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1. fntroduction

In what follows D denotes the unit disk {lrl
is the unit circle {lrl - 1} , and A - 0, * iln is the
respect to Z. For q e L@(D), let
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(Pq)(,):-:lLW,

usual complex derivative with

z € C.

Then [10] (pilQ) is continuous with modulus of continuity 0(-61og6) and has
the generalized derivative ä(Pq) : q. Of. course, since äh: 0 for any function
ä, holomorphic in O,6l1f q1+ ä] : g, also.

If, conversely, F(z) is a complex-valued function, continuous in D U l, and if
F has the generalized derivative ä.F' : 9 t I € .L-(D), then F(z) : (Pq)(z)+h(z),
where h(z) is holomorphic in D and continuous in D U f . In the terminologr
of Ahlfors [3] .t, is a "quasiconformal deformation". (This is connected with the
fact that .F' approximates the deviation from the identity mapping of a close-
to-conformal quasiconformal mapping.) For given 6F, th" additive holomorphic
function ä can always be determined, and uniquelS in fact, if we normaJize .F' by
requiring

( 1.1) Re[zF(r))-0 (z€r), and r(1) - r(i) - r(-1) - 0.

Under these circumstances F has the following representation [2] for z e D U l.

( 1.2)

where

F(r) - -: il"
1\m

ffi) 2'
(i+e
\r - 6,

and

koskenoj
Typewritten text
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Our general purpose is to investigate firstly what functions .F' on f allow
extensions to D U I with bounded ä.F, a^nd, secondlg to minimize the sup norm

llAfll-, when extensions are possible and .E is subject to side-conditions on l.
Some previous results for the first problem are found in [1] and [8].

It is well known ([10], Chapter I, Section 6, [3], Section 3) that (Pq)(z) is
(uniformly) "nearly-Lipshitz" in D; that is, there exists a number C : C(q), such
that

l(Pq)(rr) - (PqX,,)l 3
S Clr, - 21 I log

lzz - zll

l,ltr + h) - 2,h(r) + rh@ - ä) l S Ah

for any zy € D, zz e D.

Therefore,

Theorem L.L. Every normalized quasiconformal deformation F is nearly-
Lipshitz in D UI,. In particular, a necessa{y condition on F(eia) to aJlow for an
extension to a normaJized quasiconformal deformation is that F("nt) is nearly-
Lipshitz.

A continuous function r/(c) is said to belong to the class Å* if there exists a
constant ,4, such that

( 1.3)

for all s and all ä > 0. This class was introduced by Zygmund [11] (See also
[12], [4]), who showed, in particular, that every member of Ä* is nearly-Lipshitz.
on the other hand, not every nearly-Lipshitz function belongs to Ä*. We will see
(Theorem 2.2) that Ä* is precisely the right class to characterize boundary values
of quasiconformal deformations.

In Section 3 we will consider the problem of minimizing

llArll- - esssup {l6e<,\ : z e D}

when F is normalized and .F' is specified at a finite number of points of l. This
leads to a solution (Theorem 3.1) with a "Teichmiiller"-type extremal function
which can be found by a fairly constructive procedure. In Section 4, the corre-
sponding problem when F is specified on aJI of I is considered. A necessary
and sufficient condition for extremality of llAfll." can in this case be expressed
in terms of the norm of a linear functional over å Banach space of holomorphic
functions. This condition is identical with a known condition from the theory of
extremal quasiconformal mappings, thus providing a new characterization for the
latter.

If in (1.3) we replace o(h) by o(ä) we obtain zygmund's class )* of so-called
"smooth" functions. While Theorem 2.2 guararrtees the existence of a normalized
quasiconformal deformation if we are given boundary values F("nt) on I satisfying



Extensions with bounded 6 -derivative 379

(1.1) and belonging to Å*, we actually succeed in identifying the optimal extension
(Theorem 4.2) it the hypothesis is strengthened by assuming that F("") belongs
to .\* .

In connection with the material in Section 3, the first-named author gratefully
acknowledges helpful discussions with Professor L. Markus in Royal Leamington
Spa a,nd Professor V.D. Milman in Zurich that had the effect of convincing him to
abandon the more cumbersome approach by way of the dual of L*(D).

2. Existence of deformations with given boundary values

Suppose F(r), z € I , is a continuous complex-valued function. We ask
whether an extension of .F, to a quasiconformal deformation in D U I exists. We
will see that a transformation 7, defined below, which acts on F(r), z e f,to
produce a complex-valued function with domain D, plays a key role in answering
the question.

