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EXP ONENTIAL INTEGRABILITY
OF THE QUASI-HYPERBOLIC

METRIC ON TTöT,DER DOMAINS
'Wayne Smith and David A. Stegenga

Abstract. A proper subdomain D of Rn is called a Hölder domain if for a fixed y in
D, the quasi-hyperbolic metric ko(r,y) is bounded by a constant plus a constant multiple of
the logarithm of the Euclidean distance from c to the boundary of D. For simply connected

planar domains D, it is known that these domains are characterized by the fact that the Riemann
mapping function of the unit disk onto D satisfies a Hölder condition with some positive exponent.

For gr in D fixed, we prove that exp(r,bp(r,y)) is integrable over D for some r > 0. One

corollary of this is that the boundaries of these domains have Hausdorff dimension less than n.
Other applications pertain to Poincard domains and to averaging domains. Our method involves
extending some recent results of Carleson-Jones and Jones-Makarov on simply connected planar
domains to multiply connected domains in ,R' by using the quasi-hyperbolic metric'

1. Introduction

Consider an open, connected and proper subdomain D of Euclidean tz-space

Rn, ft ) 2. Following [GO] we define the quasi-hyperbolic metric lcp in D by

k o(t7 t rz) -
ds

6D@)
inf t'tJ

7

where the infimum is taken over atrl

we denote by 6 o(*) the Euclidean
of D . As usual, we define

rectifiable arcs 7 joining t,1 to 12 in D . Here
distancebetlveen r and "D, thecomplement

k o(rt, A) - k o(rt,, u),

forcl€Dand AcD.
If D is a simply connected planar domain, then the quasi-hyperbolic metric

is comparable to the usual hyperbolic or Poincard metric on D. See, for example,

[BP]. For domains in .R", the quasi-hyperbolic metric provides a useful substitute
for the hyperbolic metric. Applications can be found, for example, in [GM], [GP],
lcol, [H], [S] and [SS2].
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Deffnition. Let D be a proper subdomain of J?" a"nd let rs € D. The
domain D is said to be a Hölder domain if there are constants c and C such that

ko(*o,r) ( ctog W *r, a € D.

The terminology is derived from the fact that in the pla,ne, a simply connected
domain D is a Hölder domain if and only if a Riemann mapping function from
the unit disk onto D is Hölder continuous. (See [BP].) In general, Hölder domains
are bounded and multiply connected domains.

Our motivation for this paper stems from our interest in the geometry of
Hölder domains and the Poincard inequality. In [SS2] Corollary 4 we showed that
the volume of the boundary of a Hölder domain is 0, and we asked whether the
Hausdorff dimension of the boundary must be less tha^n n. This was known for
John domains by the results in [MV]; see also Theorem a in [SS2]. It is a conse-
quence of part (b) in the theorem below that this dimensionality result extends to
Hölder domains.

Theorem A,. Let D be a proper subdomajn of Rn and let ao € D. The
following are equivalent :

(") D is a HöIder domain;
(b) ?åere is a r ) 0 sucå tåat

(rko(ro , r)) dr ( oo;

(.) D has finite volume, *(D) ( oo, and there is a r ) 0 sucå that whenever u
is integrable on D and satisfies

I '*o
D

is over all balls B c D and u s denotes the average of

1f- I exp ("1"-uDl)d* <2.*(D) I 
L

D

These equivalences are contained in Theorem z and Theorem 4 below. our
main result, Theorem 1, provides an estimate of the number of cubes, in a Whitney
decomposition W of a general domain D, of a given size among those cubes in lZ
that are at approximately the same quasi-hyperbolic distance from a fixed point
so e D. We use this estimate together with geometric conditions on a domain to

where the suprernum
u over B,then
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derive integrability properties of the quasi-hyperbolic metric. The applications to
Hölder domains are given in Theorem 2 and Theorem 4. A precise statement of
Theorem 1 and its proof can be found in Section 2. Theorem 1 extends some recent

results of Carleson and Jones, see Section 10 of [CJ], and Jones and Makarov [M]
who considered simply connected planar domains.

