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UNIFORM LIMITS OF CERTAIN A-HARMONIC
FUNCTIONS \MITH APPLICATIONS TO

QUASIREGULAR MAPPINGS

Alexandre Eremenko and John L. Lewis

Abstract. Let u1, 1t2t...ru* be nonconstant uniform limits (on compact subsets) of ,4
harmonic functions in {c : lrl < n} C R' where .4 satisfies certain elliptic structure conditions.
Theauthorsshowthatifthereexistsl20suchthat(i) {c:u;(n) <-)}n{c:u1@)< -)}=0,
(ii)luf-"ll Sl,and(iii)lu,(O)l (),forl<i,,i(rn,thenrn(cwherecdependsonly
on thä structure conditions and n. As an application they show that their theorem provides a

completely P.D.E. proof of Rickman's generalization of Picard's theorem to quasiregular mappings.

1. Introductron

Let u: (rr,...,nn) denote apoint in Euclidean n space (R"), andput

(*, y) riyi, fr,,U € R',

B(r,r):{u:ly-"1 <r}, r)0, r€R'.
Let E, 08, and lEl denote the closure, boundary, and Lebesgue n measure of
E.lf. g is afunction on R', put M(r, g,to): sup g, gi : mil(g,0) and

B(xs,r)

t0s 0g 0gtv9: \Arr,5,..., Ar.).
Let Io(O), 1 ( p < oo, be the usual space of Lebesgue measurable functions

9 on a domain Q with norm denoted by llgllr. Let W1,o(Q) be the Sobolev
space of functional elements with distributional gradients Vg and norm given by

llollt,, : llVgllp + llgllr. We say that g € Wl,p(O) locallv, provided s eW1,r(O)
whenever O is an open set with O e O. We denote the space of functions
with compact support in Q by Co-(O), and set Wr,o(9), equal to the closure in
Wt,p(Q) of Co-(Q).

For fixed p, I <p < oo, suppose that A : A(t,4) is a function from
f,) x R," --+ R' with the following properties:
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(a) For each q € R', r --» A(a,4) is Lebesgue measurable,
(b) For almost every , e Q (with respect to Lebesgue ,? measure) 7 -* A(*,n)

is continuous,

(") "r(l(l+lnl)tu-')l€- rtl' . (t(*,ri-A(r,€),rt-(), fo, almosr every o € R,,
whenever ( e R", ? € R" - {0},

(d) lA(*,ril1crlr7ln-t for almost every , € O, whenever 7 € R".
u is said to be a weak solution to V .ll(*,,V?(CI))] : 0 in O, provided u is
continuous on f,),locally in l[,r(O) and

(1.1) l. (l(*, Vr),Yrb) a* - o,

m ( ce,

when ry' e. Co*(o). Note from (d) and Hölder's inequality that (1.1) remains true
for rl: €. wt,p(o), whenever o is open and ö e o. we remark that solutions u
as above are often called ,4,-harmonic in the literature.

Next for fixed a, b, pt,p2 with 0 < o, ä ( -, and 1 ( pt < pz I a
let F(o, b,,pt,pz,O) denote the space of functions u on O which are uniform
limits (on compact subsets of a) of sequences (u*)i satisfying: Each u6 is a
weak solution to V. tr(*)(x,Vo;(r)) :0 in Q;where .4(h) satisfies (a)-(d) with
constants cr(k), 

"r(k), 
p(&). Moreover, o < 

"r(k), 
b> c2(k) and p1 Sp(k) <p,

Theorem 1. -Flcr fr,xed a, b, pt, pz as abovelet u1r.,2t...ru* benoncon-
stant functions rn Fla,b,p1,,pz,B(0,.8)] . Suppose for some ) ) 0 that whenever
l1i,j1m,i+j,
(i) {x : u;(a) < -Å} o {u : ,i@) < -Å) :0,
(ii) lul - ull < t,
(iii) lur(o)l <.1.
Then there exists cs : cs(n,a,b,pr,pz) ) 0 sucå that either

(1.2)

or

( 1.3)

observe that ca in Theorem 1 is independent of ) and rB. using this obser-
vation, we easily obtain the following Corollary (see Section 3).