Let

(rne):ry1, r(o
(2.1)

(1 -ze)r((-z)
de, Q € D).

Lemma 2.L. [7] (TF) defines a continuous extension from I to D U I.
Proof. We have

t,
(r - l,l')'QF)(z)- r(Oe( z,e) Id(l, R(r, O -

Thus, if II(r, C) denotes the Poisson kernel,

2"(1 - ze)zP - eP'

R(,,0: (H) 'ne,e):

Therefore, on the one hand,

r t 
- 

ry t2

L,* år)nQ,o

R(r, O ld(l _ 1, (z € D),

and on the other hand,

ln(r, Ol < 4t(2,O, (z e D).

One can write down an explicit formula for ("F) in terms of the complex-
harmonic extension of .F,. To see this, suppose first that .t,(O : "((), ( € l,
where u(() isreal. Let u(z), z € D, denotetheharmonicextensionof u from I to

t,
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D, andLer f(z), z e D, beholomorphicwith Puef(z):u(r). Let 7Q): z2f(z).
Since

*I#ra(:,Lr-l*l,ffiaae
1f

+ 4"i J,4rift(1 -zo3G-4*'J',
/(Eo d(]

we get

@u)(z) : u(z)- å (r - l,l)nM + lz(t - lzlr)M+ ä (1 - 1212127p1

: u(,)+ ä (1 - l,l,)zlr\ - l4\T@ + z(r - g\T@),

or

(2.2) @u)(z) : u(,)+ å(1 - l,l')z lr@ - lzl2)du(z) + z(r - 14,1:a' "1,1).

Since the operators ? and ä are both linear, (2.2) remains valid when u(eio)
is a complex-valued continuous function, and u(z) , z e D, denotes its complex-
harmonic extension.

A useful formula is obtained by diflerentiating (2.1) with respect to z. The
result is

(2.3) a(rl)-s(t111')'lr/lq.(..*

Lemma 2.2. Let F(r), z e I , be a continuous complex-valued function. A
necessaxy and sufrcient condition that F åas an extension to D U I possessing a
bounded 6 -derivative in D is that

' ,= 
t(!).,, 

d( : of- 1 t(2'4) Jrv-z\). L(1-klfl ' z€D'

(i) Proof of sufrciency. By Lemma 2J @F) provides an extension of F, and
it (2.4) holds, then, by (2.q,, A@F) is bounded.

(ii) Proof of necessity. Suppose G(z), z € D, is a^n extension of -t', and

IAG@|1 M , z € D. By Green's formula, we can rewrite (2.8) as

611111,1 -eo --.lzl'z)2 llrffidcdq, (z e D).
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If we apply
obtain

the Möbius transformation tp : (( - ")lG - Z() in the integrand, we

6(r r11z) : : I Lffuc«)(#*) au a''

Hence,

laery@l <aM.

we no-w turn to considering functions on I belonging to the class Å*. we
shall need to refer to two important facts about Ä*, both due to Zygmund [L1],
that we list as Lemmas 2.3 and 2.4 below. The formulations here, taken from [4],
are particularly convenient for our purpose.

Lemma 2.3. Suppose f(z) is holomorphic in D, and suppose Re/(z) is

continuous in DUI. If Re f("i,) € Å* tåen Imf(z) is continuousin D Ul and

Im/(eio) € Å*.

Lemma 2.4. Suppose f(z) is holomorphic in D. Then f (z) is continuous
jn D U I and f ("") € A* if and only if

f"(r""): ofll
L1 - rl

Theorem 2.L. Let F(z), z € l, be a continuous complex-valued function.
Suppose !("ie) € A*. Then (TF)(z) provides a.n extension of F to DUI with
bounded }-derivative in D.

Proof. Without loss of generality, F(z) : u(z), z €1, u(z) : Re f(z), where

f(z) is holomorphic in D. We have

*[&de :i*t'r(,))
with 44 - ,2 f (r). By Lemma 2.3, f (r) has

and f (r") € 
^* 

. It easily follows that lkiq) €

1__;rc, (, € D),

a continuous extension to D U I
A* , also. Thus, by Lemma 2.4

.y"(r""):o[*]

By a classical result of Hardy and Littlewood [4, p. 80] it follows that

1"'('""): o [--1-l ''L1t - r1r 1'

The conclusion of the theorem therefore follows by Lemma 2.2.
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Note that the functions u(z), harmonic in D, for which u("rt) € Å* need not
have äu bounded. An example is z(z) :Ref(z),

f(r) : z * (L - z)los(\ - z).

