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GLEASON-TYPE DECOMPOSTTTONS FOR H*(8")
AND LUMER'S HARDY ALGEBRA OF THE BALL

M. Nawrocki

1. Introduction

We recall that a holomorphic function / on a bounded, balanced, sim-
ply connected domain O in C" belongs to Lumer's Hardy algebra rN,.(O) if
g(Iogl/l) < u for some pluriharmonic function u and some nondecreasing con-

vex function g: R * R+ satisfying g(t)lt --+ oo as I ---+ oo. It is known that
IN*(B") endowed with the topology defined by the metric d(f,S): ll/-Sll,
where

ll/ll : inf {u(0) : u pluriharmonic, tog (1 + l/l) S "}
is an F-space (complete, metrizable topological vector space). We refer to [L, RU,
R2, N2l for information on .LN.(O).

The topological vector space structure of Lumer's Hardy algebra (the Lumer-
Smirnov class) .D.lf*(U") of the unit polydisc was extensively studied in [N2]. It
turns out that many nice results obtained in the case n : 1 by N. Yanagihara [Y1,
Y2] have very similar forms for .LIf.(U"), but in general there is no simple way
of proceeding from one to several variables. The main trouble is that the space

of polynomials on U" js not dense in -tN*(U") if n ) 1. Fortunately, as was

proved in [N2], the Hartogs series of an arbitrary function / e ,N.(U") is weakly
convergent. Consequently, the polynomials are weakly dense in .DN.(U"). This
is a way to avoid the density problem at least while studying continuous linear
functionals or general linear operators with values in locally convex spaces.

In the present paper we study Lumer's Hardy algebras ,N-(B") of the unit
balls Bo in C" for n ) 1. In this setting, as in the case of polydiscs, the main
difficulties are connected with the nonseparability of the spaces. Although the Har-
togs series technique does not work for balls, we can find another tool to prove the
weak density of polynomials in .DN.(B"); namely, Gleason-type decompositions
of functions in If-(B").

We recall the well-known solution of Gleason's problem for ä-(8,) to state
that for each function / e ä-(8") with /(0) : 0 there exist 91 , ..., 9n e
ä-(B") such that f(r): D[=, zksk(z) and lls7,ll- < Cllfll-, where C does

not depend on individual / (see [AS, G, KN, R2]). Applying this result one can
show by induction that if / € I/'"(B,) is such that the Fourier coeffi.cients of

koskenoj
Typewritten text
doi:10.5186/aasfm.1991.1618



312

f with respect to
9o € H@(8"), Iol

(*)

M. I'{awrocki

: k, such that

f(r): » ,oso(r).
lol-Ic

Unfortunately the induction method gives rather poor exponential type estimates
for norms of g, (llg"ll- : O(Ck)). In any case it would be interesting to find the
best possible estimates for llg"ll* in the decomposition (*).

In this paper, modifying the Ahern-Schneider solution [AS] of the classical
Gleason's problem, we show that if "suffi.ciently many" first Fourier coefficients of
/ € I/-(Br) are equal to zero)we can express / in the form (*) with a power-
type estimate for llg"ll." (see Theorem 3.L for details). This result is crucial to
our proof that the space of polynomials is weakly dense in IN.(B").

The paper is organized as follows. Section 2 contains preliminary definitions
and notation. In Section 3 we obtain Gleason-type decompositions of functions
from ä*(B,) mentioned above. Section 4 is devoted to proving the weak density
of polynomials in .tIf.(B").

Section 5 contains our main results, representations of the Frdchet envelope
and the topological dual of .LN.(B"). We recall that the Fröchet envelope of an
.F'-space X : (X,r) whose topological dual separates the points is the completion
of the space (x,r"), where rc is the strongest locally convex topology on x
weaker than r. It is well-known that r" coincides with the Mackey topology of
the dual pair (X, X'), where X' is the topological dual of (X,r). Moreover, r" is
metrizable and, in fact, defined by Minkowski's functionals of convex hulls of sets
in an arbitrary r-base at the origin (equivalently by the family of all r-continuous
seminorms on X). The reader is referred to [S1., 52] for information on Mackey
topologies and Frichet envelopes.