Corollary L. Let ct, b, ptt pzt be as in Theorem 1 and suppose
'ult1t2t..,suttr a,renonconstantfunctjons jn F(arbrp1rp2lBn). Suppose forsome
Å > 0 tåat (i)-(iii) of Theorem 1 are vaJid. Then (1..2) holds.
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We note that Corollary 1 follows directly from Theorem 1, once we show
utrr...ru,m are unbounded abovein R". Theorem l and Corollary 1, with p1 :
p2 : rt t have applications to quasiregular mappings. Recall that a function /
from a domain O into R" is said to be K > 1 quasiregular provided each of its
coordinate functions are locally in I421,"(O) and

(1.4)

for almost every
the determinant
rr, :1og lf - d,l is

( 1.5)

in 0, where

( 1.6)

v . 
f«rr 

r)yu(r) ,,yu("))("-2)/'A(*)Vr(r)]

lDf (dl- sup lny1"1nl < KJil*)' läl:r'

n € O. Here Df (*) is the Jacobian matrix of f while Jy is
of Df (the Jacobian of f ). Moreover, if f + d in C, then
locally a weak solution to (see t1])

-0

A(*) _ J il*)'/" lo' f (*) D f (*)] -' ,

A(*,q)- (af 4rt,r»(n-2)/2 A@)rt,,

when D/(o)-l exists, and .4,(c) - identity matrix, otherwise. In (1.5) D'l
denotes the transpose matrix of Df . Now if

(1.7)

@,q) e Qx R", then clearly (a) and (b) arevalid. (d) for p- n is aconsequence
of (1.4) with c2 : cz(n,I{). (c) follows from the case p : n of the inequality

(1.8) (lyl + l*l)n-'ly - *l' 3 "(lvl'-'y - l*lo-'r,v - *),

where 7 <p< oo, c: 
"(n,p) 

and y € R', to € R" - {0}. To get (d) from (1.8)

Put 
o@): J,,@7r/,P,(')-"

when D/(o)-r exists, and d(c) : identity matrix, otherwise. Then from (1.7)
and (1.8) with y :0(t)q, 1t):0(r)( we deduce (c) for ct: cr(ntK') > 0 small
enough. Hence u e. F(a,b,n,n,O) for some o : o(n, K), b : b(n, K).

Next we use the above facts about quasiregular mappings and Corollary 1 to
prove Rickman's theorem [12]: A nonconstant entire quasiregular mapping omits
at most a finite number of values. To this end suppose / is a nonconstant entire
quasiregular mapping which omits distinct values ett...,a*. LeL ui:lo1lf -otl,
L < i < rn, and choose 6, 0 < 6 ( 1, so small that

0 < 6 < mi"{l/(o) - o,l,lor - oil} < max {l/(0) - ol,lo; - "l} ( 6-',
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when i * j, t < i., j 1m. Then from the triangle inequality and simple
properties of logarithms it is easily seen that (i)-(iii) of Theorem t hold with
), : 2log2 + lo9(1/6). Thus we can apply Corollary 1 to get m I c(n,K), which
is Rickman's theorem for nonconstant entire quasiregular mappings.