Since /"(z) : (1 - z)-L , it follows by Lemma 2.4 that u("ie) 6 A*, b:ut 6u(z) :
-(Llz) log(1 - J-) is unbounded in D. It is also clear that if F(z) is continuous
in D U I and dF(z) is bounded in p, it does not follow that F(etd) € Ä*. For
example, if F(z): (1 - ,)'12 th"rdp:0, but F("it) does noi belorrg to Å*.
However, as the following result-shows, if we normalize F("") by condition (1.1),
then the requirement that F("") € Å* becomes both necessary and sufficient.

Theorem 2.2. suppose F(z), z e I , is a continuous complex-valued func-
tion, with

Re [zF(r)] - 0, (, € r), r'(1) - F(i)- r'(-1) : Q.

Then F(z) has a continuous exfension to D ul with bounded generalized 6-
derivative if and only if .F'(ei,) e A*.

Proof. Theorem 2.1 tells us that the condition -F(eio) € Å* is sufficient. It re-
mains to verify that this condition is necessary. (This also follows from Theorem 2
of [t].)

For z € I, (1.2) becomes

(2.5)

where

we have

F(r): ?gQ)
7t ?,

g(z):rm ll"#d€d,r
It suffices to show that g("i,) € Å*. Letting

6(h): eih + e-ih - 2,

lBfe),' + B(O, -re) ae d,t ,+*ll"

("r(e-D)g(",(e+D)_2g(r,t) + g

-Trn tt.; rr* 
I J"

- 11 *fz.

e-ie q«l d€ drt
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14ls cl6(ärl ll,
<ct",u_ull"

where the substitution, ( - eio :(e;n -L)eieu, was used. Clearly, Ir : O(ä), as

å-»0.
tr,t s lqtt." lolznyl Il,ffi_q

Setting (- 1 : (ez;n -l)to, so that ( - e2ih : ("';h - 1X. - 1), one verifies easily
that .Iz = O(-h2log ä) as å -» 0. Therefore,

o (e;Q+o1 - zg("it) * t (ei@-nt) : o(h),

uniformly with respect to 0.

3. Extremal deformations for the N-point problem

Suppose Zr, 22, ..., ZN, (N > 3), are distinct givenpointsof I, and f-(2,),
n:7r2r...,.0f , are given complex numbers consistent with condition (1.1); that
i.,

(3.1) F(r"):iotnzn, n:!,2,...,N,or.€R.

Let f : f,(rtrZ2t....zNiqtto2t...,a7y) denote the class of functions q e L*(D)
for-which F(z) as defined by (1.2) satisfies (1.1) and (3.1); that is, f is the class
of ä-derivatives of normalized quasiconformal deformations for which (3.1) holds
on I. It is obvious that one can determine F("") in Ä* so that (1.1) and (3.1)
hold. Thus, by Theorem 2.2, f is certainly non-empty.

Our problem is to "determine"

(3.2) Ms- inf {llqll.":qe f},
a.nd to describe extremal members of. f, , if. any, for which the infimum is attained.
The solution is as follows.

Theorem 3.1. f(rr,22t,,.,ZNiotrroz;... ra1q) contains a unique element
qs for which llqoll- - Mo. Unless eo(z):0, qo(r) is of the form

9o: Mr 9{»
'Vo(4'

where Vo(z) is arationalfunction,holomorphicin D, possessing at worst simpJe
poles at the points L, i, -L, and 4, 22 t . . .t ZN .
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Proof. In (2.5) we considered the expression for F(z) which results from (1.2)
for z €.I. More explicitly

: iz"" ll,

f - FQrrzzt..., zN;atdz,

: {, € L*(D): Re ll"

F(r) A(r, ()q( e) d,€ drt, Q € I),

e'-i(-1
«'- lX( - i) «'- 1)G - i),

where

(3.3) AQ,e)-(2iln)l# 1r

-I

ez - 1J

So, if we put A"(r) - A(zn, z), we can write

In this guise, problem (3.2) is identical with the classical one solved by F. Riesz
in 1910 [9]. The text-book procedure would be to consider the vector space over
the reals spanned by {A"(z)} as a subspace of L'(D), and apply the Hahn-
Banach theorem. We prefer to outline the pre-Hahn-Banach procedure used by
Riesz because of its more constructive nature. (In order to avoid complications,
it is best to avoid the natural temptation of interpreting (3.2) in the geometry of
L*(D).)