The next applications of Theorem 1 concern the Poincard inequality on a
domain in J?" . Let D C R" be a domain with finite volume and 1 1p <m. We
denote by Wr,t(D) the usual Sobolev space of functions on D that together with
their first order wea.k partial derivatives are in LP(D). The norm for 1ryr*(D) is
given by

ll,ll.,,,«rr : U fuf d,x + | V"f o*)"' .

DD
Define

Mp(D) - sup

where the supremum is taken over all nonconstant u e WL'P(D) ar.d up is the
average of u over D. D is said to be a p-Poincard domain if Mr(D) < a.

In Theorem 1 [SS2] it was established that if D is a Hölder domain, then
D is a p-Poincard domain for p ) n and furthermore that this result is best
possible for the class of all Hölder domains. Then Hurri [H] proved that a HöIder
domain satisfying an additional geometric condition is a p-Poincar6 domain for
all p > fl - €, where e depends on the domain. In Section 3, we use Theorem 1

to show that Hurri's geometric condition holds for aII Hölder domains and hence
the improved Poincard inequality holds also. A special case of Theorem 1 [SS2] is
that, if D C C is the image of the unit disk in the complex plane under a Hölder
continuous Riemann mapping function, ther. M2(D) < m. An extension of this
result to other Riemann mapping functions is given in Section 3.

The final section of the paper is concerned with averaging domains. An av-
eraging domain is a domain for which local BMO-type norm estimates imply a
global BMO-type norm estimate. A precise definition can be found in Section 4.

Our work here was motivated by that of Staples [S]. A characterization of aver-
aging domains involving the quasi-hyperbolic metric is given, and then this and
Theorem 2 are used to give the characterization of Hölder domains given in part
(c) in the above theorem.

Ac*nowledgment. The authors would like to express their gratitude to Pro-
fessor N.G. Makarov for generously sharing with us his insights and some of the
results from his collaboration with P. Jones. We happily acknowledge the valuable
contribution he has made to this paper. We also thank Professor P. Jones for
providing us with an early version of his manuscript [CJ].
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2. Main result

Throughout this paper W : {Q} will be a Whitney decomposition of D into
closed dyadic cubes with disjoint interiors. This means that the coordinates of the
vertices of each cube are dyadic rational numbers and that the diameter of each
cube Q € [7, which we denote bV d(Q), is comparable to its Euclidean distance to
0D. F\rrther, the constants of comparability do not depend on D. See Chapter 6
of Stein's book [St] for the existence of such a decomposition.

The volume of a measurable subset E of. R will be denoted by m(E). The
notation a = å and o § ö will be used to mean that o a^nd ä are either comparable
or satisfy an inequality with a constant depending only on the dimension.

The integral of Marcinkiewicz (associated with the domain D) is defined by

M(*)- 6 o(y) r
WaY'I

D

See Chapter I of Stein's book [St]. We shall require the following fundamental
result concerning these integralsl see Lemma 5 in [C1] or lZ). We sketch a different
proof which emphasizes the independence of the constants on the domain.

Lemma L. Let D be a domain in R and let Qo be a cube with D C Qo.
Therc a.re positive constants c1 and c2 depending only on the dimension n such
that if .\ > 0, tåen

*({* e Qo\ DIM(t) r,U) <ctm(Qo)exp(-c2)).

Proof. we first use the whitney decomposition of D to define a measure
on.Rl+l :{(r,illr€R',y>0}. ForQ €W,let pq beapointmassat
@e,d(Q)) of weight rn(Q), where og is the center of Q, and let prp : Daew lte.
It is immediate that po is a Carleson measure with norm bounded by a öonstant
independent of D; that is, for an arbitrary cube Q' C R, p(e,x d(e)) 3
c.n'L(Q'). It follows that the sweep of p, Su@): I Po@-t)dp(t,y) where pr(t)
is the Poisson kernel on .R', is a function of bounded mean oscillation with norm
less than an absolute constant. See [C2] or Chapter 6 in [G]. Furthermore, an
easy computation shows that for s e "D, M(r) x Sr@). The result is now a
consequence of the John-Nirenberg Theorem [JN] (or see Chapter 6 in [G]) applied
to the restriction of S p to Q, .

p(r; n)_ max {6r(y) I y € T(r; ,)} .

