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THE GROUP OF BIHOTOMORPHIC
SEIF-MAPPINGS OF SCHOTTKY SPACE

Clifford J. Earle

1. Introduction

The Schottky space .9, of marked Schottky groups of genus p > 2 has very
simple embeddings as a domain in C" , n : 3p - 3, and is therefore a tempting
place to study the Riemann space .R, of all closed Riemann surfaces of genus p. In
fact every closed Riemann surface has many Schottky coverings and every Schot-
tky group has many markings, so -Bp is the quotient space of §, obtained by
considering points in ,S, to be equivalent if they represent the same Riema,nn sur-
face. The resulting quotient map from Sn to Rn is a branched covering, but the
covering is not regular. In other words the group of cover transformations, which
in this case is the full group Aut(Sr) of biholomorphic self-mappings of ^Sr, fails
to act transitively on the fibers of the quotient map. Our purpose is to exhibit
this non-tra,nsitivity very concretely by giving an explicit description of Aut(^Sr).
It consists entirely of the familiar mappings induced by changing the marking of
the Schottky group.

We state our result formally in Section 3 as Theorem 1. Our proof of Theo-
rem 1 depends on two topological observations, also stated in Section 3 as The-
orems 2 and 3. The proofs are given in Sections 4, 5, and 6. They are quite
straightforward. The interest of Theorem 1 lies not in the difficulty of its proof
but in what it says about Aut(Sr): the biholomorphic self-mappings of ,S, show
us which points of .9, represent the same Schottky group with different markings,
but they do nothing to show which points represent different Schottky coverings
of the same Riemann surface.

We state a more concrete version of Theorem 1 in Section 7, where we describe
Aut(Sr) in terms of the obvious action on ^9, of the outer automorphisms of a
free group. Finally in Section 8 we give explicit formulas for a set of generators
of Aut(.Sr), using a standard set of global coordinates for ,5r.

Sections 2 and 3 summarize the facts about Schottky space that we need.in
this paper. More information about Schottky groups can be found in Maskit's book
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[17] or Bers's paper [3]. Schottky space is a simple example of a quasiconformal
deformation space of a Kleinian group. For information about these more general
spaces the reader should consult [12], [13], [4], or [16], which is especially releva,nt
to our considerations. The papers [11] and [18] also have some relevance to our
work. Our exposition in Section 2 owes something to [11] as well as to [16].

I am indebted to Albert Marden, Gaven Martin, and Bernard Maskit for
stimulating discussions about the topology of Schottky coverings. Finally, thanks
are due to the people at the Institut Mittag-Leffier for their support and warm
hospitality while I was writing this paper.

2. The Schottky space

Choose a closed Riemann surface X of genus p ) 2 and a base point ,0 on
X . Let al)br,d2t. . . ,bn be a standard system of generators for zr1 (X, 16). This
means they are represented by simple loops on X that meet only at xn, satisfy
the standard relation

p

flaibia,tbl' :1,
,=l

and are oriented so that ai x bi : 1 for each j. We denote by N the normal sub-
group of. r1(X,zs) generated by å1, b2,...,6o. The quotient group rt(X,cs)/N is
the free group of rank p generated by the images of a1,... ,&p under the quotient
map.

Lei O --+ X be the covering surface of X defined by the subgroup .l[ (see

[17]). It is classical that o can be mapped conformally into the complex plane
and that any two such embeddings differ only by a Möbius transformation (see
Theorem 2D and 19F in Chapter IV of [1]). The group rt(X,"g)/N of cover
transformations then becomes a Kleinian group (i.e. a discrete group of Möbius
transformations) that acts freely a.nd properly discontinuously on the plane region
o. We fix such a conformal embedding orrce and for all, and we denote by Go
the Kleiniaxr group of cover transformations. We also choose a system of frel
generators grt... ,,gp for Gr; they will be used in Section 8.

The construction above can be applied to any closed Riemann surface of
genus p, with any standard set of generators for zr1. The resulting covering
surfaces are called Schottky coverings, and the associated Kleinian groups are
the Schottky groups of genus p. By definition, a marked Schottky group of genus
p is an isomorphism 0: Go -+ G of our distinguished Schottky group G, onto
some Schottky group G. Two marked Schottky groups 0 and 0' are equivalent if
and only if there is a Möbius transformation .4 such that

o'(g): Aek)A-r for every g h Go.

