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GENERALIZED CONFORMAL WELDING

D. H. Hamilton

Abstract. Let ® be a homeomorphism of the unit circle T onto itself. Suppose that for
any Borel set G C T with dimG = 0 we have measure m;(®(G)) =m (2-(G)) = 0. We prove
that the unit disk D and its exterior D* are mapped by conformal mappings f and f* onto
disjoint domains Q and Q*, respectively, so that the radial boundary values satisfy

(fod)(z) = f7(2)

for z € T — E, where my(F) =0.

1. Introduction

A homeomorphism & of the unit circle T = {|z| = 1} onto itself is confor-
mally welded in the the classical sense if the unit circle D and its exterior D* may
be mapped by some conformal mappings f and f* into disjoint Jordan domains

Q and Q*, such that
fr=foo

holds on T. The present paper generalizes the concept of conformal welding to
the case where  and * are not necessarily Jordan domains. It follows from a
result of Beurling and Ahlfors, see [4], that any quasi-symmetric ® is conformally
welded, see Lehto and Virtanen [10], Pfluger [14]. Lehto [9] and David [5] prove
conformal welding for other classes of homeomorphisms. One problem is that there
exists ® for which there is no Jordan curve a, e.g.

i in(8/m 0<f<m
) 0y __ J € _ ’
(™) { e=im(=0/m"  _p < g < 0,

and 0 < a < b < 1. For counterexamples see Oikawa [13], Huber (8], Semmes [16]
and Bishop (2], [3].

Nevertheless Bers has asked when is some form of conformal welding possible.
This is important for the uniformization of Riemann surfaces. In a companion
paper [6] we introduced a generalized conformal welding. The use of Fuchsian
groups made it more specialized than the general results we now develop.

We measure sets E by using p-Hausdorff measures m,(E), 0 <p < 1. A set
E has dimension 0 if m,(E) =0 for all p > 0.
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Definition 1. A homeomorphism ®: T — T is regular if for every E C T
with dim F = 0 we have m; (@(E)) =m (@‘I(E)) =0.

Examples. It is easy to see that any homeomorphism & of the Lusin class,
i.e., for each

GCT, m(G)=0 implies m1(®(G)) = m1(®71(G)) =0,

is regular. Another example is “Biholder” homeomorphisms, i.e., there exist pos-
itive constants k, a:

k72 — 2|7 < |<I>(z1) - *I’(z;;)| < k|z — 2|7,

for all z1, 2z € T. This includes all quasisymmetric maps.
Beurling, see [15], proved that any conformal map f on D has radial bound-
ary values

£(e'?) = lim f(e*)

except for a set of dimension zero. Thus for any regular homeomorphism ®, fo®
is defined on T (a.e). Our conformal maps will always be bounded on T. Thus
one can regard f o ® = f* as an identity in L>°(T). We prove

Theorem 1. Let ®: T — T be a regular homeomorphism. Then there exists
conformal maps f, f* on D, D* respectively so that
(i) £(D)n f*(D*) =9,
) (fo@)(z) = £(),
for all z € T — E, where m;(E) =0.

2. Background results

Our results depend on the theory of the “fractional-derivative capacity” as
well as conformal and quasiconformal mapping.

2.1. Capacity. Maz’ya (Chapter 7 [12]) is the reference for this section. For
u € C3°(R?) and vanishing in {|z| > 2}, let @ denote the Fourier transform. For
0 < p <1 define a norm

Il = [ /[ 12212 drma),

ie., the L? norm of the p'* order fractional derivative. The space D, is the
closure of C§°(R?) (vanishing in {|z] > 2}) in the |- || , norm. The capacity C,
is defined for compact sets E C {|z| < 1} by

Cp(E) = inf { lull, : « € Dp,u > 1 on E}.
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This is indeed a capacity in the sense of Choquet, essentially coinciding with the
logarithmic capacity for p = 1.

The first property we need is:

(i) For p < g, D, is compactly embedded in Dy, i.e., suppose we have a
sequence u, € Dy with ||un||q < 1. Then there is a subsequence u,, and u € Dy
so that

l[ns — ull, — 0

It follows from the definition and property (i) that: For any sequence u, € D,
with |[uall, <1, any p < ¢, there is a set E, Co(E) <e,

Un, — u(2)

uniformly on R — E.
We also make use of the relation between p-capacity and Hausdorff dimension.
(ii) Forany 0 < p <1, E C R?

dimE >2—-2p  implies C,(E) > 0.

