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EXTENSIONS WITH BOUNDED §-DERIVATIVE

Edgar Reich and Chen Jixiu

1. Introduction

In what follows D denotes the unit disk {|z| < 1} of the complex plane, T

is the unit circle {|z| = 1}, and 8 = 8, +18, is the usual complex derivative with
respect to z. For ¢ € L*°(D), let

(Pg)(z) = // (C)d{dn z € C.

Then [10] (Pgq)(z) is continuous with modulus of continuity O(—élogé) and has
the generalized derivative O(Pq) = g. Of course, since dh = 0 for any function
h, holomorphic in D, 8[(Pq) + h] = g, also.

If, conversely, F (z) is a complex-valued function, continuous in DUT', and if
F has the generalized derivative 9F = ¢, ¢ € L®(D), then F(2) = (Pgq)(2)+h(2),
where h(z) is holomorphic in D and continuous in D UT. In the terminology
of Ahlfors [3] F is a “quasiconformal deformation”. (This is connected with the
fact that F approximates the deviation from the identity mapping of a close-
to-conformal quasiconformal mapping.) For given OF, the additive holomorphic
function h can always be determined, and uniquely, in fact, if we normalize F' by
requiring

(1.1) Re[zF(z)] =0 (z€T), and F(1)=F(:)=F(-1)=0.

Under these circumstances F' has the following representation [2] for z € DUT.
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Our general purpose is to investigate firstly what functions F on I' allow
extensions to D UT with bounded 8F, and, secondly, to minimize the sup norm
||5F ”oo, when extensions are possible and F' is subject to side-conditions on T.
Some previous results for the first problem are found in [1] and [8].

It is well known ([10], Chapter I, Section 6, (3], Section 3) that (Pg)(z) is
(uniformly) “nearly-Lipshitz” in D; that is, there exists a number C = C(q), such
that

I(Pq)(zz) - (Pq)(zl)| < Clzz — 21| log , for any 2; € D,z € D.

|22 — 21

Therefore,

Theorem 1.1. Every normalized quasiconformal deformation F is nearly-
Lipshitz in DUT. In particular, a necessary condition on F(e'%) to allow for an
extension to a normalized quasiconformal deformation is that F(e'®) is nearly-
Lipshitz.

A continuous function ¥(z) is said to belong to the class A, if there exists a
constant A such that

(1.3) [%(z + k) — 2¢(z) + ¥(z — h)| < Ah

for all z and all A > 0. This class was introduced by Zygmund [11] (See also
[12], [4]), who showed, in particular, that every member of A, is nearly-Lipshitz.
On the other hand, not every nearly-Lipshitz function belongs to A,. We will see
(Theorem 2.2) that A, is precisely the right class to characterize boundary values
of quasiconformal deformations.

In Section 3 we will consider the problem of minimizing

“5F”oo = esssup{]gF(z)| :z € D}

when F' is normalized and F' is specified at a finite number of points of I'. This
leads to a solution (Theorem 3.1) with a “Teichmiiller”-type extremal function
which can be found by a fairly constructive procedure. In Section 4, the corre-
sponding problem when F' is specified on all of T' is considered. A necessary
and sufficient condition for extremality of ”5F ”oo can in this case be expressed
in terms of the norm of a linear functional over a Banach space of holomorphic
functions. This condition is identical with a known condition from the theory of
extremal quasiconformal mappings, thus providing a new characterization for the
latter.

If in (1.3) we replace O(h) by o(h) we obtain Zygmund’s class A, of so-called
“smooth” functions. While Theorem 2.2 guarantees the existence of a normalized
quasiconformal deformation if we are given boundary values F(e'?) on T satisfying



Extensions with bounded 8-derivative 379

(1.1) and belonging to A, we actually succeed in identifying the optimal extension
(Theorem 4.2) if the hypothesis is strengthened by assuming that F(e*?) belongs
to Au.

In connection with the material in Section 3, the first-named author gratefully
acknowledges helpful discussions with Professor L. Markus in Royal Leamington
Spa and Professor V.D. Milman in Zurich that had the effect of convincing him to
abandon the more cumbersome approach by way of the dual of L>°(D).

2. Existence of deformations with given boundary values

Suppose F(z), z € T, is a continuous complex-valued function. We ask
whether an extension of F' to a quasiconformal deformation in D UT exists. We
will see that a transformation T', defined below, which acts on F(z), z € T, to
produce a complex-valued function with domain D, plays a key role in answering
the question.

