Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 16, 1991, 333-343

GENERALIZED CONFORMAL WELDING

D. H. Hamilton

Abstract. Let Φ be a homeomorphism of the unit circle **T** onto itself. Suppose that for any Borel set $G \subset \mathbf{T}$ with dim G = 0 we have measure $m_1(\Phi(G)) = m_1(\Phi^{-1}(G)) = 0$. We prove that the unit disk **D** and its exterior **D**^{*} are mapped by conformal mappings f and f^* onto disjoint domains Ω and Ω^* , respectively, so that the radial boundary values satisfy

$$(f \circ \Phi)(z) = f^*(z)$$

for $z \in T - E$, where $m_1(E) = 0$.

1. Introduction

A homeomorphism Φ of the unit circle $\mathbf{T} = \{|z| = 1\}$ onto itself is conformally welded in the the classical sense if the unit circle \mathbf{D} and its exterior \mathbf{D}^* may be mapped by some conformal mappings f and f^* into disjoint Jordan domains Ω and Ω^* , such that

$$f^* = f \circ \Phi$$

holds on **T**. The present paper generalizes the concept of conformal welding to the case where Ω and Ω^* are not necessarily Jordan domains. It follows from a result of Beurling and Ahlfors, see [4], that any quasi-symmetric Φ is conformally welded, see Lehto and Virtanen [10], Pfluger [14]. Lehto [9] and David [5] prove conformal welding for other classes of homeomorphisms. One problem is that there exists Φ for which there is no Jordan curve α , e.g.

$$\Phi(e^{i\theta}) = \begin{cases} e^{i\pi(\theta/\pi)} & 0 < \theta < \pi, \\ e^{-i\pi(-\theta/\pi)^b} & -\pi < \theta < 0, \end{cases}$$

and 0 < a < b < 1. For counterexamples see Oikawa [13], Huber [8], Semmes [16] and Bishop [2], [3].

Nevertheless Bers has asked when is some form of conformal welding possible. This is important for the uniformization of Riemann surfaces. In a companion paper [6] we introduced a generalized conformal welding. The use of Fuchsian groups made it more specialized than the general results we now develop.

We measure sets E by using p-Hausdorff measures $m_p(E)$, $0 \le p \le 1$. A set E has dimension 0 if $m_p(E) = 0$ for all p > 0.

¹⁹⁹¹ Mathematics Subject Classification: 30C60

Definition 1. A homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ is regular if for every $E \subset \mathbf{T}$ with dim E = 0 we have $m_1(\Phi(E)) = m_1(\Phi^{-1}(E)) = 0$.

Examples. It is easy to see that any homeomorphism Φ of the Lusin class, i.e., for each

$$G \subset \mathbf{T}, \quad m_1(G) = 0 \qquad ext{implies} \qquad m_1ig(\Phi(G)ig) = m_1ig(\Phi^{-1}(G)ig) = 0,$$

is regular. Another example is "Bihölder" homeomorphisms, i.e., there exist positive constants k, α :

$$k^{-1}|z_1-z_2|^{-\alpha} < |\Phi(z_1)-\Phi(z_2)| \le k|z_1-z_2|^{\alpha},$$

for all $z_1, z_2 \in \mathbf{T}$. This includes all quasisymmetric maps.

Beurling, see [15], proved that any conformal map f on **D** has radial boundary values

$$f(e^{i\theta}) = \lim_{r \to 1} f(e^{i\theta})$$

except for a set of dimension zero. Thus for any regular homeomorphism Φ , $f \circ \Phi$ is defined on **T** (a.e). Our conformal maps will always be bounded on **T**. Thus one can regard $f \circ \Phi = f^*$ as an identity in $L^{\infty}(\mathbf{T})$. We prove

Theorem 1. Let $\Phi: \mathbf{T} \to \mathbf{T}$ be a regular homeomorphism. Then there exists conformal maps f, f^* on \mathbf{D} , \mathbf{D}^* respectively so that (i) $f(\mathbf{D}) \cap f^*(\mathbf{D}^*) = \emptyset$, (ii) $(f \circ \Phi)(z) = f^*(z)$, for all $z \in \mathbf{T} - E$, where $m_1(E) = 0$.

