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HIGHER INTEGRABILITY AND
THE BOUNDARY DIMENSION

Bruce flanson and Pekka Koskela

Abstract. We answer a question posed by K. Astala and P. Koskela in the negative by
producing examples for each n) 2 and each K > 1 of bounded domains D,D' in R' quasi-

conformally equivalent to the unit ball of R" and a I(-quasiconformal mapping f of D onto D'
suchthat/liesinlocl,ip.(D)forall 0<o<landdimlr(äD)=dims(äD')=n-lbutthe
derivative of of / does not belong to U(D) for any exponent p > n.

Introduction

Let DrD' be domains in .R" with D' bounded and let / be a K-quasiconfor-
mal mapping of D onto D'. Then, as is well-known, / is differentiable a.e. on
D a^nd [Dlf'\" dm l oo; in fact, [rlf'|" d* < Klf(D)l (where l^91 denotes the
n-measure of ,5 c r?" ). On the other hand, it need not be true that

(1)

(2)

forsome p>n.t V'V d,m , -oo
Jo

Astala and Koskela [AK] recently showed that the higher integrability (1) is closely
connected with the local Hölder continuity properties of / on D. They point out
that (1) implies

Moreover, they show that the converse is true if one assumes thal 0D' is not
"too thick" in the sense of the Minkowski dimension. They also ask whether
the converse remains true without the additional assumption on äD'. The main
purpose of this note is to give an example which shows that some assumption of
this type is necessary. Before stating our results, we define some of the terms used
above and state Astala and Koskela's result as well.
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We first define the class loclip.(D), introduced by Gehring and Martio [GM].
lf. D C ä" is a domain and g is a continuous function on D, we say that g belongs
to the class locl,ip,(D), 0 < o < L, if there is a constant M < a such that

ls(")-g(v)l < Ml*-vl'
whenever x,y lie in aball B contained in D. As usual, we write g € Lip"(D) if
the above inequality is valid for each pair z, y of points in D .

Next we define Minkowski dimension which gives a measure of the size of a
set in rB" a.nd which is analogous to Hausdorff dimension. If E is a compact set
in R", 0 ( 6 ( n, and r ) 0, set

M6 @;r) - inf B(*' 
") ).

The Minkowski content of E is now

M6(E) - Iimsup M6 (E,r)

and the Minkows]d dimension of

r+0

E is given by

k

{rro:EcU
1

Note that the Hausdorffdimension dim;i(E) of .E satisfies dimp(.E) < dimy(.8);
see [F] or [MV] for the relations between these two dimensions. We can now state
Astala and Koskela's result [AK, Theorem 4.4].

Theorem A. Let D' be a bounded domain with

If f: D --+ D' is K-quasiconforrnal, tåen (1) and (2) areequivilent. Here a and
p depend only on each other, n,I{, and dimy(7Dt).

Our example shows that some condition like (3) is necessary in Theorem A,
and, in particular, one can not replace the Minkowski dimension by the Hausdorff
dimension:

Theorem B. -Fbr each n ) 2 a.nd each K ) 7 there are bounded domains
D and Dt in R quasiconfonnally equivalent to the unit bil| of R a.nd a K -
quasiconformalmapping f: D ---» D' such tåat dims(AD): dims(äD,) :n-l
and (2) holds for ail 0 < a < I but

(3)

(4)

did*(E)

lrlf 'lo d,m - oo for all p>n,.

Astala and Koskela [AK, 5.1] also showed that if in the above situation /
satisfies (2) and o > dimy(0D)ln, then (1) holds. our second result shows that
the dependence of o on dim,14(äD) in their theorem is essential.
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Theorem C. For each n ) 2, each K > l, and each 0 < a < 1 there eÅst
bounded domains D and Dt in Rn quasiconformally equiwalent to the unit baJl
of Rn and a K -quasiconformal mapping f : D -- Dt such that dirr,y(?D) < n
and dimp( AD) -- dims(OD') : n - L and both (2) and (4) hold.

Still another result of Astala and Koskela [AK] states that if 0D is sufficiently
smooth, say D satisfies a quasihyperbolic boundary condition [GM], then (2)
implies (1). Hence neither of the domains D and D' in Theorem B (Theorem C
respectively) can be too regular.

The basic idea behind our construction of f , D , and D' is the following: In
order for (a) to be satisfied, we need to construct / and D so that l/'l will be
large on a significant portion of. D . However, if B is a ball contained in D, then
/ € Lip.(B) (*" want / to satisfy (2)) and hence Hölder's inequality implies
that /rlf'ld* ( Cdiam(B;"-t+o where C is a constant independent of B.
Consequently, the average "f l/'| on B is inversely related to the size of B . If
for each x e D we let B" be the largest ball satisfying r € B" C D, it follows
that we must construct D so that B, is small "most of the time". In order to
accomplish this, we form D by adjoining an infinite sequence of narrower and
narrower projections to a rectangular domain.

We first prove Theorem C. Theorem B will then be established by a similar
construction.