Let

@1  (TF) () =" EZI ) /r i 2?)(5()4 — &, (z€D)

Lemma 2.1. [7] (TF) defines a continuous extension from I' to DUT.

Proof. We have

(TFX@=iAF@ﬂﬂ%OkKL Rux>=2ﬂfi;£$3_qr

Thus, if II(z,() denotes the Poisson kernel,

1—|z|?

1-3¢

Therefore, on the one hand,

(—=

R(Z’C)z( 1-2(

)2n(z,<) =1+ E]ZH(Z,C).

[ RGO =1 (eD),
and on the other hand,
|R(2,¢)| < 410(2, ), (z € D).
One can write down an explicit formula for (TF) in terms of the complex-

harmonic extension of F'. To see this, suppose first that F({) = u(¢), ¢ € T,
where u(() isreal. Let u(z), z € D, denote the harmonic extension of u from I to
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D, andlet f(z), z € D, be holomorphic with Re f(z) = u(z). Let v(z) = 22 f(z).

Since
1 u(¢) Y F(RQ)
3 Lo <= A lam L 2= ©
1/ T®
tam iz %)
we get

(TU)(z) = u(z) - (1 = [2)*F@) + 32(1 — [2)7(=) + L (1 - |1%)*77(2)
= u(x)+}(1- :)2 |22 - ) FG) + 2(1 - 1) 7))

(22)  (Tu)(z) =u(z) + (1 - |2z [2(2 — |2?)Bu(z) + (1 — |z|2)52u(z)} .

Since the operators T and 0 are both linear, (2.2) remains valid when u(e'?)
is a complex-valued continuous function, and u(z), z € D, denotes its complex-
harmonic extension.

A useful formula is obtained by differentiating (2.1) with respect to z. The
result is

— 12z|? 2
(2.3) e = 20 21r|il ) /r (lﬁ(%“ &

Lemma 2.2. Let F(z), z € ', be a continuous complex-valued function. A
necessary and sufficient condition that F has an extension to DUT possessing a
bounded 9-derivative in D is that

(2.4) A%dczo[m]’ z € D.

(i) Proof of sufficiency. By Lemma 2.1 (TF) provides an extension of F', and
if (2.4) holds, then, by (2.3), (TF) is bounded.

(ii) Proof of necessity. Suppose G(z), z € D, is an extension of F, and
I(?G(z)l <M, z € D. By Green’s formula, we can rewrlte (2.3) as

B(TF)(z) = 'ZI / laf(z? dCdn,  (z€D).
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If we apply the Mdbius transformation w = ({ — z)/(1 — Z() in the integrand, we

obtain
B(TF)(z) = // (1 i ) 56 56(0)(1 Y2 dud.

Hence,

|0(TF)(z)| < 3M.

We now turn to considering functions on I' belonging to the class A.. We
shall need to refer to two important facts about A., both due to Zygmund [11],
that we list as Lemmas 2.3 and 2.4 below. The formulations here, taken from [4],
are particularly convenient for our purpose.

Lemma 2.3. Suppose f(z) is holomorphic in D, and suppose Re f(z) is
continuous in DUT. If Re f(e®) € A, then Im f(z) is continuous in DUT and
Im f(e*) € A..

Lemma 2.4. Suppose f(2) is holomorphic in D. Then f(z) is continuous
in DUT and f(e®) € A, if and only if

; 1
1" 16\ __
ey = 0=
Theorem 2.1. Let F(z), z € T', be a continuous complex-valued function.
Suppose Ij(e'e) € A.. Then (TF)(z) provides an extension of F' to DUT with
bounded 0-derivative in D.

Proof. Without loss of generality, F((z) = u(z), z € ', u(z) = Re f(z), where
f(2) is holomorphic in D. We have

1 U 1 d3 1 ———
27 r Z%)—“dc T 1248 [ f(z )] - 1—27"1(2)’ (z € D),

with y(z) = z2f(z). By Lemma 2.3, f(z) has a continuous extension to DUT
and f(e®) € A.. It easily follows that v(e?) € A, also. Thus, by Lemma 2.4,

ey -of ]

By a classical result of Hardy and Littlewood [4, p. 80] it follows that

" (re?®) =0 [Zl——lrﬁ] .

The conclusion of the theorem therefore follows by Lemma 2.2.
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Note that the functions u(z), harmonic in D, for which u(e'®) € A, need not
have Ju bounded. An example is u(z) = Re f(z),

f(z) =24+ (1 - 2)log(1 — 2).

