also the formal adjoint differential operators L'j(.,D) are defined.
We further suppose that the differential operators Li(,D) arc essentially

maximal in L2(Gi).
Then the product operator

»
lo, l1*i

L(*'r" 'rfi'rD):
lot l ml ,...,1o" l1*,

aaL (*') . . . aa, (*')D(01'"''o")
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is essentially maximal in L2(G1 x ... x G"). (For the differentia,l opera-
tor L(al,...,$',D) the formal adjoint operator L'(*',...,n',D) is defined in
Grx...xG".)

Proof. By Theorem 2.1 we get

(Lr@"'8tr")*-@
and, since L i(., D) is essentially maximal, also

-TL 8 "'&4
-L|8"'&L',
: (L,8 "'8 

'.)''
(Here we used the fact that the closure of the tensor product of closures of operators
coincides with the closure of the tensor product of operators and that the tensor
product of formal adjoints coincides with the formal adjoint of the tensor product
of the original operators.)
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