Proof of Theorem C

To simplify our notation, we only consider the case ?? : 3 and leave the
modifications needed for the general case to the reader. Let Ks ) 1, 0 ( o < 1

and define Do : {(*,y,2) :0 I t <-o6,0 ( U,z 11}; the value of o6 is
determined by the formulas (5), (10), and (11) below. Then D (respectively D')
is constructed by adjoining projections P; (respectively Pj ) to the bottom of. Do
as pictured in Figures 1 and 2.

The projections P; (respectively P!) consist of upper and lower chambers
U; and .t; (respectively t/j and -Dl). Moreover, P; and P! are attached to Ds
in arr identical way so that DonP;: D0 nPi. tt" location patterns of these
attachments will be defined below.

The mapping / will be the identity on Ds and map each [l (respectively
.L; ) onto [/j (respectively .61). O" each .L;, / will be a similarity mapping with
a streching factor si that increases to infinity as i approaches infinity. This will
allow us to deduce (a). In order to make / Ks-quasiconformal rve use the regions
U; as decompression chambers so that as one travels from -L; to Do through
U; the streching factor gradually reduces from s; to 1. In order to define the
subregions U;, L;, U! , L'i precisely as well as give the mapping ,f on [J; ard L;,
we fix a positive integer i and translate [/; UZ; and druT', to AuT arrd,d uT'
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Figure 1.

so that U U L and U'l) L' are symmetric with respect to the z-axis arrd7 nT
u,nd D' nT' arc contained in the plane z :0. (see Figure 2).

Here U is bounded by ihe planes z : 0 ar;.d z : Cr1 and by the surface
obtained by rotating the curve

about the z-axis , L: a1o':,)1:tr:;t'
B(0 ,r§) x (0, Cr1-L(" * rP) l2) where .B(0, s)

r^l

r-rp

Lt - B(o ,,r§) x (-1,0) and (Jt -
- {(, ,,y) : 12 * y' < ,'} .

Figure 2.

Above r : ri is anumber between 0 and 1 to be determined later, C ) 1 is
a constant to be determined later,

-LU

L

(5)
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and

(6) 7-28-L.
It follows from (5), 

"Ld 
(Q that 'f > 0.

Wedefine g on UUL asfollows

327

where

.r:ffi2!7,,-r
and

r-rF.z : fr#22 179-L 7.

Then it is easy to verify that 9 is a homeomorphism of 7 u Z onto d ul 
"nag is C* in U U.L. We then define f on U; U.D; by composing g in an obvious

way with translations so that / maps U;U L; onto U! U Lt;.
We next show that if we take C large enough, then g is .[(s -quasiconformal on

U U LU {a(0, r) x {O} } . It obviously suffices to show that 9 is Ks -quasiconformal
on U. From (7) we have

(7)

(8) Ds(*,y,Z): (l + ry)

sup { tr hrwr * uhswt)2
läl-1 \

+ ( hzwr + Uhsu,t)z * hs'*r'J'l'r, -' )

for all (*,y,r) € [/; here to3 : (r -r9)l(Cr't+r). Denote the operator norm of
Dg(*,y,r) by llDg(*,y,2)ll and its determinant by lOs@,y,41.

It follows that

This last quantity is maximized for (r, y, r) e U when lrl : lvl : rP and z : Cr1 i
so using (6) we get

,)l
z)

U,

a,)

Dg(*,

Wlt

l»g@,v,41

It

r

llDg(*,v,4ll'

S [1 + 6c-r1312.
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Hence, taking the constant C large enough, [V, 14.3] yields K I Ko. It follows
that / is K6-quasiconformal onU;UL; andhence K6-quasiconformalonallof D.

We now describe how we choose the sequenc" {ri} and how each P; (respec-
tively Pj ) is attached to D6 . For each i, let E; : P, n Do : P', nDo. Then
from the definition of P; and Pj it follows that E; is a closed disk in the z-plane
with radius r;9 . Wetale the r;'s to be positive integer powers of I and for each
positive integer j we let ,lrj) b. the number of r;'s equal to 2-i . We arrange the
corresponditg E;'s in a square pattern Qi *d then place ttre Qi's so that Qi
and Q;.'1 are adjacent and all the Qi's lie along the line segment y:0, z:0,
0 < o < as, (see Figure 1).

If follows easily from Theorem 10.3 in [GV] that D' is quasiconformally equiv-
alent to the unit ball of .R3, and, consequently, the same holds for D.

We next show that (4) is satisfied as long as ry' is defined judiciously.
Let p ) 3. Since l"f'l : r;9-r on Li and L; is a cylinder with dimensions

,; x ,!-9, we have

oo

lf' 1o d,m - r»,h(i)Z-i(l - P) Z-2i2-i(p(B-1))
1

L å /,,
(e)

-n» rh(i)2-i((P-1) (P-1)+2) 
.

1

On the other hand,
if (and only if)

( 10)

by the definitions of D and D' ,

oo

1

D arLd Dt will be bounded

Therefore, from (9) and (10) it follows that it is possible to choose r/ so that (4)
is satisfied and both D and D' are bounded. For example, take

(11) ,bQ) *zi'B lin.

Next we estimate the dimensions of 0D and 0D' .