€ D ll, yl: r\, anddefine

Lemma 2. Let uo € D and make the normaJizing assumption that 6o(*o)
- 1. Suppose o e "D is sucå that the distance from x to D satisiies 0 <
dist(r, D) : ro 17 and let c be a constant satisfying l. < c < lf rs. Then

M(*): (,"* *) 
"*' .tron(ro ,r(crs; ,)) .
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Proof. we first estimate M(r) by using polar coordinates with center r . Let
do be surface measure on the unit sphere O in .8" .

M(*) > 
l,' I Wr, do(s) dr

rIr. J_"; I 6p(rs) d,o(s)d,r

(2.1) {s€ol6p(rs)) p(r;x)/z}

z l.',!d,,d(ry)"-'0,
[' P(';u)" 

'^- J,o-p; *' '

If 7 is a rectifiable curve in D from rs to 11 € T(crs;c), then

ftdrfdsfds

7 ''l

Consequently,

(2.2) ['
J",, ,hs ko(*o'T(crs; CI)) '

Thus by Hölder's inequality, (2.1) and (2.2), we have

0*a)'*': U"'."N4!! ;6*- o,)"*'

=1,',,W* U"',,h)"
f, M(*) ' kb(ro,T(crs;x)),

as required. This completes the proof of the lemma.

By refining the Whitney decomposition I,7 of D, we may assume without loss

of generality that if I € W and nr,nz eQ, then ko(*r,q) I 1/3. That is, the
quasi-hyperbolic diameter of every Whitney cube is less than 1/3. Fix rs € D,
and for each j ) 0, define

D1 - u {q € w I ko(ro,Q)s j}.



350 Wayne Smith and David A. Stegenga

Let o1 e Di-r where j > l. Then lto(*o,rr) ( j - 2/3 and it follows that
ko(*r,r) 3 j -L/3 for all points c within a ball centered at u 1 of radius edp(c1),
where e is a positive numerical constant. Thus,

Theorem 1. Let D be bounded with

constants cs and c4 depending only on the

(2.3)

(2.4)

6oi(r) x 6o(r), r e D j-r.

ns € D and D1

dimension n sucå

as above, and put
There are positive
that

*@) ( cg d,(D) exp( -cEt"+' j).
d(Q)<60 exp(-tj)

Q?D;\D;-1

Remark. We were led to this theorem by similar results, for simply connected
planar regions, in [CJ] and [M].

Proof. By a dilation argument, we may assume that 6s : 1. Fix f ) 0 and
j )1, andsuppos. Q e W satisfies d,(Q)<exp(-tj) and e CDi\D;_r. First
assume that 1 < j s 4. From Lemma 2.1 in [GP] we have that for some a e e,

(2.5)

and hence that

,69

6o A" 
6o

Thus, t § 1 and (2.4) follows.
Now suppose that j > 4. We may assume lhat tj is large, for if lj j 1,

!\n t § l and(2.a) istriviallytrue. Fix r e Q andlet rs - dist(u,Di_z).
Observe that if Qr eW shares a boundary point with Q, then Qr is disjoint
ftom Di-2. For otherwise, &2(o6 ,Q) < ko(*o,,Qr) + llS <j - 1 which violates
the condition that Q ( Di-r. Thus, ,o Z d(Q), since neighboring whitney cubes
a,re comparable in size. By [Go] Lemma 1, there is a geodesic 7 for the quasi-
hyperbolic metric on D from z to c6. Let c1 € 7 satisfy ko(*o,rr): j -g.Then, since &pr(co,c) S i +t15,, we have

l(r,rr)

lt@,11)l + 6 o(")
)