We apply these results to functions h(z) = 3z, bk2* analytic on D with

// WPz dy =7 3 klbel? < oo.
D k=1

By Beurling, see [15],
linr} h(re'?)

exists and is finite except for e'® € E, with C1(E) = 0. We refer to this limit as
h(e*®) (when it exists). (In general, h(z) may be extended to u € D; .)
Applying (i), (ii) immediately yields:

Theorem 2. Let h(z) = Y re, ak,n2* be analytic on D with Y 72, k|ak,a|?
< 1. Then there exists a subsequence hy,, and a limit h(z) so that for every p < 1
and € > 0 there is a set E C T with Cp(E) <€ and

hni(2) = h(2)

uniformly on T — E.

2.2. Conformal mapping. We shall be considering pairs {f, f*} where f
is conformal on D and f* is conformal on D*. It is important that f(D) N
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f*(D*) = 0. However, as we can just as well consider {j o f,j o f*} for any
Mobius transformation j, we shall assume the following normalization:

R =z+) az™® |z >1,

k=1

f(z) = Zbkzk, lz] < 1.
k=1
This implicitly assumes by € f(D), by ¢ f*(D*). The classical theory shows that

of*(D*)
f(D) } C {lwl < 2}a

see Pommerenke [15]. We shall call this the S-normalization. Now as f and f*—z
may be extended to D, from Section 2.1 we immediately deduce

Lemma 1. Let {f,, fi} be a sequence of S-normalized pairs. Then there
is an analytic function f on D, f* conformal on D*, and a subsequence nj so
that forany p<1,e>0

fale®) = f1(e®), faule) = f(e¥)
uniformly for ¢ € T — E, C,(E) <.

Remarks. 1. Thus f*(e'®) — f*(e*®) pointwise except for a set of dimension
zero.

2. The exceptional set cannot be replaced by one with logarithmic capacity
zero.

3. The function f may be identically constant. We make use of a lemma of
Beurling (see [15]), to ensure that f,, does not collapse.

Lemma 2. Let f* be conformal on D*. Then for any constant b
Ci{e’ : f* (%) = b} =0.
Remarks. This fails in D; .

2.3. Quasiconformal mappings. References may be found in [11]. Let a
homeomorphism ®: T — T be quasisymmetric on T. Beurling and Ahlfors,
see [11], proved that ® extends to a quasiconformal mapping of C, i.e., 3® and
9% € L*(C) and ”5@/8@”00 < 1. Let the quasiconformal map ®~! have complex
dilatation _—

u(z) = %, for z € C.
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Bojarski’s theorem says that for any measureable A with |[A[|ec < 1 there is a
quasiconformal homeomorphism 3: C — C so that 9y = A0% (a.e. with respect
to area). Applying this to
_[mz) zeD*

OR 0 zeD
yields a quasiconformal map f with dilatation 0 on D. The composition formulae
shows that f* = fo® has dilatation 0 on D*. Thus f is conformal on D and f*
is conformal on D*. This is the argument of Lehto and Virtanen [10] or Pfluger
[14] for

Lemma 3. For quasisymmetric ®: T — T there are complementary Jordan
domains Q,Q* and conformal maps

f:D—-Q, fr:D* > Q"
so that the boundary values (on T ) satisfy
f* = f od.

2.4. Regular homeomorphisms. We now give some basic properties of regular
homeomorphisms. First we observe that a regular homeomorphism is absolutely
continuous in the sense of:

Definition 2. A homeomorphism ®: T — T is RC (“regularly continuous”)
if for every p < 1 and ¢ > 0 there is a § > 0 so that for any E C T with
Cp(E) < §, we have

my (':I)(E)), my (Q—I(E)) <E.
The proof is given in
Lemma 4. A homeomorphism ®: T — T is RC if and only if it is regular.

We only show that every regular &: T — T is RC. Otherwise there is a
sequence of E, C T, Cp(E,) < 1/27, so that m;®E, > ¢ > 0, say. Setting
F, = z:‘;nEk, and as dimF, < 1/2"7! we obtain F,, D Fpy1 D --- with
mi®F, > ¢. Thus F, | imF, = F with dimF = 0 but m;®(F) > ¢ by
monotone convergence.