In this paper we observe that the Frdchet envelope of .DN.(B,) is isomorphic
to a nuclear power series space, and apply this fact to obtain a representation of
continuous linear functionals on .tN.(B,). Finally, we show that the family of
monomials {z'} is a weak unconditional basis for .tN.(B,) in spite of the fact
that IIf.(B,) is nonseparable in its own topology.

2. Preliminaries

_ Throughout the paper we use the standard notatiou of [R2]. Let (z,u) :
Di=rziwi (z,w € C") denote the standard inner product on C, and lzl :
(z,zltlz (z e c") the corresponding norm on c". we d.enote the unit ball and
the unit sphere in C" by B - 8,, and S : Sr, - ?B,., respectively. Moreover,
let Za denote the set of all nonnegative integers and Z! its n-fold product. If
T : äBr a'.d dm is the normalized Lebesgue measure on T, then T, and, d,mn
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are the n-fold products of T and drn, respectively. By do we denote the unique
rotation invaria,nt probability measure on S.

For any multi-index o : (or, . . ., dn) e Z\, z, ( e C", and r € C, we denote

f 
af :: or*. . .*dn, z( :: (4(1,. . . ,2nen), o! :: a1 !" "'4,! ) rz i: (rrr,. . . ,rzn),

od .- odl . ... . ,da.._.|.tl

The class of all holomorphic functions on B, will be denoted by ä(B"),
while ä-(8,) is the space of all bounded functions in ä(B,) endowed with the
supnorn ll'll*.

It is well-known that the analytic monomials z' , e e Zi, are orthogonal on
the sphere, i.e.,

I"r"(u 
d,o(o:o ir o,+ P.

Moreover,

(n - 1)!a!

(n-1+l*l)!

(see [R2] 1.4.8, 1.4.9). Therefore,

a € zi,

is an orthogonal system of monomials on B, which is normalized in -L2(S, o).
Each function / e ä(8") has the Fourier expression

f (r): D ",U)p.(r),aeZ\

where the series is convergent uniformly and absolutely on each compact subset
of B, and

@.(,f): Iim I tfrelr,tOdo().r_r_ vfS

If & € N, then ä-(8,,k) will denote the subspace of f/-(B,) consisting
of functions / for which ""(f):0 for all lal < &.

3. Gleason-type decompositions

Theorem 3.1. There is an increasing function r!: N -+ N a,nd a family

{To : a e Zi} of bounded linear operators T, : H* (9, r/(l"l)) -» If-(B) sucå
that
(r) .f : D;o;:* 9o.Tof for each / e a-(n,r/(lel)) , and le e zi,
(b) ll""ll : o(lol(."+t)t2).
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Proof. Foreach &:0, 1,2,..., z€ B,and (e S wedefine

Hx(,,o : » v,e)pÅO : ("::; ') k,ef ,

lal=&

C*(r,C): i Hie,O,
i:k

and

Dx(,,,' : 
å (" 

* :li -')r,,e),.

It is well-known and easily seen that är is a reproducing kernel in the space of
all homogeneous polynomials of degree & and lhat C* is a reproducing kernel in
f/-(8, &), i.e.

(3.1) f (") : lrcr(r,O/(O 
doG) for each / e ä-(B, k).

In particular, Cs(z,O: C(r,O is the Cauchy kernel for B,. Moreover,

D*(r,O: i ci,*Hi(2,O,
,=0

where

(n+j)...(n+i +k-t) _ /.,, n-t\ /- n-1\ci,k: ffi:\r* i+t)"'(t+ rth)
- 1+(, - 1)I#*E;,*,

with !, Ri,* 1oo for each /c : 0, 1,. . ..
Now we can find and then fix a,n increasing function ry': N -» N so that

(3.2) i Ri,* 11 for h : t,2,....
j:{(x)

FinallS we define operators Uo, Wo, Vp: If-(B, å) - /f(B), where 6 : lal, by

u,f(z) : I o4,,e)e;6f«) do(o,
"/s

w,f (,) : 
Iror(",O [.r;O - ,"C f G) do(O,

vxf(r): I oo1r,C)/(O do(C).
./s
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Since r/(&) ) k for each k, we obtain by (3.1)

t
f(r) : lrco(,,O/(O 

d,o(O : 
l"or(r,(Xr, 

()*/(( ) do(C)

-- ("**. ')-' [ ,rp,c)H*(,,()/(o do(c)
\ n-L / Js

: (" * * I ,) -' I p,e) [ ooe,ot;O/(o d"(()
\ n-t ) 1?1=r" 

' 'Js

: (";1;') ',å e'Q)u'r(z)

Set ?o : ("Il;')-tuo fo, each e e Zi.We see that the family {7, : a e Z+}
satisfies the assertio" ("). For the proof that it has the property (b) we need a

few lemmas.