Note first that äD and lDt are both a union of a countable number of sets of
finite 2-dimensionalmeasure; hence dimp(OD) : dimn(lD') :2. Now we sketch
the estimate for the Minkowski dimension of the boundary of. D. Let 2 16 ( B,
0 < r ( 1, and pick an integer is with 2-io a r 4 2-io*t. For each positive
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1, . . . ,rh(i), correspondingare ,h@ subdomains of D, say .Gri , i _
constructed above with ri - 2-t' . Since

\ i j

integer i there
to the sets P;

(12)

( 13)

where the constant Cr is independent of r. Thus it suffices to consider the

Minkowski content of U; U; 1Gt;. We estimate this content in two parts. A simple

calculation which makes use of (5) and (6) shows that tlre 2-dimensiona.l measure

of the boundary of Gj for each i, j.is comparable to 2i(9-z) .

By the geometry of the sets Gf one observes that if i < is, then the surface

area of the intersection of the boundary of. Gx; with any ball B of radius r cen-

tered at the boundary of. Gt; is comparableto 2-2io. Hence a standard covering

argument (e.g. using the Vitali theorem) shows that

i(io j i(do

where Ce is a constant independent of is. Finally, we consider the Minkowski
content of the rest of the boundary of. D. By the definition of the sets Gf ,

U,2r. Ui Gf is contained in a rectangular region G of dimensions comparable to

z-öoG-F) x io-2 x io-t. Hence

(7q M6( U U oci;r) <Mt(G;r)<ca2-io62io$-t)zsioio <cn2io?+e-»'
'i)io j

here Ca is independent of io . We conclude from (12), (13), and (1a) that M6 (0D)
is finite provided 6 > 2 + B. Thus (5) yields

dim(äD) < 2 +max {(2 - ")lQ - 2o),415} < 3
M

as desired.
It remains to show that / e loclip.(D). Clearly / e Lipr(Ao) and

lf(,) - f(,')l slz - z'1§

whenever Zrzt €.t; satisfy l, - "'l 
( r;. Since B ) o, it suffices to show

that / € Lip.(U;) for each positive integer i with the Lip,(U;) constant of /
independent of i.

Fix a positive integer i. We again translate [/i and t/j to [/ and [/' a^nd

work with g as defined by (7). We need to show that g € Lip.(U). Let

' L/r-r9 ^\
er(r,y, r) : ili;, * ru ),

ez(r,y,4:f,(#,* "r),
es(x,y,4:l(#r +,e,).
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It clearly suffces to show that 91 , !J2, ar,d !3 are each in Lipr(I/).
We first note that (5) and (6) imply the following inequality

(15) ,.*.

Let (o1, yrr4),(rr,yr,zz) e U. Then

lorlrr, yt,,zr)-.*(a2tuz,rr)l:ll(#tzrz - ,22) + rP(21- d)l

= i( fiO, - zz)(zt + dl+ r|lzl - .l) < 2v§-tlz1 - zzl

a rgr_arg_rr7(1_o) lr, _ ,rlo < 2Clzr _ 
"rlo

where the last inequality follows from (15). Consequently g, e Lip.(U).
we show that 91 a',.d 92 belong to Lip.(u); by symmetry it suffices to verify

that 91 € Lip"(U). Observe that

lsr(r, ,Yr) zr) - 9r(x2,yr, r)l
(16) S lOr(r, ,yr,zr) - 7t(rr,yr,zz)l* lgr(rr, h,zz) - 9r(r2,yr,r)l

-- Ir * Iz.

We estimate .[ and .f2 separately. We have

(12) n :li(;#,, +,P)@, -,»l = i(,, -,Bt + rp)lrv - x2l

S2rB-'l*, - *rl<2r9-r\rg0-")lq - *rl --4lx1 - *rlo

where the last inequality follows from (6) and (1b). Estimating .[ we get

r -l 
r-r9 ' 'l(18) /r : l'r g;n{"' - ")l1 

c-rxr§-t-rlz1 - zzl

I e-rrzB-r-rlrr, _ ,rl < lr, _ ,rl.

Fbom (16), (17), and (18) it follows that s1 € Lip.(t/).
Hence I e Lip.(t/) *d the above estimates show that the corresponding

constant is independent of i. Therefore / e Lip.(U;) with the Lip.(I4) constant
independent of f and the proof is complete.
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Proof of Theorem B

Again, we only consider the case n:3. We modify the construction used to

prove Theorem C as follows. Replace rF with rlog(1/r), r7 with r(log(1/r))'z
and r1-P with 1/ log(1/r). Instead of taking the r;'s to be positive integer powers

of |, the r;'s will now be of the form 2-2', and we denote the number of r;'s
equalto 2-2' by {U). Construct D, D,and / asabovewiththesereplacements.

Now

f@f-

I lf'loo* > » / lf'lra*: zr(los2)'-'» g(lzi(n-t)2-z(2'),
JD TJr,, I

and D and D' are bounded if (and only if)

ir(o)''"'2-'' < *'
I

Hence defining
,tr!) = 22(2')2-2ii-4

(4) is satisfied and both D and D' are bounded.
It is left to the reader to check that the mapping / satisfies all the remaining

requiments.
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