We cannot approximate a regular homeomorphism ®: T — T by smooth &,
which are “uniformly RC”. However a one sided approximation is possible.

Lemma 5. Let ®,: T — T be a regular homeomorphism with
w(6,p) = sup {m1®@7(E) : C(E) < 6}.

Then there exists a sequence of smooth homeomorphisms ®,: T — T:
(i) sup {m®;'(E): Cp(E) < 8} < w(é,p),
(i) k7llz — w| < |®n(z) — ®n(w)| < kalz — w| for all z,w € T, with constants

(iii) ®,(z) » ®7(2), ®n(z) — ®(2z) uniformly on T.
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This result is only about ®~! which we write as
$1(e%) = e®
where ¢: R — R is a homeomorphism so that for all integers k
0(0 + 27k) = (6) + 27k.

Up to a constant the p-capacity on T is equivalent to the obvious capacity
for R. Clearly ¢ is “RC”, i.e. for any ¢ > 0 there is a § > 0 so that for any
E C[0,27], Cp(E) < 8,

my1p(E) < e.

Let 7, € C* be an approximation to the identity
(i) mn(z) >0 on [-1/n,1/n],
(ii) mn(z) =0, |z| > 1/n,
(iii) [ 7a(z)dz =1.
We set
z+1/n
pn(z) = / Ta(y)e(z + y) dy.

-1/n

Clearly ¢, is a smooth homeomorphism with @,(z + 27k) = ¢,(z) 4+ 27k. Also
for any E C [0,27), Co(E) <4,

mipn(E) = [ dow = [[ ralw)dyd
=/RTn(y)/Ed<P(m+y)dfcdy

- /R ra(y)m1 (9(E +v)) dy < wp(6).

Thus setting ®,(e'?) = e'*"(®) we obtain a homeomorphism with the required
properties.

3. Proof of Theorem 1

Let ®: T — T be a regular homeomorphism. We use the approximating
homeomorphisms &, constructed in Lemma 5. These quasisymmetric maps are
extended to C and as in 2.2 we obtain maps f,, f* conformal on D, D* respec-
tively so that

fa(2) = fn o @a(2)

for z € T. We assume that {f,,f*} are S-normalized and thus that frsfn
converge normally on D*UD to f*, f (which may be constant). Observe that
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f*, f o ® are well defined functions of L>°(T). Let p be any polynomial in z, Z.
Now

[ s - [ s @ e
T T
by normal convergence. The left hand side is equal to
[P0 a1zl = [ p(@71(w) falw) iy

where w = ®,(2). Now for any § > 0 and p < 1 thereis aset E with Cp(E) < §
and fp(w) — f(w) uniformly on T — E. For any € > 0, for small enough ¢,

/ a5t <e,
E

by the results of Sections 2.1-2.4. Thus as po®,;! — po®~! uniformly on T—E:

[ p@r @) falder| = [ posT)w) e
T-FE T-E
Now as p, f, are bounded on E

l/ n (W) faw )Id‘P;ll' < Ce.

Combining these results implies

/ p(2)fn 0 ®a(2) |d2| — / (po ®1)f(w) |d&~1].
T T

Now as & is regular and f may be approximated uniformly (except for a set
of small capacity) by continuous functions, we change variable of integration to
obtain

/p(Z)(foq’)(Z)ldzl =/p(2)f"(2) |dz|.
T T

Therefore fo® = f* in L>*(T).
Finally observe that f cannot be constant, as otherwise so is the conformal
mapping f*, by Lemma 2.
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4. Uniqueness of representation

Let ¢: C — C be any homeomorphism which is conformal on QU Q*, so that
q(z) = z+ Y je; ckz™F near co. Then if {f, f*} is a (S-normalized) conformal
welding for a homeomorphism ®: T — T we obtain a second (S-normalized)
conformal welding {go f,qo f*}.

Thus even in the classical case that Q,Q* are the inner and outer domain of
a closed Jordan curve a there may exist such a ¢q. This is obvious if Areaa > 0
for then we define dilatation p on « and let ¢ be the normalized quasiconformal
solution of the Beltrami equation

0q = pdyq.

However there exists examples of nonuniqueness even when Areaa = 0 (but
dima > 1), see Bishop [2]. Our example is constructed by classification results of
Ahlfors and Beurling.