Lemma 3.2. For each n € N we åave
(") llp.ll"": O(lol("-r)/z) as lol --+ m;
(b) sup {ls'"a p"Q)l: z e B} : O(;o1("+t)/z) as lal ---+ oo.

Proof. First we shall find the maximum of lz'l on S. It is enough to find
the conditional maximum of the function of n real variables /(u1,...,lzn) :
*?'...ofl" on the sphere *? +...* a2r: 1. The standard argument shows

that / attains its maximum at the point c : (xr,...,rn) with r; : (olllol)'l'
for j - 1,... , n, and so

max { lzol: z€ s} : (ffi)"'
Consequently,

rr rr2 (n + lol - 1)! do
llpoll- : (n _ lla! m

Now, applying the Stirling formula (&! - t/81t 1"10) to estimate factorials we
obtain the desired result.

To prove (b) we have

o_y, : I [(" * lol - r)o;]'t' ep if ai l o,
?ri 1.0 otherwise,

where §: (orr...rdi-rtdj -7roti+t,...,dr,). Thus, (b) is an immediate conse-
quence of (a).
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Lemma 3.3. Each operator Vx, le e Zq, acts from H*(S,E@)) into
ä*(B) and llYrll :O(k).

Proof. Lef f (z) : DF«ol FiQ) be the homogeneous expansion of / €
If- (8, r/(e)) . Then

(v*f)(z): i c5,*FiQ)

'=:to' &:,å, (r + 1" -,)å #. a1,r)r11,1

-J 

oo k t @

=iQ)+(n-1) » L#r,t"l* » Ri,*FiQ).
j:t!(k) r=t ' i:*(x)

However, PiQ)/U * r) : fi t,-1 flQz) dt, so

(vrf)(,) : f (,)* (, - ,) i 
fo' 

,,-, f {r,, o, * 
,ärrLi,xlie).

FinallS

l(wf)(41< ll/11." * k(n - 1) ll/11." + ll/ll_ s (n + r)e ll/11."

for each z €8.
Lemma 3.4 [R2, Proposition 1.4.10]. For z €Bn and c) 0 define

r"(z) : 
Irt, - k,0l-"*" doG).

Then I" is bounded in Bn.

Lemma 3.5. Each operator Wo, a e Zi, acts from If-(B, rb(lal)) int"
fI-(B) and llw.ll : O (lsl(tn+t) /21 .

Proof. Let us observe first that if. l(2,01 < *l@ + &) :: s, then

lor(,,o1 < i ("*::i,),,: "--å ("*,:;,)"-
< tlsk(t - s) 1 Clc"
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for some absolute positive constant C. Moreover, if 1 2 lk, Öl > k l@ { &) , then

loo(",e)l < (r +?r)olcoQ,e)l

: (, * 
')r1r1,,,,- E (:'-i')r,,er'l

<*(tcr,,ot+-f ;1;')) =" |c(,,ot +r")

for some C > 0. Consequently, we have

(B.B) loo(,,O1 < c (k" +lc(z,gl)

forsome C > }andeach z €8, ( e S, and k € N. Since l|-rl 3Zlt-1r,e)l'/',
we obtain by Lemma 3.2

le"(O - e,Q)l ",, {lgradr"(')l: z e B} le -'l
S Cla;("+r)t2lL - Q,ell't'

for some C > O and all a e Z\, z € B, ( e S. Using this and (3.3) we can

estimate lW"71r1l Ay

/
cl.,l*+tvz(,"'"1lr - (,, e)l,t,ao«)- l,;ffi) ltrtt-,

where C >0 is independent of z e B, a e Z!, and / € ä(B,d(l"l)). Finally,

by Lemma 3.4, llW,fll." < Clol('n+t)/2ll/ll-.