We note that Rickman in [15] also proved a version of Schottky's theorem for
quasiregular mappings. A somewhat weaker but similar theorem can be deduced
from Theorem 1 by essentially the same argument as above. We omit the details.
Now suppose that uLt. . . ,ltrn are as in Theorem 1 and .\ : 0 in (i)-(iii). Then
m I cs, since otherwise it would follow from (1.3), Harnack's inequality for positive
functions in F[o, b,pr,pz,B(O,ft)] (see Lemma 3) and a connectivity argument
that u1:...:u*:0, Suppose m)2 andput

Using Harnack's inequality for .F'(o, b,pr,pz,B(0,.R)) again, it is easily seen that

B(0, ^R) f1 0O; - B(0, E) ) 0O1, lSi,jSm+1.
Such an equality between open sets is topologically possible, but it requires some
work to construct examples since rn ) 2. In Section 3 we point out that m ) 2
is in fact possible in Theorem 1 when ) : 0. However, we do not know whether
there exist 7.tlt...,u* (m > 1) which are,4.-harmonic for some,4. : A(arq)
and satisfy the conditions of Theorem 1 with ) : 0. A similar problem is to
characterize those A: A(r,7) satisfying: rf. u,u are A harmonic in B(0,.8) with
u(0):0, u*: ?r*,and {u < 0}n {, < 0} - 0, then u:'t):0. This problem
is related to (but not the same as) the problem of determining those .4 which
have the unique continuation property at 0: If r!,),.) are A-harmonic in B(0,.R)
and u: u on an open set O g B(0,.R), then ?.1 : ?) in B(O,,R) (see [b], [Z],
[18] for references and recent results in unique continuation). Another interesting
question which arises from this paper is to find minimal structural assumptions on
,4 which guarantee that the conclusion of Theorem 1 or Corollary 1 is valid when
urt...,,u,n are .4-harmonic and satisfy (i)-(iii).

As for the proof of Theorem 1, first observe that if utt...,u- satisfy (i)-
(iii) with .\ : 0, then these functions satisfy (i)-(iii) for each positive .\. Hence
Theorem 1 for,\ : 0 follows from Theorem L for ) ) 0 and so we assume
throughout the proofofTheorem 1 that ) > 0. Second observe from the definition
of .F(o,b,pt,pz,B(0,fi)) and (iii) that there exists an A: A(*,ri harmonic u
in B(0,.8) with

( 1.9)

and

( 1.10)

"(0) - 0

l"(r) -u,(r)l 12\, n€r(0, å.)



Let p, pr 3p1p2 be the exponent in (c), (d) corresponding to u and let p be

the unique positive Borel measure associated with u* as follows:

f,t(1.11) I @tr,Vr*),v$)tu:-l ödp,
JB(0,B) JB(o,E)

whenever ö e Cy (A19, ft)) . The existence of, p, car, be deduced as in [6].
For completeness we sketch a proof of (1.11) in Section 2. Let

n(t,r1) : tP-" p(B("r, t)), t ) 0.

Next in Section 2 we prove

Lemma l. Let or € B(0, Rl4)n{x:u(x):0}, andO < p1.R/100. Then
therc exists ca -- ca(n,a,b,pr,pz) ) 0 such that

("n)-' n(p,r, ) ( M (2 p, u, a r)P -r < M (5 p, u, ot)p-r I can(1.0 p, x1).

In Section 3 we establish

Lemma 2. There exists r < 10-4.R, nz € B(O,R|4) fl {o: u(r):0}, and
cs : cs(nrarbrptrpz) ) 0, such that

max {n(.R/8,0), n(10r, ,r)} a csn(r,e2).

We observe from (ii), (1.10), Lemma 1 with rz: nr, P: r a.nd Lemma 2
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that

M (5r, u!, r r) - 3.\ < M (5r, u, r z) I lcan(\}r, urllt I b -tl
(1.12) l lcacsn(r,rrlfilb-rl <@2nc)rlb-DM(zr,u,cz)

: caM(2r,u,rz) I culM(zr,u;* ,zz) + 3.\],

when 1 1i 1m. Similarly, using (ii), (1.9)-(i.10), Lemma l with cl :0,
p: RlllO and Lemma 2, we get

,(r*Å,,,*,0) -s) < *(#,,,0) s lcan(Rll,o;11/(r-rr
(1'13) .-fcac5n(r,xrllrlb-rl 1c6M(2r,u,o2)

< c6lM12r,u;t,rz) + 3,\].