Fot p,n €R,, n:7r2r...,.lf,set

,..oraN)

A"(r)q(z) dr dy -- dnt n-!r2ro..,,nf).

, ttr,r) : llrl å PnAn(,)ld,r d,y.V(trtt p2, . . ., ttN): I i tr,o,l, A|rrt tt;t .

n:L

Let

Mr:,u rv(Pt'F2'"''&N)
'p \ §Gi;.., t ; : prn €R,n : r,2,...,,'l')

- sup {V(pt,ltzt..., px)' Ö(pr t ltz,... , pru) : 1}.

Since the functions {A"(z)} are obviously linearly independent, we have M1 I a.
It is also clear that (prrlrrr...,ltx) can be restricted to a compact subset of .EN
without afecting the supremum, and that the supremum is therefore attained
at some point (pl1 tp2t...,prv) : (mr)rrtz)...,,mN). Therefore, for some real
Lagrange multiplier c,

ff *r,tn2,...,mN) : "ff@r,rnz)...,-rv), n : t,2,...,N.
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(8.4) 
Bffion 

: cRe I 1"ffi"^**rlAx(,) d,x d,y, fr : 1, 2,.. ., N,

and

(3.5) O(*t, rrt1t. .. , mry) : 1.

Multiplying both sides of (3.4) by -r, and summing over & and using (3.5),
we obtain

Thus,

So, if we define qo(z) by

(3.6) ,,7,: (E tnnen) n" ll"
ft.

,n

rTL

rn,

n

'ra

»
»

Ax(z) fu dy,, k - L,2, . . .,N.(r)

cl
An

An

8o: (i r,no,) , z€ D
2t 

t er7*n ) 
I »I: L ,rlnA,(4|

we see that lCo(z)l: M, a.e. in D. (At the same time, we have an independent
proof that .F f 0, since (3.6) shows lhat f contains 96 .)

Now, if g is an arbitrary element of f , and pn e R, n: L,2,... ,.lf , then

NN

f_r,,- 
: *" I l,ll,,,,n-ri)qe) d,x d,y.

Thus,

(3.7) V(pr, tlz,. . . , uN) I llqll- O(pr, tiz,. . ., triv).

Therefore, llqll." 2 Mr for all g € f,.la particular,

Mr 1 lleo;;- :v(pr, P2,..., trx) = Mr.

It follows that M1 - Mo, and this establishes Oo(z) as an extremal function for
(3.2). The assertion regarding uniqueness is proved by tracing back the implica-
tions of equality in (3.6).
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4. Boundary values on all of I
In contrast with Section 3, we now suppose that the role of. {z1tZzt.,.rzN}

is taken over by the complete circle I. Suppose the function -F(eid), O < 012r,
belongs to Å1 and satisfies the normalization colditions (1.1). Let f, : flFl
denote the class of functions q e L*(D) that are ä-derivatives of quasiconformal
deformations of D U I with boundary values .t, on I. By Theorern 2.2, f is
non-empty. We again consider the extremal problem (3.2). In view of the rep-
resentation (1.2) the dominated convergence theorem guarantees the existence of
extremal functions Qo € f[Fl for which llqoll." : inf {llqll- | q e f,lP|}. We
will see that an extremal g can be characterized in a manner familiar [5] from the
theory of extremal quasiconformal mappings with specified boundary values.

In order to go ahead it is best to alter the approach somewhat. Instead of
starting with .F(z), z e l, as "given", assume that we are given afunction g(z)
belonging to L*(D). Using the function A(z,O from (3.3), tet

The subscript q is used to indicate that the normalized boundary function Fr(""),
0 < 0 < 2tr , is induced by q. The question we ask is whether or not

llsll"" : inf { llQll." : Q e rl\}.
If the answer is yes, then q is an extremal ä-derivative of the induced normalized
quasiconformal deformation, or we say, for short, that q is extremaJ.

To proceed with the characterization of extremality,let B denote the set of
functions holomorphicirr D that belong to Lt(D).

Lemma 4.L. q, e ftFq) if and only if

o(""): Re I l"A4nt , e)q(O d( drt,

ll"qt(z)ve) 
dr dv q(z)p(r) dr dy for all e e B.

