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APPLICATIONS OF SELECTION THEOREMS
TO RADIAL CLUSTER SET INTERPOLATION

FOR FUNCTIONS ON THE UNIT BALL

Robert D. Berman and Togo Nishiura

Abstract. For B. = {llrll < 1} and Sn-1 - {llrll = 1} in ,8" and a compact metric space
Y, let /o be the radial cluster set function corresponding to a continuous function f: Bn +Y.
The function /o maps .9'-1 into the metric space C(Y) of continua in Y, where the metric
is the Eausdorff metric. Some topological properties of /e were investigated by F. Bagemihl
with W. Seidel in [2] and [3], and with J.E. McMitlan in [1] when Y = 32 and n = 2. Certain
problems left unresolved are easily reduced to "interpolation problems" on the boundary. These
interpolation problems are investigated here with the aid of the Borel measurable selection theorems
of C.J. Himmelberg, F.S. Van Vleck and K. Prikry [12]. The following is among the theorems
proved. If E is an F, subset of S"-r and $: E -C(Si) (å > 2) isaBaire c.lass 1 functionsuch
thatcrc($(()forall(inE,thentåereexistsacontinuousfunctionf:Bn-.9&\{m}sucå
tåat fo(() =öG) foreach ( in E. (m isadistinguishedpointof ,St.) Äsecondtheoremshows
that the assumption "a 4 ö(C)" can be dropped in exchange for a dimension assumption on -8.
This second theorem will be employed in a follow-up paper to prove a longstanding conjecture of
Bagemihl and Seidel [2, p. 99] and to extend a recent result of L.W. Brinn [6].

1. Introduction

For n ) L, let B, and,S"-r be the open unit ball {llrll < L} and its
bounding sphere {llrll : 1} in n-dimensional Euclidean space .E'1 and, let Y be
a compact metric space. For a continuous function f , B" --+ Y and a point ( in
,S'-r, the radial cluster set of f at e, denoted /o((), is the nonempty continuum
in Y consisting of the limit points of all the convergent sequences {/(r-O},
where {r-} is a real-valued sequence increasing to 1. This function /o defined
on ,9'-r with values in C(Y) (the collection of nonempty subcontinua of Ir) is
called the radial c/usfer set function for f . The collection C(I') is a closed subset
of the compact metric space 2v (the collection of nonempty closed subsets of Y )
endowed with the Hausdorffmetric which is naturally induced on 2Y by the metric
of Y. (A short discussion of the "hyperspace" 2Y is given in Section 3). Some
topological properties of ;e were investigated by F. Bagemihl and W. Seidel in
1954-1955 ([2] and [3]) and by F. Bagemihl and J.E. McMillan in 1966 [1] for the
case of Y : 52 (the Riemann sphere A : C u {-}) of complex variables. These
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earlier investigations had left unresolved certain problems which are easily reduced
to interpolation problems. By an interpolation problem, we mean the problem of
determining, for a subset E of S"-r and a class O of functions $: E --. C(Y)
(such as a Baire class), whether each function { in O is associated with some
continuous function f on Bn into Y such that /o interpolates { in the sense
that /CI(O : ö(O for each ( in E. With the appearance of the Borel measurable
selection theorems of C.J. Himmelberg, F.S. Van Vleck a,nd K. Prikry [12] in 1985,
we a^re able now to prove the relevant interpolation theorems needed to resolve
these problems. The selection theorem that is used in our paper is given below as
Theorem 3.5.

Before stating our main theorems, Iet us set down some notation. General-
izing the complex variable case, we shall let Y be ^9r with m being the point
(0, . . . ,0, 1) of ,So ( & > 1). We shall assume that rR* is embedded into -Ek+l in the
obvious manrler and denote the stereographic projection by II: ,S& \ {*} -- Rh .

The first interpolation theorem concerns the class O of Baire class 1 functions
$: E + CG\ where .E is an F,-subset of ,S"-r and /(O does not contain oo
for each ( in E. Recall that / is of Baire class 1 provided it is a pointwise limit
(in the Hausdorff metric) of a sequence of continuous functions.

Theorem L.L. Let n ) 1 and le ) 2. Suppose that E is an Fo subset of
Sn-l and that $: E -- C(Sk) is a function with * e ö«) for each ( in E. If
$ is of Baire class 7, then tåere exists a continuous function f, Bn -- ^9& \ {-}
such that /@(() : ö(e) for each ( in E.

Our next result concerns radial-limit function f* of a continuous function
f: Bn+r -r.9k \ {-}. Bv definition, /* is the function whose domain consists of
the set of points ( in ,S" for which /o(() is a singleton and whose value /.(O is
the unique point in that singleton set.

Theorem L.2. rf k ) 1' a,nd h: sk -,se is a continuous function, then there
exists a continuous function f, B*+r -- ,Se \ {m} sucå that f* : fu.

Note that this shows that the homotopy classes of continuous mappings of ,5k into
itself are not preserved under pointwise convergence.

Our final interpolation theorem relaxes the condition oo e ö@ for ( e .E
that appears in Theorem 1.1. Here, we will need a stronger condition on the
-FL-set .8, namely dimE < k - 2. (See Section 4 for a discussion on dimension.)

Theorem L.3. Let n ) I and le ) 2. Suppose that E is an Fo subset of
s"-1 andthat $: E -- c(sk). If dimE < k-2 and $ is of Baire class 1, then
there exists a continuous function f: Bo -, ,S& \ {m} sucå that f@((): $(() for
each ( in E.