2. Background results

Our results depend on the theory of the "fractional-derivative capacity" as well as conformal and quasiconformal mapping.

2.1. Capacity. Maz'ya (Chapter 7 [12]) is the reference for this section. For $u \in C_0^{\infty}(\mathbf{R}^2)$ and vanishing in $\{|z| > 2\}$, let \hat{u} denote the Fourier transform. For $0 \le p \le 1$ define a norm

$$||u||_{p} = \left[\iint |z|^{2p} |\hat{u}|^{2} dm_{2} \right],$$

i.e., the L^2 norm of the p^{th} order fractional derivative. The space \mathcal{D}_p is the closure of $C_0^{\infty}(\mathbf{R}^2)$ (vanishing in $\{|z| \geq 2\}$) in the $\|\cdot\|_p$ norm. The capacity C_p is defined for compact sets $E \subset \{|z| \leq 1\}$ by

$$C_p(E) = \inf \left\{ \left\| u \right\|_p : u \in \mathcal{D}_p, u \ge 1 \text{ on } E \right\}.$$

This is indeed a capacity in the sense of Choquet, essentially coinciding with the logarithmic capacity for p = 1.

The first property we need is:

(i) For p < q, \mathcal{D}_q is compactly embedded in \mathcal{D}_p , i.e., suppose we have a sequence $u_n \in \mathcal{D}_q$ with $||u_n||_q \leq 1$. Then there is a subsequence u_{n_k} and $u \in \mathcal{D}_q$ so that

$$\left\| u_{n_k} - u \right\|_p \to 0.$$

It follows from the definition and property (i) that: For any sequence $u_n \in \mathcal{D}_q$ with $||u_n||_q \leq 1$, any p < q, there is a set E, $C_p(E) < \varepsilon$,

$$u_{n_k} \to u(z)$$

uniformly on $\mathbf{R}^2 - E$.

We also make use of the relation between p-capacity and Hausdorff dimension.

(ii) For any $0 , <math>E \subset \mathbf{R}^2$

dim
$$E > 2 - 2p$$
 implies $C_p(E) > 0$.

We apply these results to functions $h(z) = \sum_{k=1}^{\infty} b_k z^k$ analytic on **D** with

$$\iint_D |h'|^2 dx \, dy = \pi \sum_{k=1}^\infty k |b_k|^2 < \infty.$$

By Beurling, see [15],

 $\lim_{r\to 1} h(re^{i\theta})$

exists and is finite except for $e^{i\theta} \in E$, with $C_1(E) = 0$. We refer to this limit as $h(e^{i\theta})$ (when it exists). (In general, h(z) may be extended to $u \in \mathcal{D}_1$.)

Applying (i), (ii) immediately yields:

Theorem 2. Let $h(z) = \sum_{k=1}^{\infty} a_{k,n} z^k$ be analytic on **D** with $\sum_{k=1}^{\infty} k |a_{k,n}|^2 \le 1$. Then there exists a subsequence h_{n_k} and a limit h(z) so that for every p < 1 and $\varepsilon > 0$ there is a set $E \subset \mathbf{T}$ with $C_p(E) \le \varepsilon$ and

$$h_{n_k}(z) \to h(z)$$

uniformly on $\mathbf{T} - E$.

2.2. Conformal mapping. We shall be considering pairs $\{f, f^*\}$ where f is conformal on **D** and f^* is conformal on **D**^{*}. It is important that $f(\mathbf{D}) \cap$

 $f^*(\mathbf{D}^*) = \emptyset$. However, as we can just as well consider $\{j \circ f, j \circ f^*\}$ for any Möbius transformation j, we shall assume the following normalization:

$$f^{*}(z) = z + \sum_{k=1}^{\infty} a_{k} z^{-k}, \qquad |z| > 1,$$
$$f(z) = \sum_{k=1}^{\infty} b_{k} z^{k}, \qquad |z| < 1.$$

This implicitly assumes $b_0 \in f(\mathbf{D}), b_0 \notin f^*(\mathbf{D}^*)$. The classical theory shows that

$$\left. egin{array}{c} \partial f^*(\mathbf{D}^*) \ f(\mathbf{D}) \end{array}
ight\} \subset \left\{ |w| \leq 2
ight\},$$

see Pommerenke [15]. We shall call this the S-normalization. Now as f and f^*-z may be extended to \mathcal{D}_1 , from Section 2.1 we immediately deduce