The set of equivalence classes [d] is the Schottky space ,Sr. It is clear that the
space .9, does not depend in an essential way on our choice of. Gp, for the choice of
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an isomorphism 0: Gp - G amounts to the same thing as the choice of a system

of free generators 0(gr),. .. ,0(gp) for the Schottky group G.
A remarkable observation of Chuckrow [6] says that for any marked Schottky

group 0: Gn -+ G there is a quasiconformal homeomorphism / of the Riemann
sphere such that 0(g): f gf-'for every g in Go. Therefore 5, coincides with
the quasiconformal deformation space (see [12] or [16]) of Gp, and the theory of
these deformation spaces applies to ,Sr. In particular, ,5, is a complex manifold
of dimension n : 3p - 3, and any injective holomorphic map of ,5, into C" is
a biholomorphic map onto a region in C". Such injections are easily defined in
terms of fixed points and multipliers of the transformations 0(g). See for example

[3], [11], [13], or Section 8.

3. The theorems

A fundamenta,l theorem of Maskit (see Corollary 8 in [16]) states that the
universal covering space of ,S, is the Teichmiiller space 7, and identifies the group
of cover transformations. (Bers [2] had also proved that To covers ,Sp, but his
description of the cover transformations was not explicit.) We shall describe that
group presently. First we review the definition and some properties of ?r.

Let M(X) be the space of all smooth (class C- ) conformal structures on
X, with the usual topology of C* convergence (see [7], [8], or [18]). The group
Diff+(X) of all sense-preserving smooth diffeomorphisms of X acts (from the
right) or M(X) by pullback. The space Q is the quotient space

Tp: M(X)/Ditro(x)
of M(X) by the normal subgroup Ditr 0(X), which consists of the diffeomorphisms
that are homotopic to the identity. 7o inherits a complex analytic structure from
M(X) and is a contractible complex manifold of dimension 3p - 3 , homeomorphic
to Csp-s. The quotient group Mod(x) : Diff+1X;7Oif o(X) acts properly
discontinuously on To as a group of biholomorphic maps, and a deep theorem
of Royden says that every biholomorphic self-mappingof. To is induced by some

member of Mod(X). All this is classical (see [7], [9], [12], or [19]).
Now recall from Section 2 the normal subgroup If of z'1(X,26), which de-

termines the Schottky covering surface Q --+ X. Following Maskit, we introduce
some subgroups of Dffi+(X) and Mod(X). Let Diff+(X,ry) be the group of
all / in Diff+(X) that can be lifted to a diffeomorphism f: 0 --+ Q, and let
Diff0(X,N) be the subgroup consisting of all / that can be lifted to a diffeomor-
phism /: O --, O that commutes with the group Gr.

Since Diff s(X) is a subgroup of Diff o(X,.nf ;, we can form the quotient groups

Mod *(X, N) : Diff +(X, N)/Ditr o(X),
Mod *(X, N) : Diff o(X, Ir)/Ditr o(X).

These are subgroups of Mod (X), so they act properly discontinuously on Tr.
Maskit proved
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Theorem A (Maskit [16]). 
"åe 

group Mod*(X,N) acts freely on To, and
So equals the quotient space TnlMod.(X, N).

Diff0(X,N) is a normal subgroup of Diff+(X,.1[), so the quotient group

rp : Diff +1x,lr;70iff 0(x, N) : Mod.(x, N)/Mod *(x, N)
acts on .9, as a group of biholomorphic self-mappings. Our main result is

Theorem L. Every biholomorphic self-mapping of Sn is induced by some
member of l,

As J.A. Gentilesco pointed out under more general circumstances (see Theo-
rem VIII of [10]), Theorem 1 is a^n easy consequence of Royden's analogous theorem
about Tn ard the purely topological

Theorem 2. Thenormalizer of Mod.(X,N) in Mod(X) is Mod.(X,N).
We deduce Theorem 2 from the following topological theorem, which provides

a tight relationship between the groups .l[ and Mod.(X,lf).
Theorem 3. Let c in r1(X,xs) be represented by a simple loop. Then

c € N if and only if the Dehn twist r(c) on c belongs to Mod.(X, if ).
Remarks. 1) For a discussion of Dehn twists see [5].
2) Theorems L and 2 measure the failure of Aut(.9r) to act transitively on the

fibers of the quotient map from So to Ro. The Riemann space is the quotient

Rp : TplMod (X),

Td SnlAut(Sr) : Tp/Mod.(X,trf), so the map from ^gr/Aut(.gr) to .8, has
fibers generically isomorphic to the set of cosets of Mod.(X, N) in Mod (X).