Next in Section 3 we show that (1.12), (1.13) and essentially Harnack's in-
equality for F[a,b,pr,pz,B(0,n)] (see Lemma 3) imply the existence of c7 :
c7(nrarbrh,,pz) > 0, such that

(",)-'[r(rft,,r*,0) - 2("?)3)] S (",)-' [u(zr,u,*,)- (",)'Å]

(1 14) 
1§l;,;:,i;1)=*"'rtu@''-u;*') 

+ \)
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holds for 1 ( i, j < m, except for at most one possible i. In Section 3 we also
deduce from (1.14) that if (1.3) is false for some j, L < j ( rn, and ca is large
enough, then

( 1 .15)

is valid for 1 ( i 1m , with at most one exception. Here c8 : cs(n)a,b,pt,pz) is
asmallpositiveconstant. Sincebyassumption {r: u;(a) < -)}, !1i 1m are
pairwise disjoint, we can then conclude from (1.15) that (1.2) and hence Theorem 1

are true.
As motivation for the proof of Theorem 1 we note that Rickman used a some-

what similar format in [12]. However Lemma 2 is simpler than its corresponding
analogue (Lemma 5.1) in [12]. Also much of the proof in [12], [15] uses the "method
of moduli of path families". This method uses extremal length and many facts
about quasiregular mappings which are not available here. We remark that one of
our goals in writing this paper was to make Rickman's generalization of Picard's
theorem (which in our opinion is one of the highpoints in the the theory of quasireg-
ular mappings) more accessible to a larger audience, e.g. a person who is a^n expert
in p.d.e.'s and a nonexpert in q.r. mappings. Theorem 1 is also motivated by work
of Eremenko and Sodin in [2, 3]. They showed that Nevanlinna's second funda-
mental theorem follows from a theorem they proved for d-subharmonic functions,
a^nd in fact this theorem was used in [2-a] to prove a conjecture of Shiffman and
give a simple proof of Drasin's theorem on deficient values. Rephrasing Rickman's
Theorem in the language of .A,-harmonic functions led us to conjecture Theorem 1.
In a future paper we hope to obtain a generalization of the defect relation in [13]
to " 6- r4.-subharmonic functions".

Finally, we would like to thank Juha Heinonen for some helpful conversations.
Also the authors would like to thank Tero Kilpeläinen and Jan Måly for a preprint
of [9] which was helpful in proving Theorem L.

2. Preliminary reductions

In the sequel c denotes a positive constant which may only depend orl n ) a,
b, pt, p2 ,, loot necessarily the same at each occurence. Here we list some facts
about ,4.-harmonic functions which will be used in the proof of Theorem 1. Let
u ) 0, to be A-harmonic h B(yrt), t > 0, U € R" with constants p: g, ctt c2t
in (c), (d), satisfying c1 ) a, c2 ( å and h 1g ( p2. Then we shall oft"o r""
Harnack's inequality for .4-harmonic functions:

(2.1) M(r,,,il < "(*)'r,t#,,,
where 0 < r ( t and 0 : 0(n,a,,b,p1,p2) ) l. We refer the reader to [12,
Theorem 5] for a proofof (2.1) when , : it. (2.1) can be deduced from this case
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by iteration. Using Q.1), it is

Thus

(2.3)
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easily shown that there exists a - a(nrerb,prrpr),

osc ro : sup lw(a) - w(z)l
B(y,tr) x,z6,Bly,t1)'

(2.2) : M(h,.,y) * M(tr,-*,y) < c(tvlt2)" ,?ii,l,
: c(trlt2)olu(tr,,.,y) * M(tr,-r,v)f ,

when 0(tr ( tz1t. Toobtain(2.2)from(2.1),put s:t,9s/10:z a.nd

u : M(s,r,y) , , u : M(s, -rp,y)*, respectively in (2.1). Adding the resulting
inequalities, we find for some 6:6(nra,b,prrpz), 0 ( 6 ( 1, that