Since f"(z) = (1 —2)7!, it follows by Lemma 2.4 that u(e'®) € A,, but du(z) =
—(1/2)log(1 — 2) is unbounded in D. It is also clear that if F(z) is continuous
in DUT and 8F(z) is bounded in D, it does not follow that F(e*) € As. For
example, if F(z) = (1 — 2)!/2 then OF = 0, but F(e®) does not belong to A,.
However, as the following result shows, if we normalize F(e'®) by condition (1.1),
then the requirement that F(e'?) € A, becomes both necessary and sufficient.

Theorem 2.2. Suppose F(z), z € T, is a continuous complex-valued func-
tion, with

Re[zF(2)] =0, (z€T), F(1)=F()=F(~1)=0.

Then F(z) has a continuous extension to D UT with bounded generalized 8-
derivative if and only if F(e'®) € A,.

Proof. Theorem 2.1 tells us that the condition F(e) € A, is sufficient. It re-
mains to verify that this condition is necessary. (This also follows from Theorem 2

of [1].)
For z € T, (1.2) becomes

e5)  F&) =2+ 1 [[ 1802 + B0 - BO e,

where

z =Im// ﬂd dn.
9(2) v €dn
It suffices to show that g(e’) € A,. Letting

6(h) = e 4 e7th _ 2
we have

9(e M) —29(e™) + g(e M)

- —i (¢ + €)8(R) — (¢ — €'®)é(2h)
=Im //D e aq(C)(C — &0)(( — TR (¢ — ei-M)) d¢ dn

=1 + I,.
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dé dn
|I;| < C|é(R)| //D [(C = €#)(C — eioTh)(C — eilo—h))|

: du dw
<Clett -1 // :
S Cle | clw(w—l)(w-}-e"h)l

where the substitution, ¢ — e*® = (e'* — 1)e*®w, was used. Clearly, I = O(h), as
h — 0.

11 < el o200 ey

Setting ( —1 = (e?** —1)w, so that { —e?* = (e?** —1)(w — 1), one verifies easily
that I = O(—h%logh) as h — 0. Therefore,

g(e'*tM) — 2g(e*) + g (e"®~M) = O(h),
uniformly with respect to 6.

3. Extremal deformations for the N-point problem

Suppose z1, 22, ..., 2N, (N > 3), are distinct given points of I, and F(z,),
n=1,2,...,N, are given complex numbers consistent with condition (1.1); that
is,

(3.1) F(zp) = tanzn, n=12,...,N,a, € R.

Let F = F(z1,22,....2N;01,02,...,an) denote the class of functions ¢ € L*°(D)
for which F(z) as defined by (1.2) satisfies (1.1) and (3.1); that is, F is the class
of O-derivatives of normalized quasiconformal deformations for which (3.1) holds
on I'. It is obvious that one can determine F(e'®) in A, so that (1.1) and (3.1)
hold. Thus, by Theorem 2.2, F is certainly non-empty.

Our problem is to “determine”

(3.2) My, = inf { [|q||, : g € F},

and to describe extremal members of F, if any, for which the infimum is attained.
The solution is as follows.

Theorem 3.1. F(z1,22,...,2N;Q1,0Q2,...,aN) contains a unique element
qo for which ||go||,, = Mo. Unless go(2) =0, go(2) is of the form
¢o(2)
lpo(2)|’

where ¢o(z) is a rational function, holomorphic in D, possessing at worst simple
poles at the points 1, 1, —1, and 2, 22, ..., z2N.

qo = My
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Proof. In (2.5) we considered the expression for F(z) which results from (1.2)
for z € I'. More explicitly,

F(z) = iz Re / /D A(z,Q)q(Q)dedn,  (z€T),

where

1 2 _¢-ic-1 1
2(C—2) (-1 =-9) (-1(-1)z (-1

(3:3) A(z¢) = (2i/)]
So, if we put A,(z) = A(2,,2), we can write

F =F(z1,22,...,2N;01Q2,...,aN)

= {qe L>(D): Re//DAn(z)q(z)dzdy = o, n= 1,2,...,N}.

In this guise, problem (3.2) is identical with the classical one solved by F. Riesz
in 1910 [9]. The text-book procedure would be to consider the vector space over
the reals spanned by {An(z)} as a subspace of L!(D), and apply the Hahn-
Banach theorem. We prefer to outline the pre-Hahn-Banach procedure used by
Riesz because of its more constructive nature. (In order to avoid complications,
it is best to avoid the natural temptation of interpreting (3.2) in the geometry of
L>=(D).)
For ppo e R, n=1,2,...,N, set

, @(ul,m,...,m=//DlijunAn<z)

dz dy.