It is known that Mod.(x,trr) is a rather thin subgroup of Mod(x). In fact
Masur [18] showed that Mod.(X, N) acts properly discontinuously on a nontriv-
ial open subset of Thurston's sphere Pf of. projective measured foliations. In
contrast, Mod(X) acts minimally, even ergodically, on Pf, (see[18]).

The Dehn twist r(o1) provides an obvious example of an element of Mod (x)
that does not belong to Mod.(X,If).

3) The action of the Schottky group G, extends to hyperbolic B-space, and
the quotient of hyperbolic 3-space by Gp is a solid handlebody ä bounded by the
surface x. Diff*(x,lr) is just the subgroup of Diff+(x) that can be extended
lo H, and Diffs(x,N) consists of the diffeomorphisms whose extensions to .EI
are homotopic to the identity in ff .

4) According to an interesting theorem of Luft [14], the Dehn twists r(c) in
Theorem 3 generate the group Mod*(X,.lf).

5) Hejhal [1L] characterizes the covering group Mod*(x, N) bv a lifting prop-
erty that differs slightly from (3.2). Maskit's characterization in terms of (3.2) is
more useful for us here.
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4. Proof of Theorem 1

For the reader's convenience we shall derive Theorem 1 from Theorem 2,
following the method of Gentilesco [10]. Lel g: Sp - S, be a biholomorphic
self-mapping of ,5r. The quotient map from To to S, in Maskit's Theorem A is
a holomorphic universal covering, so g lifts to a biholomorphic self-mapping r/
of To. By Royden's theorem, ry' is induced by an element 0 of Mod (X). Since
0 and 0-1 both induce the maps on ,9r, we must have 0o0-r € Mod.(X,N)
and.0-ro0. € Mod.(X,trf) for all o in Mod.(X,N). Therefore d belongs to the
normalizer of Mod-(X,N), which, by Theorem 2, equals Mod*(X,N). QED

5. Proof of Theorem 2

Since Diffo(X) C Diff6(X,.lf), Theorem 2 is equivalent to the statement
that the normalizer of Diffo(X,lf; in Diff+(X) is Diff*(X,lf). That is what
we shall prove.

Lef f belong to Diff+1X; 
"na 

let c belong to z'1(X,rs). Since .lf is a
normal subgroup, the statement that /(c) belongs to .lf makes sense even though
/ need not preserve the base point os. Covering space theory then tells us that
/ e Oif*(X,lf) if and only if both /(c) € N and f-'(")€ N whenever c € l[.
Itobviouslysufficestohave f(bi)etrf and f-'(bi) €N for t< j <p.

Now let / belong to the normalizer of Diff o(X, ,nf ; . Let r(bi) be (a represen-
tative in Diff +(X) of) the Dehn twist on ä; . By Theorem 3, r(b) € Diff o(X, If ;,
so fr(b1)f-r e Diffo(X,lf). But fr(bi)f-' is (represents) the Dehn twist on
/(å1) (see [5]). Therefore, by Theorem 3, f (bi) € N. The same reasoning applied
to /-r showsthat /-r(ö;) alsobelongsto.lf . Therefore / e Ditr*(X,lf).QED

6. Proof of Theorem 3

We will do the trivial implication first. Suppose the simple geodesic loop
7 represents c in trf . Choose a small collar C about 7. By definition of the
covering surface zr: O -» X, each connected component of. r-L(C) in O is mapped
homeomorphically onto C by n.

Now choose a diffeomorphism / that equals the identity in X \ C arrd repre-
sents the Dehn twist r(c). Lift f to adiffeomorphism f: O ---+ O by putting i : id
in O \ "-'(C) uld I : (r I Ö)-' o f o ("1Ö) in each connected component Ö of

"-'(C). Since / commutes with Gn, f € Diffg(X,.V) and r(c) e Mod*(X,N)
as required.

Conversely suppose r(c) e Mod*(X,N). As before, we choose a small collar
C about a simple geodesic loop 7 that represents c, and we represent r(c) by a
diffeomorphism / that equals the identity in X \ C. By hypothesis, / has a lift
/: O --+ O that commutes with the group Gr.