Proof of Theorem 3.I (b). Since [/o : poVlol * Wo, by Lemma 3.2 (a),
Lemma 3.3, and Lemma 3.5 we obtain

ll%/11"" < llp.ll- llq"rf ll- + llw"/11." < c ll/11." lol('"+t)t2.

However,
ln*l"l -1\

so ll7tll - O(l"l(n+t)/2) . The proof is complete.
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4. Weak approximation by polynomials in LIr{*(B)

Lemma 4.1. Fo1 an arb.itrary continuous serninorm lll . lll "" .6N.(8,) we
åave lll p, lll: O(exp (- claltlz) for some c ) 0.

Proof. The general idea of the proof comes close to the spirit of [E, Proposition
3.3] and, to the author's knowledge, was suggested by N.J. Kalton.

In the case ,z : 1 pluriharmonic is the same as harmonic, so .Ll[*(B1) co-
incides with the Smirnov class N*. It is well-known (see [Y1]) that the Mackey
topology of .lf+ is defined by the sequence of norms

lll / lll-: »
k

l"o(f) I "*p 
(-k't' l*),

m :0,1, . . .. This immediately implies the lemma in the case n : 1.
In general, define an operator f6: N+ ---+.D.nf.(B,) by (fC/)Q): f (k,el)

for z e B, and ( e s. It is easily seen that the family {lc '( € s} is equicon-
tinuous, so it remains equicontinuous if we equip N+ and IN-(B") with their
Mackey topologies. In particular, there exists a continuous seminorm lll . lllr ""N+ such that lllrc/ ill<il / llll for each ( € s. using this and Yanagihara's iesult
mentioned above we get

(4.1)

for some C ,

However,

(4.2)

lll rcpn lll<lll e* lll,S Cexp (-"kLt2)

Therefore, by (4.1), (4.2), and (4.3) we obtain

(rc ek)(,): k,e)r- ("::;') ,- e,o.

Moreover, since the vector-valued function T"), - H*(.,rO € (fIf.(B),lll . lll)
is continuous, it is integrable and we have for & : lal

lr. H x(. , ec)ro d,m*(w) - ?,(-)v, (().(4.3)

s ("::;,) ,"0{

to choose C - (o € S such that lp"(()l
lol. Now, it is enough
complete.

dmn(r)

lll rcpr lll' ( € s)

€ Za- where k-
- 1. The proof is



(4.b) c1,:: c (": * ; ') lrfr+r)tz exp(-ctctt2) ll/11"" < €16.
\ n-l /

For 0 <r < 1 defin"6G) - D1.;.,7,10yo,(/)(1 -rl'l)p, and 9(") : f -f,-hG).
There is an 16 € (0,1) such that lil at'l ;,,. ef2 ar,d lla(dll- < ll/11"" for all 16 <
r ( 1. Now, for an arbitrary r € (rs,1) we have 9(') €. H*(A,rb@)), llot'11; .
ll/11." + ll,f'll- + llat'lll." < 3ll/11"", and s(') : D1o;=r eoTos?). Finallv, bv
(a.a) and (4.5) we get
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Theorem 4.2. For each f e .LIf,.(B") the function" f,(r) : f(rz), 0 ( " 
(

1, tend to f in the Mackey topology when r tends to l.
Proof. The same argument as in the proof of [N2, Theorem 6.1] shows that

it suffices to prove the theorem for / e ä-(B").
Fix / € If-(B") and an arbitrary continuous seminorm lll ' lll "" .tN.(B").

Since lll . lll is dominated by the Minkowski functional of the convex hull of some
neighbourhood of zeroin rN.(B"), we can assume that lll sä lll<fl 9 lll llå11." for
each g € ,N.(B") and å. € ä""(B").

Fixan e >0 andfindafunction ry': N--+N,andafamily {To:ae Zi} as

in Theorem 3.1. By Lemma 4.1, there a"re C, c > 0 such that

(4.4) ll?Lll lll p" llls Clal@+r112 exp(-clal1l2;

forsome C>0 andall ae Z\. Choose fre N solargethat

lll / - å lll slfi rr,'r il + ; llr,soll." lll e" lll

lol:t
3le + f llr"ll lll e. lll llg(')11."

lol=&

S le + ! eC;"1t"+r)/2 sxp(-"1"1'/') ll/11..
lal=/c

3le+3C*<e.