Lemma 1. Let $\{f_n, f_n^*\}$ be a sequence of S-normalized pairs. Then there is an analytic function f on \mathbf{D} , f^* conformal on \mathbf{D}^* , and a subsequence n_k so that for any p < 1, $\varepsilon > 0$

$$f^*_{n_k}(e^{i\theta}) \to f^*(e^{i\theta}), \qquad f_{n_k}(e^{i\theta}) \to f(e^{i\theta})$$

uniformly for $e^{i\theta} \in \mathbf{T} - E$, $C_p(E) \leq \varepsilon$.

Remarks. 1. Thus $f^*(e^{i\theta}) \to f^*(e^{i\theta})$ pointwise except for a set of dimension zero.

2. The exceptional set cannot be replaced by one with logarithmic capacity zero.

3. The function f may be identically constant. We make use of a lemma of Beurling (see [15]), to ensure that f_{n_k} does not collapse.

Lemma 2. Let f^* be conformal on D^* . Then for any constant b

$$C_1\left\{e^{i\theta}: f^*(e^{i\theta})=b\right\}=0.$$

Remarks. This fails in \mathcal{D}_1 .

2.3. Quasiconformal mappings. References may be found in [11]. Let a homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ be quasisymmetric on \mathbf{T} . Beurling and Ahlfors, see [11], proved that Φ extends to a quasiconformal mapping of \mathbf{C} , i.e., $\partial \Phi$ and $\bar{\partial}\Phi \in L^2(\mathbf{C})$ and $\|\bar{\partial}\Phi/\partial\Phi\|_{\infty} < 1$. Let the quasiconformal map Φ^{-1} have complex dilatation

$$\mu(z) = \frac{\partial \Phi^{-1}}{\partial \Phi^{-1}}, \quad \text{for } z \in \mathbf{C}.$$

Bojarski's theorem says that for any measureable λ with $\|\lambda\|_{\infty} < 1$ there is a quasiconformal homeomorphism $\psi: \mathbf{C} \to \mathbf{C}$ so that $\partial \psi = \lambda \partial \psi$ (a.e. with respect to area). Applying this to

$$\lambda(z) = \begin{cases} \mu(z) & z \in \mathbf{D}^* \\ 0 & z \in \mathbf{D} \end{cases}$$

yields a quasiconformal map f with dilatation 0 on **D**. The composition formulae shows that $f^* \equiv f \circ \Phi$ has dilatation 0 on **D**^{*}. Thus f is conformal on **D** and f^* is conformal on **D**^{*}. This is the argument of Lehto and Virtanen [10] or Pfluger [14] for

Lemma 3. For quasisymmetric $\Phi: \mathbf{T} \to \mathbf{T}$ there are complementary Jordan domains Ω, Ω^* and conformal maps

$$f: \mathbf{D} \to \Omega, \qquad f^*: \mathbf{D}^* \to \Omega^*$$

so that the boundary values (on \mathbf{T}) satisfy

$$f^* = f \circ \Phi.$$

2.4. Regular homeomorphisms. We now give some basic properties of regular homeomorphisms. First we observe that a regular homeomorphism is absolutely continuous in the sense of:

Definition 2. A homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ is RC ("regularly continuous") if for every p < 1 and $\varepsilon > 0$ there is a $\delta > 0$ so that for any $E \subset \mathbf{T}$ with $C_p(E) < \delta$, we have

$$m_1(\Phi(E)), m_1(\Phi^{-1}(E)) < \varepsilon.$$

The proof is given in

Lemma 4. A homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ is RC if and only if it is regular.

We only show that every regular $\Phi: \mathbf{T} \to \mathbf{T}$ is RC. Otherwise there is a sequence of $E_n \subset \mathbf{T}$, $C_p(E_n) \leq 1/2^n$, so that $m_1 \Phi E_n \geq \varepsilon > 0$, say. Setting $F_n = \sum_{k=n}^{\infty} E_k$, and as $\dim F_n \leq 1/2^{n-1}$ we obtain $F_n \supset F_{n+1} \supset \cdots$ with $m_1 \Phi F_n \geq \varepsilon$. Thus $F_n \downarrow \lim F_n \equiv F$ with $\dim F = 0$ but $m_1 \Phi(F) \geq \varepsilon$ by monotone convergence.