'r(x rxt)
6 o(*)
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where l(x,zt) is the portion of 7 from a to t1.rrd l,f(r,o1)l is its length. Thus
we have shown that

(2.6)

and it follows that ro N d,(Q).
We now estimate Mi-z(a) by using Lemma 2, where Mi-z is the integral of

Marcinkiewicz associated with the domain Di-r. Lel Ti-z(crs;r) : {a e Dyz 
I

l* - Vl - "ro\, 
where c § L has been chosen so that Ti-2(crs;r) fi Di-z is not

empty. This is possible by (2.6). Thus, by (2.3),

ho,-r(*o,Ti-2(us;r)) = kr(*o,Ti-z(crs;")) S j - 3.

Since 16 = d(Q) < exp(-tj) and lj is large we obtain from Lemma 2 that

(2.7) Mi-z(a)i (.r*)"*' .ki:-,(rs,ri-z(cro;,)) ) *+Li.

Applying Lemma 1, with Q6 being the smallest cube containing D, along with
the above estimate for Mi-z shows that

*@) I m({, € Qo \ D j-, I Mi-z(r) } co f+tj})
d(Q)<exp(-tj)
QcDi\D;-r

S, d(D) exp(-csc2l"+' j),

where the constant cs x 1 comes from (2.7). Thus, the proof is complete.

3. Applications to Hölder domains

In this section several applications of Theorem L are given. We begin with
applications to Hölder domains. If 0 < o ( 1 we say that a Hölder domain
D C R is an o-Hölder domain if there is oo € D and C < q such that

(3.1)
d 0D\r)

The restriction a ( 1 is needed because of the inequality (2.5). This terminologr
derives from the fact that, for a simply connected proper subdomain D of. R2 ,

there is a Riemann mapping function from the unit disk onto D that is Hölder
continuous with exponent a if and only if (3.1) holds when &p is replaced by the
comparable hyperbolic metric [BP].
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Theorem 2. Let D be a domain in Rn and let ro e D. The following are
equivalent:

(a) Tåere exists a > 0 such that D is an a-Hölder domain;
(b) ?åereexists P>0 suchthat m({re Dllca(rs,r) > j}) :O(""pt|il),

as j ---+ oo;
(c) ?åere exists r > 0 sucå that frexp(rlcp(u6,o))dc < oo.

Moreover, the constants a, B and r are related as follows: If (b) or (c)
holds, then both hold with 0 = ,; if D is an ot-Hölder domain, tåen (b) åolds
with B i o"+'; if (b) holds with P > O, then D is a Bln-Hölder domain.

Remark. It can be shown that if a proper subdomain D of. R satisfies the
integrability condition in part (c) above, then necessarily r < 1.

Proof. We assume without loss of generality that 62(re) : t. Suppose first
that D is an a-Hölder domain with Whitney decompositior W : {Q}, and let
Di be as in Section 2. By (3.1) and the properties of a Whitney decomposition,
if j is sufficiently large, then

Together with Theorem 1, this gives that it j is large, then

d4q ( exp (- Z,), e c Di \ Di-1.

*(Di \ Di-l)- »
d(Q)(exp(-ai/2)

Qco, \Di -,

Hence,

m({r e D lkp(xs,r) > r}) < »'n(D; \ D;-t) <Cexp(-Bj),
i>j

where 0: c{al2)"*r and the constant C depends on the domain D. Thus (b)
holds.

Next supposethat (b) holdswith B > 0, andfix Q e llz . Then

d'(Q) < *({* e D I kpr(ro,c) ) ho(*o,A)}) < cexp (- pkD(ro,Q)).

By taking logarithms and using that d(Q) x 6p(x) for c € Q ""d that the quasi-
hyperbolic diameter of a Whitney cube is comparable to 1, it follows that (8.1)
holds for n e Q with o : §1, and C § 1. Thus, since Q € lz was arbitrarS D
is a B/n-Hölder domain.