The proof is complete.

Corollary 4.6. The ball algebra A(8") and the space of analytic polynomi-
als are both Mackey and weakly dense in .LN-(B").

Remark. The same argument as in [N1, Remark 6] shows that .Eif.(B"),
n ) L , contains an isomorphic copy of the space of all bounded complex sequences
I-. Consequently, .tIf-(B") is nonseparable, and so the space of polynomials is
not dense in .D.lf.(B") equipped with its original topology.
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5. The F}dchet envelope and the dual of LIri*(B)

Let LF*(B") be the space of all f e H(B") for which

lll f lll o- T
of norms { lll ' lll*' e e N} is a Fr6chet space, which in fact is isomorphic io the
nuclear power series_space Ar(f), where I : (1.) and 7o : laltlz for a e Z!
(compare with [N2, 5]). We refer to [Ro, D] for general information on power series
space§.

Theorem 5.1. (a) .tfl-(B") contains rN.(B") as a dense subspace;
(b) 

"åe 
topology induced on .DN.(B,) from ,.tl(B") coincides with the

Mackey topology of IN.(B").
In particular, .L.E-(B") is tåe Fr6chet envelope of IN.(B").
Proof. (a) since for each positive pluriharmonic function u on B, and

( e S the slice function u6 defined by u6()) : "((l), ) € IJ, is a posi-
tive harmonic function on LJ, we have 

"c(Å) 
< zu(o)l(t - l)l). Consequently,

It@l . exp (z ll/lll(1 - 14) for each / e zlrr.13,) and z e B. Arguments
similar to those i1 [V!,,Jt-reorem 1] and [ST] show that if / € ,N.(8,), then
lr.,(/)l : O(exp (cla|1211 for each 

" > b. This implies that .tN.(B,)'is con-
tained in .6.F|(B"). It is easily seen that the Taylor series of an arbitrary function
f e f413,,) is convergent in the topology of IF.(B,) to 7. Thus, the space of
all polynomials 2(B") C IN.(8") is dense in If](B,).

(b) We know that ,If-(B") C .tfl(B") and that, by the closed. graph theo-
rem, the inclusion mapping is continuous. Thus, the inclusion remains continuous
if we equip rlr.(B") with the Mackey topology, and the topology y induced on
rN.(B") from .DF*(B,) is weaker than the Mackey topology p of rN.(8,).

Since P(B) is Mackey-dense both in .D.n[.(B,) *d ,f-(8,) (see Corol-
lary 4.6), in order to prove m S u it is enough to show that each p-continuous
seminorm lll - lll "" P(B) is dominated by some seminorm lll . lllr, & e N.

Fix lll 
. lll. gV Lemma 4.1., there exist C ) 0 and & e N such that

lll e" llls cexp (-lo1rtzlk)

{pr-Sl LF Zi. Therefore, for an arbitrary polynomial ,f : Daorpo we have
lll / llls D l""l lll e. llls c lll f llh. The proof is complete.

corollary 5.2, The family {?r, o e zi} is ant unconditional Mackey and
weak basis of IN.(B").

Proof. It is easily seen that {go , o € zi} is an absolute basis in rr'.(B,)
(= 

^r("r)).
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Theorem 5.2. Eae}. continuous linear functional T on LN*(B") is of the
form

rf :Da.(/)Å(o),

where {f(") : a € Zl} is a f*nily of complex numbers such that

sup l.l(o)l exp (la1t/z 1&) < *

for some,t g N.

Proof. .tIf.(B") has the same dual as its Fr6chet envelope LF*(B^) (more

precisely the restriction mapping (Zf.1A,))' , 
" 

--+ T1r,N,(§) € (rlf.(B,))' is

an algebraic isomorphism). Since the mapping f - (".(/)) is a linear topological
isomorphism of .6.F.(B,) onto the space Ar(Z) described at the beginning of
this section, we obtain the theorem applying the well-known representation of
continuous linear functionals on nuclear power series spaces (see for example [RO]
Proposition 7.4.8 or 4.4.5).
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