We cannot approximate a regular homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ by smooth Φ_n which are "uniformly RC". However a one sided approximation is possible.

Lemma 5. Let $\Phi_n: \mathbf{T} \to \mathbf{T}$ be a regular homeomorphism with

$$\omega(\delta, p) = \sup \left\{ m_1 \Phi^{-1}(E) : C_p(E) \le \delta \right\}.$$

Then there exists a sequence of smooth homeomorphisms $\Phi_n: \mathbf{T} \to \mathbf{T}$:

(i) $\sup \left\{ m\Phi_n^{-1}(E) : C_p(E) \le \delta \right\} \le \omega(\delta, p),$

- (ii) $k_n^{-1}|z-w| \le |\Phi_n(z) \Phi_n(w)| \le k_n|z-w|$ for all $z, w \in \mathbf{T}$, with constants k_n ,
- (iii) $\Phi_n^{-1}(z) \to \Phi^{-1}(z), \ \Phi_n(z) \to \Phi(z)$ uniformly on T.

D.H. Hamilton

This result is only about Φ^{-1} which we write as

$$\Phi^{-1}(e^{i\theta}) = e^{i\varphi(\theta)}$$

where $\varphi \colon \mathbf{R} \to \mathbf{R}$ is a homeomorphism so that for all integers k

$$\varphi(\theta + 2\pi k) = \varphi(\theta) + 2\pi k.$$

Up to a constant the *p*-capacity on **T** is equivalent to the obvious capacity for **R**. Clearly φ is "RC", i.e. for any $\varepsilon > 0$ there is a $\delta > 0$ so that for any $E \subset [0, 2\pi], C_p(E) < \delta$,

$$m_1\varphi(E)<\varepsilon.$$

Let $\tau_n \in C^{\infty}$ be an approximation to the identity

- (i) $\tau_n(x) > 0$ on [-1/n, 1/n],
- (ii) $\tau_n(x) = 0, |x| \ge 1/n,$ (iii) $\int_{-\infty}^{\infty} \tau_n(x) dx = 1.$ We set

$$\varphi_n(x) = \int_{x-1/n}^{x+1/n} \tau_n(y) \varphi(x+y) \, dy.$$

Clearly φ_n is a smooth homeomorphism with $\varphi_n(x + 2\pi k) = \varphi_n(x) + 2\pi k$. Also for any $E \subset [0, 2\pi), \ C_p(E) \leq \delta$,

$$m_1(\varphi_n(E)) = \int_E d\varphi_n = \iint_{\mathbf{R}} \tau_n(y) \, dy \, dx$$
$$= \int_{\mathbf{R}} \tau_n(y) \int_E d\varphi(x+y) \, dx \, dy$$
$$= \int_{\mathbf{R}} \tau_n(y) m_1(\varphi(E+y)) \, dy \le \omega_p(\delta).$$

Thus setting $\Phi_n^{-1}(e^{i\theta}) = e^{i\varphi_n(\theta)}$ we obtain a homeomorphism with the required properties.

3. Proof of Theorem 1

Let $\Phi: \mathbf{T} \to \mathbf{T}$ be a regular homeomorphism. We use the approximating homeomorphisms Φ_n constructed in Lemma 5. These quasisymmetric maps are extended to \mathbf{C} and as in 2.2 we obtain maps f_n , f_n^* conformal on \mathbf{D} , \mathbf{D}^* respectively so that

$$f_n^*(z) = f_n \circ \Phi_n(z)$$

for $z \in \mathbf{T}$. We assume that $\{f_n, f_n^*\}$ are S-normalized and thus that f_n^*, f_n converge normally on $\mathbf{D}^* \cup \mathbf{D}$ to f^*, f (which may be constant). Observe that