The equivalence of (b) and (c) is elementary a^nd is left to the reader. This
completes the proof.
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Corollary L. Let D be an a-Hölder domain with Whitney decomposition
W : {Q}. There is a constant P Z a"*L such that

(3.2) n'L(u {8 € W I d,@) - 2-i}) - O(z-pi), as j oo.

Remark. A domain satisfying (3.2) is said to satisfy a Whitney-f condition
by Martio and Vuorinen. In [MV], they prove that this condition holds for domains
satisfying their c-covering condition. However, it is not hard to construct Hölder
domains which do not satisfy this condition and hence this corollary does not
follow from their results. In fact, it is unlikely that it follows from their techniques
since Hölder domains are essentially more complicated domains.

Proof. By [GP] Lemma 2.!, we have that

. 6oko)t"Sffi l lcp(xs,r),

so {Q €W ld'(Q):2-j} c{re Dlko(*o,*)Z j}. Theresultnowfollows
from Theorem 2.

The next corollary concerns the Minkowski dimension of the boundary of a
Hölder domain. For the definition of the Minkowski dimension of a set in R', see

[MV] where it is shown that the Hausdorff dimension of a set is less than or equal
to its Minkowski dimension.

Corollary 2. Let D C R be an a-Hölder domain. There is a constant
C > 0 depending only on the dimension n such that the Minkowski dimension of
the boundary of D satisfies

dimy(1D) 1n - Can*t.

Proof. A Hölder domain is bounded, see [GM] or [SS2], and by Corollary 4

[SS2], the Euclidean measure of its boundary is 0. Thus we may apply The-
orem 3.12 [MV] and Corollary 1 to conclude that dir'r,y(?D) I n - B, where
B Z o"*' is the constant from Corollary 1. This completes the proof.

Remark 1. This result can also be established using condition (c) of Theo-
rem 2 and the method of proof of Corollary 2 [SS2].

Remark 2. Jones and Makarov have recently established this result for
simply connected planar domains [M].

The next corollaries concern the Poincar6 inequaliiy on a domain in .R,; see

the introduction for definitions and notation. In [SS2] it was established that if D
is a Hölder domain, then D is a p-Poincar6 domain for p ) n. We now are able
to improve this bound on p when D is an o-Hölder domain.
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Corollary 3. Let D C R be an q-Hölder domain. There is a constant C >
0 depending only on the dimension n sucå that Mn(D) < oo for p ) n - Can*z .

Proof. Since D is an o-Hölder domain, D is bounded and (3.2) holds with
B Z o"+'. Thus we may apply Theorem 7.L2 of. [H] to conclude that Mn(D) < m
for p ) n - a.B. This finishes the proof.

Remark. An alternate proof of Corollary 3 ca^n be based on Theorem 2 (a)
implies (b) and Theorem 9 of [SS2].

In [SS2, Theorem 1] it was established that if D C C is the image of the unit
disk in the complex plane under a Hölder continuous Riemann mapping function,
then M2(D) < m. Theorem 1 allows an extension of this to other Riemann
mapping functions.

Corollary 4. Let f be analytic and univalent in the unit dislc. There is a
positive consta,nt c such that if

(3.3) (r - l,l)lt' {4ls "*p ( - c ( log ä)''' (,"* los ä) "'),

for lzlli-, then Mr(D) ( oo, where D: f({z e C I lzl < U).
Proof. Let g(t) -exp(-c(log(1/t))2/3(loglos(t/t;;tls;, 0 (r < 1. Notice

that #(/(t)/t)dt ( oo, and so (3.3) implies that D is bounded. Thus *(D) <
oo, as is necessary for D to be a Poincar6 domain. By [SS2, Theorem g], it is
sufficient to show that

(3.4) t,

Srh(1 - lrl)

5 **p{-r(

The Koebe Distortion Theorem implies that (1 -121)lf,(z)l x 0o(ye)), urrd
furthermore that the hyperbolic metric, pD t ot D satisfies

See Corollary 1.4 in tP] or [SS1]. Thus (3.3) can be restated as

t'o (f (o), f (r))
o o (f (r)) s +(r""p t

los tt o (f (0), f (,
))

)) r t/s t'o(f (o), /(r)) ),

where a x c.