We shall assume that c I N and look for a contradiction. Let h and 0z
be the two boundary loops of C. Since c 4 N, each connected component of
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o-'(P, Ufz) is a simple arc B in O. Let gB b. a generator of the infinite cyclic
group of all 9 in Go such that p(§) : B. Then B connects the two fixed points
of gB (which are boundary points of O).

First we shall prove that / : id in O \ zr'-l(C). Let Y be a connected
component of O \ "-r(C), and let ä be the subgroup of. Go that maps Y onto
itself. Since f : id on X \ C, there is some ry' in Gn such that i : rb on I'.
Since / commutes with Ge , ry' commutes with the subgroup I/. Suppos e $ I id.
Then ä is cyclic and all nontrivial elements of .F/ have the same two fixed points.
Now the boundary of Y in O consists of arcs B h r-|(BtU 0z). Each pB belongs
to H , and B connects its fixed points, so Y must be a Jordan region bounded
by the union of two arcs B,Bt ar,d their common endpoints. Thereforc YIH is
an annulus. Since Y lH is a connected component of X \ C and X has gerus
p) 2, this is nonsense. Therefore th:id, so / is the identity in Y and hence in
O \ zr-1(C)

It is now easy to reach the desired contradiction. Let C be a connected
component of. r-t(C). Then Ö i. r Jordan domain whose boundary is the union
of two arcs B ar.d B' as above, and their common end-points. The stabilizer of
e i" e, is the cyclic group generated by pp. Since ,fl: id il O \ "-'(C), i_
m.p" Ö onto itself and equals the identity on the boundary of i. In addition, /
commutes wilh gp.

It is easy to construct a gB-eqtivaria^nt homotopy of / to the identity in Ö,
holding the boundary of. Ö pointwise fixed. (For instance there is a conformal
map that takes C to a closed horizontal strip {z : n *iA;l7l S r} and gp to
z r-» z*1. We can then set irQ) : tzl(L-t)iQ) in the closed strip.) Projecting
that homotopy to the collar C we find that / is homotopic to the identity in X,
contradicting the fact that / represents r(c). This contradiction implies that
c€N.QED

7. The action of the outer automorphism group

Let Aut(Gr) b" the group of all automorphisms of the group Gp, and let
Inn(Gr) be the normal subgroup of inner automorphisms. Aut(Gr) acts in an
obvious way on the set of marked Schottky groups: if. 0: Go -r G is a marked
Schottky group and a € Aut(Gr), then 0.o is the marked Schottky group 0 o
a: Gn -'-+ G. This action obviously preserves equivalence classes and induces the
action

(7.1) l0). ot: l0 o a) if l0) € Sp and o € Aut(Gn)

of Aut(Gr) on ,5p. The subgroup Inn(Gr) acts trivially on ,S, so (7.L) defines
an action of the outer automorphism group

Outer Aut(Gr) : Aut(Gp)/ Inn(G, )
on ,Sr. In terms of these actions Theorem 1 takes the concrete and explicit form
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Theorem Lt. Foreach a in Aut(Gr) theself-mappingof S, definedby (7.t)
is biholomorphic. Every biholomorphic self-mappirs of ,S, has the form (7.L) for
some a.

The proof is simply a matter of being explicit about the action of lo in
Theorem 1. First we must describe the standard map of M(X) onto ,Sr. Each p
in M(X) defines a new Riemann surface structure on X, which determines a new
Gr-invariant Riemann surface structure on O via the covering map r: {l --» X.
We denote the resulting Riemann surfaces by Ot' and Xp. Since r: dlq -+ Xp
is a Schottky covering there is a conformal mapping wp of Op into the complex
plane. The group GP : wpGp(wu)-r is a Schottky group, and the isomorphism

g t+ ltt (g) - (*p) o g o (*r)-1 if g € G

defines a marked Schottky group. Its equivalence class [dp] depends only on
p because the conformal map tup is unique up to composition with a Möbius
transformation. The map p ,- l9u) from M(X) to .S, factors through To (:
M(X)/Ditro(X)) to produce Maskit's universal covering map (see [12] or [16]).

Recall that Diff+(X) acts on M(X) by pullback: the map f : )(t''f ---+ Xp is
conformal for every / in Diff +(X) and p in M(X). The subgroup Ditr+(X, N)
acts on S, by

(7.3) l0r)-f -fr:r'r1 if l0r) € Sp and f e Diff * (X, ,^r).