338

 $f^*, f \circ \Phi$ are well defined functions of $L^{\infty}(\mathbf{T})$. Let p be any polynomial in z, \overline{z} . Now

$$\int_{\mathbf{T}} p(z) f_n^*(z) \left| dz \right| \to \int_{\mathbf{T}} p(z) f^*(z) \left| dz \right|$$

by normal convergence. The left hand side is equal to

$$\int p(z)f_n \circ \Phi_n(z) |dz| = \int_{\mathbf{T}} p(\Phi_n^{-1}(w)) f_n(w) |d\Phi_n^{-1}|$$

where $w = \Phi_n(z)$. Now for any $\delta > 0$ and p < 1 there is a set E with $C_p(E) < \delta$ and $f_n(w) \to f(w)$ uniformly on $\mathbf{T} - E$. For any $\varepsilon > 0$, for small enough δ ,

$$\int_E |d\Phi_n^{-1}| < \varepsilon,$$

by the results of Sections 2.1–2.4. Thus as $p \circ \Phi_n^{-1} \to p \circ \Phi^{-1}$ uniformly on $\mathbf{T} - E$:

$$\int_{\mathbf{T}-E} p(\Phi_n^{-1}(w)) f_n(w) | d\Phi_n^{-1} | \to \int_{\mathbf{T}-E} (p \circ \Phi^{-1}) f(w) | d\Phi^{-1} |.$$

Now as p, f_n are bounded on E

$$\left|\int_{E} p(\Phi_{n}^{-1}(w)) f_{n}(w) \left| d\Phi_{n}^{-1} \right| \right| < C\varepsilon.$$

Combining these results implies

$$\int_{\mathbf{T}} p(z) f_n \circ \Phi_n(z) |dz| \to \int_{\mathbf{T}} (p \circ \Phi^{-1}) f(w) |d\Phi^{-1}|.$$

Now as Φ is regular and f may be approximated uniformly (except for a set of small capacity) by continuous functions, we change variable of integration to obtain

$$\int_{\mathbf{T}} p(z)(f \circ \Phi)(z) |dz| = \int_{\mathbf{T}} p(z)f^*(z) |dz|.$$

Therefore $f \circ \Phi = f^*$ in $L^{\infty}(\mathbf{T})$.

Finally observe that f cannot be constant, as otherwise so is the conformal mapping f^* , by Lemma 2.

D.H. Hamilton

4. Uniqueness of representation

Let $q: \mathbf{C} \to \mathbf{C}$ be any homeomorphism which is conformal on $\Omega \cup \Omega^*$, so that $q(z) = z + \sum_{k=1}^{\infty} c_k z^{-k}$ near ∞ . Then if $\{f, f^*\}$ is a (S-normalized) conformal welding for a homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ we obtain a second (S-normalized) conformal welding $\{q \circ f, q \circ f^*\}$.

Thus even in the classical case that Ω, Ω^* are the inner and outer domain of a closed Jordan curve α there may exist such a q. This is obvious if Area $\alpha > 0$ for then we define dilatation μ on α and let q be the normalized quasiconformal solution of the Beltrami equation

$$\bar{\partial}q = \mu \partial q.$$

However there exists examples of nonuniqueness even when Area $\alpha = 0$ (but dim $\alpha > 1$), see Bishop [2]. Our example is constructed by classification results of Ahlfors and Beurling.

Let Ω be any domain containing ∞ with complement E. The Dirichlet class $\mathcal{D}(\Omega)$ is the set of functions

$$h(z) = \sum_{k=1}^{\infty} a_k z^{-k}, \qquad (|z| > R)$$

analytic on Ω with

$$\|h\| = \sqrt{\int_{\Omega} |h'|^2 dx \, dy} < \infty.$$

The capacity with respect to $\mathcal{D}(\Omega)$ is

$$c(E) = \sup\left\{ |a_1|: h \in \mathcal{D}(\Omega), ||h|| \le 1 \right\}.$$

Then there are nonmöbius conformal maps defined on Ω if and only if c(E) > 0.

Now let E be a totally disconnected compact set. Let Ω, Ω^* be disjoint simply connected domains with $\infty \in \Omega^*$ and constructed so that

$$\partial \Omega = \partial \Omega^* \supset E.$$

By scaling and translation we may assume that the conformal maps

$$f: \mathbf{D} \to \Omega, \qquad f^*: \mathbf{D}^* \to \Omega^*$$

are S normalized.