N
V(p,p2,. .. pN) = ‘ Y hnan
n=1

Let

V1, p25- - 1)
M, = su { o EN) neR,n=1,2,...,N}
! P @(#1,}1.2,...,/1,]\7) K

=sup {V(p1,p2,.. ., n) : ®(p1, p2, ..., un) = 1}.

Since the functions { An(z)} are obviously linearly independent, we have M; < oco.
It is also clear that (1, p2,...,4N) can be restricted to a compact subset of RN
without affecting the supremum, and that the supremum is therefore attained
at some point (y1,p2,...,u4n) = (m1,mz,...,my). Therefore, for some real
Lagrange multiplier c,

ov 0o

apn(ml’mz’”"mN) = Caun

(my,ma,...,mn), n=12,...,N.
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Thus,

(3.4) Lo MnCn an—cRe// |E n MnAn(2) T t———— Ag(2)dzdy, k=12,...,N,

| > Mnan mpAn(z)

and
(3.5) ®(my,ma,...,mn) =1.

Multiplying both sides of (3.4) by mj, and summing over k and using (3.5),
we obtain

(3.6) ax= (Zmnan Re// lZ ’ZZ’: ((Z)}Ak(z)dxdy, k=1,2,...,N.

So, if we define go(2) b

Yopey M An(2)
o = (Em"a") ZN—ll mn,An(Z)" z€ D,

we see that Iqo(z)| = M; a.e. in D. (At the same time, we have an independent
proof that F # 0, since (3.6) shows that F contains g¢o.)
Now, if ¢ is an arbitrary element of ¥, and p, € R, n=1,2,..., N, then

ﬁ:“"a" = Re//D [i#nAn(Z)] q(z) dz dy.

Thus,

(38.7) Vg, pzy - in) < |lglloo B(p1, 2y - 1)

Therefore, ||q||,, = M for all ¢ € F. In particular,

M <|lwolleo = V(p1,p2,. .-, un) = M

It follows that M; = My, and this establishes go(2) as an extremal function for
(8.2). The assertion regarding uniqueness is proved by tracing back the implica-
tions of equality in (3.6).
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4. Boundary values on all of T

In contrast with Section 3, we now suppose that the role of {z1,22,...,2zn}
is taken over by the complete circle I'. Suppose the function F(e*?), 0 < 6 < 27,
belongs to A, and satisfies the normalization conditions (1.1). Let F = F[F]
denote the class of functions ¢ € L>(D) that are J-derivatives of quasiconformal
deformations of D UT with boundary values F on I'. By Theorem 2.2, F is
non-empty. We again consider the extremal problem (3.2). In view of the rep-
resentation (1.2) the dominated convergence theorem guarantees the existence of
extremal functions go € F[F] for which ||gl|,, = inf {|¢|,, : ¢ € F[F]}. We
will see that an extremal ¢ can be characterized in a manner familiar [5] from the
theory of extremal quasiconformal mappings with specified boundary values.

In order to go ahead it is best to alter the approach somewhat. Instead of
starting with F(z), z € T, as “given”, assume that we are given a function ¢(z)

belonging to L*°(D). Using the function A(z,() from (3.3), let
a(e'®) = Re // A€, ¢)q(¢) de dn, Fy(e') = ie'a(e), 0<6<2n.
D

The subscript ¢ is used to indicate that the normalized boundary function F,(e'?),
0 <0 < 27, is induced by ¢. The question we ask is whether or not

lalle = inf { QI : @ € FIF]}.

If the answer is yes, then ¢ is an extremal 0-derivative of the induced normalized
quasiconformal deformation, or we say, for short, that q is extremal.

To proceed with the characterization of extremality, let B denote the set of
functions holomorphic in D that belong to L!(D).

Lemma 4.1. ¢; € F[F,] if and only if

//D q1(2)p(z)dz dy = //D q(2)p(z)dzdy  for all p € B.

Proof. Let Fy(z), F(z), (2 € D), be determined for ¢(z), ¢(z), respec-
tively, by means of (1.2). Since ¢(z) can be approximated in the norm of L!(D)
by ¢(Rz), R — 1—, there is no loss of generality in assuming that ¢(2) is holo-
morphic in D UT. Evidently, (F; — F) = q; — ¢ in the sense of distributions.
So, the assertion follows from Green’s formula, applied to [Fy(z) — F(z)]¢(z).