Let € be any domain containing co with complement E. The Dirichlet class
D(Q) is the set of functions

[e o]

h(z)=Y az™, (|| >R)

k=1

|| = 1// W/ 2dz dy < oo.
Q

The capacity with respect to D(2) is

analytic on Q with

e(E) = sup {las|: h € D(Q), |A]| < 1}.

Then there are nonmébius conformal maps defined on § if and only if c¢(E)>0.
Now let E be a totally disconnected compact set. Let €, 2* be disjoint simply
connected domains with co € Q* and constructed so that

0N =00"DE.
By scaling and translation we may assume that the conformal maps
f:D—-Q, ff:D* - Q*

are S normalized.
We can construct 2 and Q* by a family of Jordan arcs connecting components
of E. Thus we may define a map

®=7f"1of*
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defined at first only on T — F, where f*(F) = E. By suitable construction of 2,
Q* one can ensure that dim F' > 0 and ® extends to a regular homeomorphism
of T. Thus {f, f*} is a generalized conformal welding of &.

Now provided ¢(E) > 0 there is a nonmébius conformal map ¢ of C— E (not
necessarily a homeomorphism of C). We may assume that ¢ is normalized. Thus
we obtain a pair {go f,qo f*} which forms a conformal welding in our generalized
sense.

5. Non Jordan case

Now we discuss the case that 9 (or 9Q*) is not a Jordan curve. The example
in the introduction cannot be conformally welded in the classical sense. Our proof
of Theorem 1 shows that there is a dense subset F' C 00 = 0Q2* so that every
z € F is the endpoint of open Jordan arcs 8 C Q, #* C Q*. Furthermore f~1(F)
is a dense subset of T (of positive dimension). Thus if lim,_ f(re'?) does not
exist there is then a nontrivial cluster set x of f at e'. In prime-end theory
(see [15]) x is the impression associated with e'®. The arcs 8, 8* separate these
continua so that each e* maps to a unique impression I(e'?). Thus for a regular
homeomorphism ¢

®=fof?!
in the sense of prime-ends.

As soon as there is a single nontrivial continua x = I(e*®) then the conformal
welding of ® by {f, f*} is not unique. Any normalized conformal map ¢ of C—x
gives a conformal welding of ® by {go f,qo f*}.

Note that we can always find a conformal mapping ¢ so that ¢(x) is a horizon-
tal line segment. In the next section we observe that there is always a conformal
welding so that all the impressions x are horizontal line segments.

6. Class of representations

For each regular homeomorphism ®: T — T let Fs be the class of pairs
{f, f*} of (S-normalized) conformal maps

f:D—-Q, ff:D* - Q*,
QNQ* =0, f*(e) = (f o ®)(¢'?) (a.e. on T). The following is an immediate

deduction from Section 2:

Lemma 6. Fs is compact in the topology of uniform convergence on compact
subsets of D UD*.

Theorem 3. For every regular homeomorphism ®: T — T there is a con-

formal welding {f, f*} so that
(i) Area(C-— {f(D)U f*(D*)}) =0,
(ii) Each impression of 0f(D) (and 0f*(D*)) is a horizontal line segment.
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On Fg consider the problem of maximizing Rea; for f*(z) = 243 o, axz™*F
€Fs.

Now for each pair

oo oo
f*=2+2akz_k, f=zbkzk
k=1 k=0

of Fg we have the area formulae

(oo}

Area (C— {f(D)U f*(D")}) =m—x Y k(lal* + [bx[*), a0 =0.

k=1
Thus -
1> k(laxl* + bef?).
k=0

Regarding Fe as a bounded subset of the obvious Hilbert space we see that
{f*,f} € Fs is an extreme point if and only if

Area (C - {f(D)U f*(D*)}) = 0.

Now by Lemma 6 there exists an extremal f € € x 7(Fg) maximizing Rea; . Thus
we may assume the existence of an extremal satisfying (i).

Now let x be any impression of 9f(D) which is not a horizontal line segment.
By the variational theory of Schiffer, see [15], there is a function

g(z) =z + E drz*
k=1

conformal on C — x, so that Red; > 0. Consider the pair {go f* go f} e Fs.
Then if go f* =z + Zzil exz ¥ as e =d; +a , we get Ree; > Rea; which is
a contradiction.

Remarks. Using quasiconformal variations one can prove every extremal
satisfies (i).
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