We can construct Ω and Ω^* by a family of Jordan arcs connecting components of E. Thus we may define a map

$$\Phi = f^{-1} \circ f^*$$

defined at first only on $\mathbf{T} - F$, where $f^*(F) = E$. By suitable construction of Ω , Ω^* one can ensure that dim F > 0 and Φ extends to a regular homeomorphism of \mathbf{T} . Thus $\{f, f^*\}$ is a generalized conformal welding of Φ .

Now provided c(E) > 0 there is a nonmöbius conformal map q of $\mathbf{C} - E$ (not necessarily a homeomorphism of \mathbf{C}). We may assume that q is normalized. Thus we obtain a pair $\{q \circ f, q \circ f^*\}$ which forms a conformal welding in our generalized sense.

5. Non Jordan case

Now we discuss the case that $\partial\Omega$ (or $\partial\Omega^*$) is not a Jordan curve. The example in the introduction cannot be conformally welded in the classical sense. Our proof of Theorem 1 shows that there is a dense subset $F \subset \partial\Omega = \partial\Omega^*$ so that every $z \in F$ is the endpoint of open Jordan arcs $\beta \subset \Omega$, $\beta^* \subset \Omega^*$. Furthermore $f^{-1}(F)$ is a dense subset of **T** (of positive dimension). Thus if $\lim_{r\to 1} f(re^{i\theta})$ does not exist there is then a nontrivial cluster set χ of f at $e^{i\theta}$. In prime-end theory (see [15]) χ is the impression associated with $e^{i\theta}$. The arcs β , β^* separate these continua so that each $e^{i\theta}$ maps to a unique impression $I(e^{i\theta})$. Thus for a regular homeomorphism Φ

$$\Phi = f^* \circ f^{-1}$$

in the sense of prime-ends.

As soon as there is a single nontrivial continua $\chi = I(e^{i\theta})$ then the conformal welding of Φ by $\{f, f^*\}$ is not unique. Any normalized conformal map q of $\mathbf{C} - \chi$ gives a conformal welding of Φ by $\{q \circ f, q \circ f^*\}$.

Note that we can always find a conformal mapping q so that $q(\chi)$ is a horizontal line segment. In the next section we observe that there is always a conformal welding so that all the impressions χ are horizontal line segments.

6. Class of representations

For each regular homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ let \mathcal{F}_{Φ} be the class of pairs $\{f, f^*\}$ of (S-normalized) conformal maps

$$f: \mathbf{D} \to \Omega, \qquad f^*: \mathbf{D}^* \to \Omega^*,$$

 $\Omega \cap \Omega^* = \emptyset$, $f^*(e^{i\theta}) = (f \circ \Phi)(e^{i\theta})$ (a.e. on **T**). The following is an immediate deduction from Section 2:

Lemma 6. \mathcal{F}_{Φ} is compact in the topology of uniform convergence on compact subsets of $\mathbf{D} \cup \mathbf{D}^*$.

Theorem 3. For every regular homeomorphism $\Phi: \mathbf{T} \to \mathbf{T}$ there is a conformal welding $\{f, f^*\}$ so that

(i) Area $(\mathbf{C} - \{f(\mathbf{D}) \cup f^*(\mathbf{D}^*)\}) = 0$,

(ii) Each impression of $\partial f(\mathbf{D})$ (and $\partial f^*(\mathbf{D}^*)$) is a horizontal line segment.

On \mathcal{F}_{Φ} consider the problem of maximizing $\operatorname{Re} a_1$ for $f^*(z) = z + \sum_{k=1}^{\infty} a_k z^{-k} \in \mathcal{F}_{\Phi}$.