Theorem 4.1. Suppose ¢ € L°(D). Then q is extremal if and only if
| [l a(2)p(2) do dy|

1) S T o) d= dy
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(i) Proof that (4.1) is necessary for extremality. The left side of (4.1) is the
norm of the linear functional

talel = [[ a@etz)deay,

over the Banach space B. If, contrary to the assertion of the theorem, the norm
of L, satisfied ||£]| = ¢ < ||¢||, then, forming the Hahn-Banach extension of
Ly from B to L'(D), we arrive at a function ¢; € L>°(D) with ||¢1] ., = ¢ and
such that

//D q1(2)p(z)dzdy = //D q(2)p(z) dz dy for all ¢ € B.

By Lemma 4.1, ¢; € F[F,]. Since ¢ is extremal, we must therefore have

e=lalle 2 llelle

a contradiction.
(i1) Proof that (4.1) is sufficient for extremality. Let

Mo = inf { ||§|l,, : § € F[F,]},

and let go, be an extremal function in the class F[F,]. By Lemma 4.1,

//D qo0(2)p(z) dz dy = //D q(2)p(z)dzdy  for all ¢ € B.

Therefore,

//DQ(z)9°(2)dxdy‘S||(10||oo//D|<p(z)]dxdy:MO//D|¢(z)|dxdy

for all ¢ € B. By (4.1), this implies that ||g|| ., < My. But ¢ € F[F,]. Hence, by
the definition of My, ||q||,, > Mo. Thus, ||q||,, = M.

Using Theorem 4.1 one sees that a simple example of an extremal ¢ is obtained
if we take

o(2)

(42) () =k

where k € R and ¢ € B. Since condition (4.1) is identical with the one obtained
for extremality of quasiconformal mappings with given boundary values, known
results (e.g. [5], [6], as well as classical work of Strebel referred to in [5]) imply
that ¢(z) may be extremal even though |q(z)| is not constant, and a given class
F[F,] may contain more than one extremal. Not every normalized boundary value
function F(e'?) that is of class A, can be induced by a ¢(z) of type (4.2). The
following result shows, however, that if F(e*?) belongs to A, (In particular, this
means that “corners” are ruled out.) then a function ¢ of type (4.2) that induces
F(e') does exist. Such a g is then automatically extremal.
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Theorem 4.2. Suppose F(e'®) satisfies (1.1) and belongs to A.. There exist
My > 0 and ¢ € B such that go(z) = Motpo(z)/|goo(z)| determings an extremal
normalized quasiconformal deformation with boundary values F(e').

Proof. Let gy be extremal in the class F determined by F(e'?), and let
My = ||go|| .- We can assume that My > 0; otherwise the result is trivial.

If we replace A, by ). in the hypothesis of Lemma 2.3 then [11, 12] we can
replace A, by A, in the conclusion. Also [11, Theorem 13], in the conclusion of
Lemma 2.4 O can then be replaced by o. Proceeding as in the proof of Theorem 2.1
we obtain (1 —r)24"(re'?) = o(1), as r — 1—. This means that
(4.3) q1(2) = 9(TF)(2) = o(1) as z = I, (z € D).

Since ¢; € F,

(4.4) J[ wee@ iy = [[ a@eedea, e

By Theorem 4.1, there exist ¢, € B, with

// |9on(z)!dxdy=1, n=12...,
D

lim //D q0(2)¢n(z) dz dy = M.

such that

n—oo

Therefore, by (4.4),

(4.5) lim // q1(2)pn(z)dz dy = M,.
n—oo D

The possibility that lim ¢,(z) = 0 locally uniformly in D can be ruled out since,

by (4.3), it would lead to the conclusion that the left side of (4.5) is zero. Under

these circumstances the corollary of Lemma 0.3 of [6] implies that gy must have

the form (4.2).

Addendum. After submission of this paper, Aimo Hinkkanen kindly called the
attention of the authors to the fact that a number of their results are contained in
results of the manuscript, “Symmetric structures on a closed curve”, by Frederick
P. Gardiner and Dennis P. Sullivan. The paper by Gardiner and Sullivan is to
appear in the American Journal of Mathematics. While there is an overlap in the
motivation and applications of the two papers, their scope, methods and emphasis
are rather different.
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