*o(f (o), /( ,))

2
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Now let W : {Q} be a Whitney decomposition of, D, and define D; as in
Section 2 with c6 : /(0). We assume without loss of generality that 6p(o6): t.
We have shown that, for sufficiently large j,

to(r(,)) < exp (-;(Y)"' .r) , re) 6 D; \ D;-t.

Using this and Theorem 1, we get that

*(Q)
d(Q)<exp(-(a /2)(ros j/ j)rts.j)

QcD;\D;-r

< csd(D)'"*, (- "^*Y'i) : oU-\,

where b x a3 = c3. Thus if c is sufEciently large,

I ro@o,r)dr f,i, m(Di\ D;-r) < oo.
J
D j=l

This establishes (3.4) and completes the proof.

4. Averaging domains

Let g be a continuous increasing convex function on [0, oo) with g(0) : 0
and let D be a domain, with rn(D) < m. Following the treatment of Orlicz spaces
given in Chapter VIII of [A], we define the Orlicz norm

llul;,,<ot: i,,r{e r o l # I,(ry),, = 
r}

D

for any measurable function u on D. It follows that

(41) #|,(ffi)a*<t
D

whenever ll"llr,<ol is finite.

Deffnition. A domain D, with *(D) ( oo, is a g-averaging domain if there
exists M<a sothat

(4.2) llu - uollr,,@) < M;:rr ll" - uali,*@)

whenever u is a,n integrable function on D and the supremum ranges over all balls
B contained in D.
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Remark L. The use of the family of balls is not essential in the above
definition. The following theorem is also valid if balls are replaced by cubes or
more generally by the dilates of a bounded open set.

Remark 2. This definition with Lo(D) replaced by the Lp(D) spaces, with
L I p < oo, is given by Staples in [S], where the theorem below is proved in that
setting. This is the special case g(t) : fP in the following theorem.

Theorem 3. Suppose that g is as above and that g(t) S ebt for some
0 < 6 < oo and all t> L. A domain D is a g-averaging domain if a^nd only if

Proof. Suppose that D is a domain which satisfies (a.3). Then by the domi-
nated convergence theorem,

dr - 0.

| -Gkr(ro ,r)) dr
D

I ,Gko(,,, ,))
D

(4.4)

(4.5)

r. 1

ls@-t

Let u be an integrable function satisfying sups llu -uollLr@) < oo. Then
by Jensen's inequality and (4.1) the BMO(D) norm of u satisfies

ll'll. - su 1

acPo@ I
B

ll" - uBllr,o1r1.

of the familiar BMO-In addition, w€ see that the convexity of p yields a variant
inequality, namely,

(4.6)
1 [ ,,

DD

for any constant c and any positive constant o.
Let W : {Q} be a Whitney decomposition of D into cubes. We may assume

that each cube Q e 17 is contained in a ball Bg, with Q C AO C D and
m(Be) S *(Q). Using the techniques in Lemma 2.11 in [S] we see that

(4.7) luae - rro I 5 ko(*g, "e)ll"ll.
where we assume that os is the center of Qo e W , cg is the center of Bg and
Bo : Beo.



Exponential integrability of the quasi'hyperbolic metric 357

Define a by a-r - supB ll" - "nllUlay 
which we assume to be positive and

Iet r be a small positive number. By (4.6) we obtain the first inequality belo'ar:

;» l r(Tr- ",1) 
o. 