Now for each pair

$$f^* = z + \sum_{k=1}^{\infty} a_k z^{-k}, \qquad f = \sum_{k=0}^{\infty} b_k z^k$$

of \mathcal{F}_{Φ} we have the area formulae

Area
$$(\mathbf{C} - \{f(\mathbf{D}) \cup f^*(\mathbf{D}^*)\}) = \pi - \pi \sum_{k=1}^{\infty} k(|a_k|^2 + |b_k|^2), \quad a_0 = 0$$

Thus

$$1 \ge \sum_{k=0}^{\infty} k (|a_k|^2 + |b_k|^2).$$

Regarding \mathcal{F}_{Φ} as a bounded subset of the obvious Hilbert space we see that $\{f^*, f\} \in \mathcal{F}_{\Phi}$ is an extreme point if and only if

Area
$$\left(\mathbf{C} - \left\{f(\mathbf{D}) \cup f^*(\mathbf{D}^*)\right\}\right) = 0.$$

Now by Lemma 6 there exists an extremal $f \in \varepsilon \times \tau(\mathcal{F}_{\Phi})$ maximizing Re a_1 . Thus we may assume the existence of an extremal satisfying (i).

Now let χ be any impression of $\partial f(\mathbf{D})$ which is not a horizontal line segment. By the variational theory of Schiffer, see [15], there is a function

$$g(z) = z + \sum_{k=1}^{\infty} d_k z^{-k}$$

conformal on $\mathbb{C} - \chi$, so that $\operatorname{Re} d_1 > 0$. Consider the pair $\{g \circ f^*, g \circ f\} \in \mathcal{F}_{\Phi}$. Then if $g \circ f^* = z + \sum_{k=1}^{\infty} e_k z^{-k}$ as $e_1 = d_1 + a_1$, we get $\operatorname{Re} e_1 > \operatorname{Re} a_1$ which is a contradiction.

Remarks. Using quasiconformal variations one can prove every extremal satisfies (i).

References

- AHLFORS, L.V., and L. BERS: Riemann's mapping theorem for variable metrics. Ann. Math. 72, 1960, 385-404.
- BISHOP, C.: A counterexample in conformal welding concerning Hausdorff dimension. -Mich. Math. J. 35, 1988, 151-159.
- [3] BISHOP, C.: Conformal welding of rectifiable curves. Preprint.

- [4] DOUADY, A., and C.J. EARLE: Conformally natural extension of homeomorphisms of the circle. - Acta. Math. 157, 1986, 23-48.
- [5] DAVID, G.: Solutions de l'equation de Beltrami avec $\|\mu\|_{\infty} = 1$. Ann. Acad. Sci. Fenn. Ser. A I Math. 13, 1988, 25-70.
- [6] HAMILTON, D.H.: Simultaneous uniformization. To appear.
- [7] HUBER, A.: Konforme Verheftung von Gebieten mit beschrenkter Randdrehung. Comment. Math. Helv. 50, 1975, 179–186.
- [8] HUBER, A.: Isometrische und konforme Verheftung. Comment. Math. Helv. 51, 1976, 319-331.
- LEHTO, O.: Homeomorphisms with given dilatation. Proceedings of the 15th Scandinavian Congress, Oslo 1968. Lecture Notes in Mathematics 118, Springer-Verlag, 1970.
- [10] LEHTO, O., and K. VIRTANEN: On the existence of quasiconformal mappings with prescribed dilatation. - Ann. Acad. Sci. Fenn. Ser. A I Math. 274, 1960.
- [11] LEHTO, O., and K. VIRTANEN: Quasiconformal mappings in the plane. Springer-Verlag, 1973.
- [12] MAZ'YA, V.G.: Sobolev spaces. Springer Series in Soviet Mathematics, Springer-Verlag, 1985.
- OIKAWA, K.: Welding of polygons and the type of a Riemann surfaces. Kodai Math. Sem. Rep. 13, 1961, 37-52.
- [14] PFLUGER, A.: Über die Konstruktionen Riemannscher Flächen durch Verheftung. J. Indian Math. Soc. 24, 1960, 401-412.
- [15] POMMERENKE, C.: Univalent functions. Vandenhoeck & Ruprecht, 1975.
- [16] SEMMES, S.W.: A counterexample in conformal welding concerning chord arc curves. -Ark. Math. 24, 1986, 141-158.
- [17] VAINIO, J.V.: Conditions for the possibility of conformal sewing. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 53, 1985.

University of Maryland Department of Mathematics College Park, MD 20742 U.S.A.

Received 21 December 1990