'(å"' '',) +'(å"' -''o) < 6lu(s'''v) * M(s, -ro,v)f ,

which can be iterated to get (2.2). Similarly, if u : M(9t110,.,y) - to then from
(2.1) we have with t replaced by 9t/10 and r by 4t15,

'(å', ',r) + *(t',',v) s" ['(å', ',r) -'(r)]

We observe that (2.3) is also valid if to is replaced by -ur, since if to is A(*,rl)-
harmonic, then -ul is A(r, -7)-harmonic. Finally observe from (a)-(c) that tu+s
is A(o,7) harmonic for each real number s. From these observations and (2.1)-
(2.3) we easily deduce the following lemma.

Lemma 3. Let u)0, we Flo,b,pr,pr,B(V,t)1. Then-wtu*s arein
Ffa,b,p1,,pz,B(y,t)] . AIso'u satisfiLs Q.L) white to satisfies (2.2)-(2.3).

To prove Lemma 3 it suffices to note that our previous observations and (2.1)-
(2.3) remain valid for uniform limits.

Next we sketch the proof of existence for pr as in (1.11). To do this we use a
clever idea of Ileinonen and Kilpeläinen (see [6, Theorem 3.17]). Fix .Er < .R and
put

o:{e :o<( 1u*, C-u+ ewt,p(B(o,,Rr))}.

Using (.)-(a) and the theory of monotone coercive operators (see Theorem 1.7
and Section 4 in Chapter 3 of [8]) we deduce the existence of u € I( with

(2.4)
J B(0,Rr )
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whenever 0 < ö e Wr,o1A1O,Ar)). u is said to be a solution to the obstacle
problem for A in B(0,.R1), with obstacle and boundary function equal to u*.
Using Hölder continuity of, u* (see (2.2)) and Moser iteration, we conclude in a
standard way (see [1.1, Theorem 3.7]) that u is Hölder continuous in B(0,.81) and
L-harmonic in

O: {* € B(0,.R1): u(c) < "+(r)}.
Since u , u+ are.A-harmonic in O and u - u+ e Wr,r(O) we deduce from the
maximum principle for , -harmonic functions, implied by (") in Section 1 (see [6]),
that u = u* . Since .R1, 0 ( Er. < .R is arbitrary we conclude that (2.4) holds
with u :'u*,whenever 0< öeW1,p(G) and G isopenwith Gg B(O,n). from
(2.a) a,nd the Riesz representation theorem we now get (1.11).

To begin the proof of Lemma L let 0 1o € C,-[B(or,t)] with o: 1 on
B(rr,s) and lv"l < 100(r-r)-1, 0 <.s < t <10p. Put u :u, $:u*oP in
(1.1). From (c) in Section L with ( : 0 we obtain

From (1.1) and (d) we observe that

From this observation, (d) , Hölder's inequality and (2.5) we deduce

where

From (2.6) lye see that "I1 1 cJz. Putting this inequality, (2.5) and (2.7) together,
we get

(2.5) t lv,+1zd,3c[ (lv,*lo)Pdr
r B(x1's) 

a "t f'"'" (l,1r,vu+1,oeyu+) d.x : Jr.
J BGrl\

(2.6) Jr: -c lro,,u(.n6,vu+1,u+von) 
dr

s 
" lrr,,,ulyu+y-r 

oe-rr+ lval d.x I gJrr-r/n 1rt/n ,

o : l rr,,,r, (A1t'v u1'v(u+oP)) o* : I u r,,,r, 
(o{*'V'* )' Y (u+ oP)l da'

(2.7) Jz: 
Ir(,t,t) 

(r*lvo l)'d, < c( t -r)-, t'M(t,u,,nr)p.