The normal subgroup Diff0(X,N) acts trivially, and (7.3) induces the action of
the quotient group l, in Theorem 1.

According to Theorem 1 every biholomorphic self-mapping of ,S, has the form
(7.3). To compute 1fr'r) for / in Diff*(X,lf) we choose a lift /: O --+ O and
observethat f: dl['l -- Op is conformal. Therefore tupof m.ps Op'J conformally
into the complex plane, so

0t'tk) : u)F o (i o s of-t) o (.u)-t : 7t,(i o s o i-r)
for all g in G. Thus (7.3) takes the form

(7.2)

(7.3') Vr). f - [eu o ai if l0r) € Sp and f e Diff+(X,,^'r),

where ai in Aut(Gr) is the automorphism g ,-. i o S " i-'. We see that every
biholomorphic self-mapping of ,9, is indeed of the form (7.1).

To verify that all the maps (7.1) are biholomorphic we must show that every
a in Aut(Gr) i: 9f the form o;. That is the content of Chuckrow's observation
(Theorem 2 of [6]), which f_or äny given a guarantees the existence of a sense-
preserving difeomorphism /: O --+ O suchthat o(g): f ogof-, fo. all g in Gr.
The map f "or"r" 

a diffeomorphism f: X -- X. By definition, / e Oif *(X,lf)
and a - ai. The proof is complete.
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Remarks. 1) The outer automorphism [a;] depends only on .f , and the map

7 ,- la 7l induces an isomorphism between the groups I, and Outer Aut(Gr).
2) It is a striking fact that every outer automorphism of G, is induced by

a sense-preserving diffeomorphism of X and that sense-reversing diffeomorphisms
are not required.- The geometric reason for this is that there is a sense-reversing
diffeomorphism /: O -» O that commutes with the group Gr. This is easy to see

if we take Gn to be a Fuchsian group of the second kind and / to b" inversion in
the fixed circle.

8. Explicit formulas

Finally we shall borrow a set of global coordinates for ^9, from Hejhal [11] and
give formulas in these coordinates for a set of generators of Aut(^Sr). Following

[11], for any marked Schottky group 0: G, -- G we put Li : O(Si) for 1 ( j < p
and we set a;r ä;, and ); equal to the attracting fixed point, repelling fixed point,
and multiplier of tr;, defining the multiplier so that 0 < l)il ( 1. Replacing 0

by u,n equivalent isomorphism, we can normalize the p-tuple (Lr,..., Zr) so that
or :0, a2:7, and ä1 : oo. The injective holomorphic map

[g] r+ (a3, ,..,aprb2,.,.,åp,År,...,]r) € C3p-a

then defines a global coordinate system for ,S, (see [11] and [13]), allowing us to
interpret ,9, as a region in C3p-r and Aut(.Sr) as the group of biholomorphic
self-mappings of that region.

Now every member of Aut(^9r) is induced by an automorphism of the free
group Gp, and a theorem of Nielsen (see Corollary N1 in Section 3.5 of [15])
implies that Aut(Gr) is generated by these four automorphisms:

(8.1)

(8.2)

(8.3)

a{gt) : go,,

az(gt) : gz) 
'

a+(gz) - s;t sr, and aa,(g i) - g j(8.4) a+(gr) : 91,

We must calculate their
The automorphism

jugation by

(8.5)

effect on the region S p .

a1 transforms (Lr, . . . , L) to (Lo, Lr, ,, Lo-1). Con-

r(r):ffi
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produces the normalized p-tuple

(TLoT-r ,TL1T-t ,. . . ,TLe-tT-t)

and replaces each fixed point by its image under ?, so o1 induces the map

(8.1') (o,ä,)),- (f@),...,T(ap-t),?(är), ...,T(bp-),Ip,1r,..., lr-r).

(We use (o,ä,)) as an abbreviationfor (a3,...,ap,bzr...rbp,\tr...,)r), and we
remind the reader that az : 1 and br : m.)

The automorphism 02 produces the p-tuple (L2,Lr,Lsr...,Lr), which is
conjugated to normalized form by the transformation

(B.o) s(z) :bz(z -7) .z-bz

Therefore o2 induces the map

(8.2') (a, ä,.\) ,- (S(o3),... ,S(rp), S(ör), S(är),... , S(ör), Å2,lr, )e,..., Äp).