= # | vG"t" - usot) d,a

DD
s7f

= ? ;@ I v('"1" - YBal+ ralueo - usol) dx'

We assume that r is small enough so that the convexity of g, e.5) and (4.7)
imply that

g(ralu - uBal * ralupo - ltBol) 3 v(r"|" - uBal + rclco(ao, ro))
I a(ralu - uBal + (t - r)rc2 inf kp(as,x))

=',)A, - 
uBal) + (r -') jåå v(rokp(as,t))

where ro : rc2. Hence by (4.1), (a.a) and the properties of Whitney decomposi-
tions we get that

1f
@ Jv(+'olu - uo) d*

D

provided r is sufficiently small. Thus,

llu - u olft,,ot S (i, o)-, : 
? ;y"llu - u slln,@t

which proves that D is a g-averaging domain.
Conversely, we now assume that D is a g-averaging domain. Put u(z) :

Iro(ro,r). If B C D is a ball of radius r and center 26, then we have by (+.6)
that

# | v@1" - url) d. s #t I o {r"l*"(co, r) - ko(*o,ra)l) dx

B 
.1 fuN rn I "*P (zoatog ;14) o.

lrl<'

: I ""r(zoarog ,:lA) d,r .L
l,l<r
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provided o is sufficiently small. Hence, supaco ll" - "allr,,1a; 
( a-r < m.

Put ui(o) : min("(r),r). By . straightforward argument, we see from the
above that

sup llu; - (")ollUla; ( o-1

holds for ui, all7 > 0, provided we make o smaller. Since k(c6,") S 1 on Bs
we have by (4.2), that

;q | ,,a,s 
dEn | 1", - (u)old* +L

DBo

< *(D) _7 f
- m(Bo) *(D) J l"i - @i)oldr + 7

D

_ ,n(D)
< ffio-'(t)ll"i - @)ollr,1ov * 1

s *!?)re-l1t1Ma-t +t.- m(Bd'
Hence &p is integrable on D, since the right hand side is independent of j .

We may therefore apply (4.2) and the above estimate for supp ll" - "allU(a) toconclude that llu - rollr.o@1 I Ma-L .

Finally, we have

I vGtr{.s,a)) dr < | ,@" - uol * elupl) dr
DD

t + I e(zelu - uol) dx + lm(D)e(2eluel) < a
D

provided e is small enough. This completes the proof.

Theorem 4. Let p(t) : et -1. A domain D is a g-averaging domain if and
only if D is a Hölder domain.

Proof. If D is a Hölder domain then &p is exponentially integrable by The-
orem 2 and hence (4.3) holds and D is a g-averaging domain. ConverselS if D
is a g-averaging domain, then by Theorem 3 there is a r > 0 such that

f
I exp (rk;(ro,r)) tu I 7 + m(B)

t,

for all balls B C D. But this clearly implies that D is a Hölder domain.

Lastly we have the following generalization of the well known John-Nirenberg
Theorem for cubes; see [JN].
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Corollary 5. A necessary and sufficient condition that a domain D be a
Hölder domain is that tåere exists a r ) 0 sucå that the inequality

(48) #1"*o(+#)a*sz
D

holds for aJI u € BMO(D).

Proof. Let D be a Hölder domain and u e BMO(D). By [S], we can replace
the family of balls used in our definition of BMO (D) by the family of cubes
contained in D. Thus, by the John-Nirenberg Theorem, there is a r ) 0 such

that
1 f rrlu-uolt ,

;@,/ ""o (-l-;ii;=.. ) dr < 2
a

holdsforanycube Q cD and u e BMO(D). Let g beasinTheorem4, sothat
we have

!1P- ll" - uqllr,,<q < "-'ll"ll-QCD

and hence by Remark 1 (following (a.2)) and Theorem 4 we see that (4.8) holds
for a smaller value of r.

Conversely, if (4.8) holds, then the inequality ll" - uollr,,lay ( r-1llull. is
valid for all u € BMO(D). Trivially, llull. is dominated by supg.p llu - uqllt*py
and hence by Theorem 4 and Remark 1, D is a Hölder domain.
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