J g(rr,s)
(2.8)
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from ("), (d), andNext, lets_ p,t-3p12 andput ö_o in(1.11). Again
Hölder's inequality we find

" [ [, -, o lVr+ v a*) 
1-1 

'o o'nlp-r)
t J( B(rr,3p12)

where we have used (2.8) in the last inequality, with t :2P, s :3p12' Thus the
Ieft ha^nd inequality in Lemma 1 is valid.

To prove the right hand inequality in Lemma 1, we note from (2.2), (2.3) of
Lemma 3 with u) :1t , U : xt, that

M (tr, u, *r) I c(t1 I t2)" M (t2, u, a1),

whenever 0 ( lr I tz 110p. We now consider two cases. If p 2 2,let h be the A-
harmonic function in B(u 1, 10p) with h-u+ E Wr,n(B("r, tOp)) . Again, existence

of ä follows from the theory of monotone coercive operators. Also 0 < u+ < h

as follows from the maximum principle for A-harmonic functions (see [6]). Using
these facts and (2.1) of Lemma 3 with u : h, t : L}P,, y : :Dr we find that

(2.10) M(\p,u,nt) S M(\p,h,*t) < ch(r) { czh(*),

whenever r e B(q,5p). Fbom (2.10), (2.9) with tz : 5p we deduce the existence

of dq - d1(n,a,brh,pz) ) 0, such that

M(ilp,u,xr) 1i ,ti1rrO,
which implies in view of (2.10) for o € B(*r,d1p) that

(2.11) d2h(x1) 3 (h - "+Xr) 
1 itsh(r),

where dr,, d, have the same dependence as d1 . Put { : min lh - u* d3ä(r1)] in
(1.11) and let .D be the set of points where V/ exists and is nonzero. Then from
(2.11), Poincard's inequality, the fact that ä is A-harmonic, and (c) in Section 1

we find

(drh(*' ))' (& p)" S , | öod* 1,po I lvölod*

,f 
lr(tväl + lvr+l)tu -2) lvä - vu* l'd*

cpp 
lr(A(*, 

vä) - A(*, vr*), v (h -r+) ) a*

-cpP I (A@, Vr*), v ö) a* - cpP I O or

dsh(*r) p' p(B (*r , 1Op)) .s

(2.72)
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From (2.L0) and the above inequality we conclude the righthand inequality in
Lemma L for p) 2.

To prove this inequality for 7 < p < 2,let H 
= 

H(.,s) be the A-harmonic
function in B(r1,s), 5p ( s ( 10p with H -u+ eWr,p(B(*r,s)). If 0 < s, < s,
then from (2.1) we find as in (2.10) that

(2.13) M("',u,*r) 1 M("',H,xr)= "(J")' ,@),

whenever x € B(x1,s'). It follows from (2.13) and (2.9), as in (2.11), that if s,,,
0 < s" < s' is chosen so that

(zL4) "(#)"(*)':,,
and c is large enough, then

(2.15) daH(x1) S (a - "+)(r) 
< d,sH(r1),

for o € B(rr,s"), where da, ds have the same dependence as d1 above. Let
d : min lH - u* ,d,sil(r1)] , .nd define -L relative to / as in (2.12). Using (2.1b),
Poincard's and Hölder's inequalities, we deduce as in (2.12)

(2.16) (annpr1)P("")' < *, I lvglpd,r < csp(rr)nlr141r-rlr.

Here

and

From (c) we have

11 : lr(lvr*l + lväl)tu -2) lvr+ - vHl'd*,

12: lr(lväl + lVr*l) od,*.

h 1c [ @@,vä) - A(x,yu+),vH -yu+) dr
Jt

: 
" [ ö dp < d,sn(a)p(B(c1, 1op)).

J

Next, we note from (1.1) with t): H,tb : H - u*, and (c), (d) that

t .lYHlPd,xs"[ (t@,vH),YH)dx
J B(a1,c) J B(ct,g) '

: 
" f u'"'"'('l1a'v 

n1'v u+) dr

= "( Iuo,,"rlvu*lod')''' ( Irr,,,"rlv 
Hl' o*)'-''n '
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Hence

t lyä lod* I c t lVr+ lod*.
J B(rr,s) J B(rl,s)

From this inequality and (2.8) we see for t ) s that

371

12 < c(t - ")-ot" 
M(t, u, a1)P .