Proof. Let fi(z), F(r), (, e D), be determined for q1(z), q(z), respec-
tively, by means of (1.2). Since g(z) can be approximated in the norm of L,(D)
by g(Rz), R - 1-, there is no loss of generality in assuming that g(z) is holo-
morphicin DUI. Evidently,6(F, -.F'): 11--Q inthe senseof distributions.
So, the assertion follows from Green's formula, applied to lfi(z) - f Q)]gQ).

Theorem 4.L. Suppose g € L*(D). Then q is extremal if and only if

: ll,

I tt"qe)pe) d* dvl
(4.1) sup

eeB I[oleQ)l ar dY
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(i) Proof that @.1) is necessary for extremality. The left side of (a.1) is the
norm of the linear functional

Lolpl : I l ro{avtz) 
d,x d,y,

over the Banach space B. If, contrary to the assertion of the theorem, the norm
of 4, satisfied llColl - p < llcll"", then, forming the Hahn-Banach extension of
Lo from B to Lt(D), we arrive at afunction gr € L*(D) with llqllloo : p and
such that

ll"
By Lemma 4.1,

qr(r)p(z) dr dy - I I"qQ)pQ) 
d,r d,y

gr e f[Fq). Since q is extremal, we

for all g e B.

must therefore have

a contradiction.

(ii) Proof that (a.L) is surfrcient for extremality. Let

Ms -inf { ll{11"" : q e f,lnrl},
and let go, be an extremal function in the class f[.Q]. By Lemma 4.1.,

llrn f4vQ) d'r o, : 
IlrqQ)e|) d,x d,y ror an p e B.

Therefore,

| | l,q(z)p(z) 
d,r dvls ltqo | , * I I ,l e( z)l dr dy: Mo 

II"lp( z)ldrdy

But q € FIFÅ. Hence, by

Using Theorem 4.1 one sees that a simple example of an extremal g is obtained
takeif we

(4.2)

where & e R *d po e 6. Since condition (a.1) is identical with the one obtained
for extremality of quasiconformal mappings with given boundary values, known
results (e.g. [5], [6], as well as classical work of Strebel referred to in [5]) imply
rhar q(z) may be extremal even thougt le(r)l is not constant, and a givån class
flFr) may contain more than one extremal. Not every normalized boundary value
function F("") that is of class A* can be induced by a q(z) of type (a.2). The
following result shows, however, that if F(r,,) belongs to ,\* (In particular, this
means that "corners" axe ruled out.) then a function g of type (a.2) that induces
F("") does exist. Such a g is then automatically extremal.
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Theorem 4.2. Suppose F(eia) satisfies (1.1) and belongsto ),*. Thereexist
Mo 2 0 and po € B such that 8o(z) : uo,p{4lleo(z)l determines a,n extremaJ
normalized quasiconformal deformation with boundary values F("").

Proof. Let gs be extremal in the class f determined by F(eio), and let
Mo : llso ll- . We can assume that Ms > 0; otherwise the result is trivial.

If we replace Å* by Å* in the hypothesis of Lemma 2.3 then [11, 12] we can
replace Å* by )* in the conclusion. Also [11, Theorem 13], in the conclusion of
Lemma 2.4 O canthen be replaced by o. Proceeding as in the proof of Theorem 2.1

we obtain (L - ,)'1"'(r"it) - o(1), as r -r 1- . This means that

(4.3) hQ) -6(TF)(r) - o(1) as z + l, (, € D).

Since % e F,

(4.4)

By Theorem 4.7, there exist ?n € B ,, with

I l"Qo(z)e(z) 
d'r d'v

I l"lp,Q)l 
d'r d'v: 1,

a{z)e(z) dr dy, e € B.: ll,

n-1r2,...,

such that

Therefore, by (4.4),

(4.5)

qo ( z)p n(z) dr dy - Mo .

ql ( z)p n(z) dr dy - Mo .

The possibility that limg,,Q): 0 locally uniformly in D can be ruled out since,
by (4.3), it would lead to the conclusion that the left side of (a.5) is zero. Under
these circumstances the corollary of Lemma 0.3 of [6] implies that gs must have
the form (4.2).

Addendum. After submission of this paper, Aimo Hinkkanen kindly called the
attention of the authors to the fact that a number of their results are contained in
results of the manuscript, "Symmetric structures on a closed curve", by Flederick
P. Gardiner and Dennis P. Sullivan. The paper by Gardiner and Sullivan is to
appeax in the American Journal of Mathematics. While there is an overlap in the
motivation and applications of the two papers, their scope, methods and emphasis
are rather different.
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