_ The automorphism a3 leads to (Lr' , Lr, Ls,. . . , Lp). The transformation
.L11 has multiplier Å1 , attracting fixed point m, and 

-repelling 
fixed point 0.

Conjugationby z e 7f z produces a normalized p-tuple, so a3 induces the map

(8.3') (a,ö,)),- (:,...,:,+,...,1,^,,...,.1r).' \o3 ap b2 0p

All this was very easy, but e4 requires more effort. We must normalize the
p-tuple (LL) L;r Lr, Lt, . . . , Ln), so we need to find d*,b* , and )*, the attracting
fixed point, repelling fixed point, and multiplier of. Lrr Lr. We know that L{z) :
,\12 and that L2 is represented by the matrix

( t - or», år(.\, - 1) \
\1-), \z-bz )

in GL(2,C). The matrix

(8.2) A: ()r()2 - 62) ä'z(1 - )'?)\
^-\)r()2-1) t-b2^2 )

then represents Lrt L1. (Our_matrices do not necessarily have d.eterminant one.)
The multiplier .\* of. L;t L1 satisfies

)* + ()*)-' *2 = trace(A)2 /det(A),
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so it is a solution of the quadratic equation

(8.8) .\1 )2( b, - t)2 [(r. )' + 1] : h?(], - br)' + (1 - br\r)' - zbz^t(^z - 1)'] ]..

In fact .\* is the unique solution of (8.8) satisfying ll.l < 1. Thus )* is an
algebraic, but not a rational, function of ,\1 , Å2,, and b2.

Sirce Lrt L1 is represented by the matrix ,4 in (8.7), the product o*å* of its
fixed points equals bzlÅr.Put (: )rö*. Then eo* -bz -- e - )rå* :0, so the
matrix

u: (f, ?)(ä ?) (-i, -?)
_ ( s.e, - bz\t br(t - ).X \- \ r,(). - 1X e2 - b2\^. )

also represents Lrt L1.
Now the equation ()2 - 1)B : ()* - 1)(.4 yields a pair of quadratic equations

for (. Eliminating (2 between them we find that

(1 -b2)r)).-)r()z -bz)(8.e) *a:
)r(1 - ),zx). + 1) )

and

(8.10) å. - ]-r(åz - )l))- r:(1 - äzlz).
a* (l - b2^2)^* + )1(å2 - )z)'

(To obtain (8.10) we use (8.8) to simplify the right hand side of the equation
b* f a* = C'lbrÄr.) The map induced by aa is therefore

(8.4') (o,6,)),- (3,...,3,f,*,...,*,)r,tr*,),,...,Å,),

where ,\* is the unique solution of (8.8) with l).1 ( 1, o* is given by (8.9), and
b* fa* by (8.10).

We sum up our results in a final

Proposition. ?åe group of aJI biholomorphic self-mappings of the region S,
in C3p-s is generated by the four transformations (8.1') througå (8.4').
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Remark. The special case p : 2 has particular interest, both because
Kleinian groups with two generators have been much studied and because the
results become simpler and even more explicit. Notice first that the automor-
phisms o1 and o2 coincide when p:2, so otztol, and o4 generate Aut(G2).
Secondly, another theorem of Nielsen (see Corollary N4 in Section 3.5 of [15]) tells
us that OuterAut(Gz) is canonically isomorphic to the automorphism group of
the abelianization of G2 , so Outer Aut(G2) is isomorphic to the group GL(z, Z) of
two-by-two unimodular integer matrices. Finally, since every closed Riemann sur-
face of genus two is hyperelliptic, the automorphism of Gz defined by gi * gir ,

j : I or 2, acts trivially on the Schottky space .§2. Therefore the group of
biholomorphic self-mappings of ,92 is isomorphic to

PGL(Z, Z) - GL(2, Z) I {+r}.

The generating matrices

(l t,)+ (l å)

, )r, 12) ,

* (;' ?) ,and*

correspond to the self-mappings

(br, )r , Åz ) H (br, \2, Ä, ), (br,)r, Är) H (*

and

(br,År, )z) (5, )r, ).)

respectively, with ,\* and b* lo* determined as in (8.4').

t1l

12)

t3l

[4]

t5l

t6l

t7l
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