Putting the above estimates for .I1 , 12 in (2.16) and using (2.13), we obtain

M(s' ru,,ar1t/21s"1
(2'17) 

= "(J")t§t2ro"r1t(B@1,t0p))Pt'{t - "1-'*(t,u,x1)e,

where e: (lflQ -p), and a: n(! - iil. Q.17) can be rewritten, after some
juggling, as

(2.18) V("') <,t(s,s',s",t;(V1t;)2-e.

Here
i[r(r) : [n(10p, rryf-clz(n-', *(r,u,nr)p/2

and

,t(s,s', s",t):(r")-' 
Q - r-:-)'u''to"o(t - s1-e r@-t)clz.

Since 2 - p < L, we can now iterate (2.18) to get the righthand inequality in
Lemma 1 when 1 < p < 2. Indeed, let

si : 10p(1 -2-i), i :1,2,...,

and put t = ,j*r, s' : sj, s : å(r' + t). Then from (2.14) we deduce that

for some 1 :7(n,a,b,pr,pz) ) 1. Using this inequality in (2.18) and iterating
we get

(2.19) i[("r) < c21V(s2)'-n 3 ... 3 (c211't+"'+itQ-il',*(rr*r 1Q-ili .

Letting , + oo in (2.19) we conclude first that itr(s1) ( c and second from the
definition of i[ that the righthand inequality in Lemma 1 is true for 1 < p < 2.
The proof of Lemma 1 is now complete.
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3. Proof of Theorem 1

Next we prove Lemma 2. To this end let 6(c) : iB-l"l when r e B(0, |.R).
Let E : {a : u(x):0} n B(0, }R) and put

-Y- sup{"(10-46(I-),r) ine E\.

Choose n2 € E such that

and put r _ 10-4 6(*r). If

Y e Er: 'E O B(a2,70r),

then clearly

(3.2) L6(rr) S 6(y) < 26(12).

From compactness of Et and a well known covering lemma we see there exist
{yr}i e.E1 with

B(y;,10-2r)nB(yi,70-2r):fi, i + j,

and.Er e Ui=rB(y,,är). Now, / ( c, for some absolute constant c, as follows
from the above equality and a volume argument. Using this fact, (3.1) and (3.2)
we deduce that

I

(3.3) n(10r, *r) ( 
"rP-"p(Er) S "» "(tO-aO(y;),ui) 

< c1l1c5n(r,a2).
i:1

Similarly, .B(0, A/8)fl E can be covered by at most c balls of radius 10-6.8 whose
centers are in .8. Using (3.1) again on each ball and summing we get

n(R/8,0) l-cftn-',r,(a(0, 
*) " 

r) I c5n(r,r2).

From this inequality and (3.3) we conclude that Lemma 2 is valid.

We now prove Theorem 1. We follow the procedure outlined in Section t. It
follows from Lemmas L and 2 as in (1.12), (1.13) that

(3.4) max {A,f(a f 8,,u,0),M(L}r,u,*r)} <. cM(Zr,u,*r).
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From (ii) of Theorem 1 and (1.10) we see that lu;+ - "+l 
( 3.\ for L 1i 1rn.

Using this inequality and (3.4) we get

(3.5) max {itl(R l8,u;+ ,0), M(10r, ur+ ,*r)} < cltvt(zr,u;* ,xz) + 3Å].

we note that (3.5) is essentially equivalent to (1.12)-(1.13). Next let Å be the
set of all i, 1 ( i ( rn with

-),< u;(r2) < 3).

We observe from u(c2) : 0 (i), (ii), and (1.10) that the cardinality of Å is at least

m - 7. From this observation and (2.3) of Lemma 3 with',.D :'ttit A : o2 t ard
50r : 9t, we deduce for i g Å

(3.6) M( r,-u;,*z) < clMlSr,u;,*r) + 4^].

Similarly, using the above observation and (2.3) of Lemma 3 with u) : -'ttit
g : rz, a,nd 30r : 9t we get for i € A,

(3.7) M(2r,u;,*r) < cllt(er,-ut,*r) + 4)].

We observe that (3.5)-(3.7) imply (1.14) for i e Å. Also if M(R1100,u;,0) ) csÅ

for some j , I < j < m, and ca is large enough, then from (3.5)-(3.7) we see that

(3.8) 4Ä < Ml*u;,s,n2|( cMltup,t,r2l,

whenever i, le e Å,3r (s, f (4r and*,'€ {*,-}. Forfixed i€Å choose

y € 0B(a2,7r12) with u;(y): -M(7r12,-ui,*r) and put

w(a) :u;(o) * * (:,, -u,, *r)

when r € B(V, |r). As in (2.9), we deduce from (2.2)-(2.3) of Lemma 3 that

(s.e) M(t,w,r)="(1)"ur(ir,u,u), 0<t<|r.

Using (3.8) we obtain

M (rr, w,, y) S "* (lr, -u,, *r),

a^nd thereupon from (3.9) that there exists cs, 0 ( 
"o 

3 i, such that

M (csr, w, y) S i* (:,, -u,,,r).



374

Equivalently,
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when n € B(y, cor), thanks
such that

"r l{, e B(a2,4r): -ui(a) > lM@r,-u;txz) > }}l > t',
which is (1.15) for i € Å. From (i) we conclude first that m l cs and thereupon
that Theorem 1 is true.

To prove Corollary 1 fix i , I 1i ( rn and observe as in (2.9) and (3.9) that
it follows from (2.2)-(2.3) of Lemma 3 for 0 I r I p,

,?3,',r 
u' 

= "(;)' ,?31,, "' = "(;)' 
*('o'u; - u;(o)' o)'

Letting p -+ e, we conclude that either

(3.10) )*p-"tvt(p,r;,0): foo,

or ui : ";(0). Since u; is nonconstant, it follows that (3.10) holds. Hence,
M(RlL0},ri,0) ) ca) for sufficiently large .R, and so m 1cs, thanks to Theo-
rem 1,

Finally we point out that some examples of Rickman imply the existence
of u1,...tum, satisfying the hypotheses of Theorem 1 with .\ : 0 and rn > 1.
Indeed, Rickman in [1.6, Theorem 1.2] constructed an example of a K quasiregular
mapping / which omits cltt...,a* (m > 2). In fact, m: m(K) --+ oo as

K --+ oo. Let

Lemm:,1;: 
I ji11fl,ff]jfl;"'l;"," 

exists a sequence
with 

"(ux) - 0,

to (3.8). Hence,

and note from

{a@o,2rr,)}f
(3.11)

and M(2rp,u,Ak) +

when o e B(0,1), 1 < i I m, and å : L,2,... From (2.3) of Lemma 3 we see

that lu!&)l ( c in .B(0, 1) for 1 ( i I m, with at most one possible exception.

Aho ,r[e) e F(a,b,n,n,B(0,1)) for some o, å independent of i,,lc, asfollows from
the fact that / is quasiregular. Using (2.2) and Ascoli's theorem, we find that a
subsequenc" "f ("[e)) converges uniformly on B(0, 1) to u; e F(a,b,n,n,B(0, 1)) ,

whenever i e lt,where Å has cardinality at least m-L. Clearly u;, i eA satisfies
(i)-(iii) of Theorem 1 with ) : 0. Moreover, u; #0, i € Ä, tha^nks to (3.11).

M (5r x , u, Uk) S cM (2r* , u, Ux),

oo, as k - oo. Put

^.(k)/-\ log lf (Yo * 4r1,*) - "ilui'\t) : 
M(4rk,u,yk) .
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