The proofs of the above interpolation theorems are made possible by the
following characterization of the class of functions / defined on subsets E of S"-r
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which are restrictions of some radial cluster set function .fo. Th" statements of
the theorems will use the following two well-known notions. Suppose that -E is
a subset of the sphere §"-r. For a sequence ö*: E -- 2Y (*:1,2,...) of
functions defined on the set .8, we refer to the function / as the topological limit
superior provided

d(O: niu*rtö*@, e e E.

A function h: E -+ I defined on the boundary set E is called a selection for a
function $: E ---+ 2Y provided ä(O € d(() when ( €.8. In case the functions are
defined on a set larger than .8, we use the same terminology with the appended
phrase "oa 8".

Theorem L.4. Let n ) I and h ) 2. Then, the following two statements
hold.
(A) Fbr each continuous funcfi on f : Bn -r ,S& \ {oo} , iåere is a seguen ce of pairs

h*: Sn-1 -- ,Se \ {oo} and ö*: S"-r -- C(S}) (m : 1,2,...) of continuous
functions such that the function h^ is a selection for $*, the function /o is
the topological limit superior of the sequence {ö*} , *r,d

J,* max { ltu o h-(() - fI o h**,(()ll : ( € S"-' } - 0.

(B) Fbr each sequence of pairs h*: Sn-r -* ,9e \ {*} and $^:,9'-1 ---+ C(So)
(m : 7r2, . . .) of continuous functjons such that h* is a selection for $^ there
is a continuous function f on Bn into Sk \ {-} such that /@(() contains

$(O, where $ is the topologicil limit superior of the sequence {ö*} , and the
condition

(2) _hlL llII o h-(O -rlo h*,,1(()ll : 0

implies that f@(O: d(O.
The proof of statement (B) of the above theorem is carried out by piecing together
specially constructed homotopies.

In the above mentioned paper of Bagemihl and McMillan [1], a natural no-
tion of "uniform convergence of f to "f@" is defined (see Section 3 for a precise
definition). The next theorem characterizes those set-valued functions / defined
on the boundary ,S"-1 for which some continuous function f , Bn -- ,S& \ {-}
converges uniformly to / in the sense of Bagemihl and McMiIIan.

Theorem L.5. Let n ) L, k ) 2 and let $: E --+ zsr be afunction defined on
a subset E of S"-L . Then, there exists a continuous function f , Bn --, .9e \ {oo}
that tends to $ uniformly along radii ending in E (in the sense of Bagemihl and
McMilla,n) if and only if there is sequence of pairs h*: Sn-t -r ,Se \ {oo} and

ö*: S"-L - C(Sk) (m : 7,2,. . .) of continuous functions sucå that each h^ is a
selection for S*, the above condition (1) åolds, and the sequence {ö^} "oru"rg."uniformly to $ on E.

(1)
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In a follow-up paper, we shall ,pply the above theorems to prove a long-
standing conjecture of Bagemihl and Seidel [8, p. 9g] along with some related
results. The conjecture concerns the image sets /o[E] of certain subsets .E of ,S1
for functions / that are analytic on the unit disk D : Bz. The related results
deal with the "uncountable-order sets" for /o (see [5] and [a] for discussions) as
well as uniform convergence in the sense of Bagemihl and McMillan of f to' ye
along radii ending in a closed, nowhere dense set E. (See also [6].)

The paper is organized as follows. In Sections 2-4we develop the necessar5r
material concerning Borel and Baire classes of functions, hyperspaces, and radial
cluster set functions. The construction of the homotopies thal are required. for the
proofs of Theorems 1.4 and 1.5 are carried out in Section 5. Finally the proofs of
the main theorems are begun in section 3 and completed in section 6.

We conclude the introduction with some conventions that will be followed in
the paper. The overline notation for the closure Ä of a set ,4. has already been
used in Theorem 1.4. The boundary and the diameter will be denoted by 0A
and diam(A), respectively. The oscillation of a function / on a set A, denoted
osca(/), is diam(dtA]). Finally .I is the closed interval [0,1] arrd r.o is the
Hilbert cube.

2. Borel and Baire classes

For the present section, x and Y are complete, separable metric spaces.
In the proofs of our interpolation theorems (Theorlms 1.1 and 1.3), we will

invoke measurable selection theorems. The selections will yield Borei measur-
able point-valued functions. The Borel measurable functions are classified into
subclasses indexed by the countable ordinal numbers. This is analagous to the
corresponding classification of Baire functions (the smallest class of furrctions that
contains the continuous functions and is closed under pointwise convergence). We
shall be concerned here only with the finite Borel andBaire classes. Even får the
finite case, subclasses having the same index do not agree in general. (See [14,p. 391], [11], and [t7].) We will prove in this section that the two classihcatiäns
agree for mappings of X into ,S& for & > 1.

Let us begin by recalling the definition of the finite Baire classes for functions
f : E -+ Y, where .E is a subspace of X. The inductive definition begins with the
class C(.8, Y) of continuous functions from .D into y.

- Deflnition ([14, p. Bg2]). The functior f : E -+ y is of. Baire class 0 precisely
whgn / q c(E,Y). And, for a positive finite ordinal 7, the function / is the saiä
to be of Baire class 7 provided it is the pointwise limit of a sequence of functions
contained in the Baire class 1 - L.

Before proceeding to the definition of the Borel classes of functions, Iet us re-
call some facts about the Borel sets in the space X. The class of Borel sets is the
smallest o-algebra of sets containing the closed sets. The Borel sets are classified
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into subclasses indexed by the countable ordinal numbers (see [14, pp. 3aa-3a5]).
In our discussion, we shall need only the three multiplicative classes Fs, G1, F2

and the three additive classes Go, Ft, G2 which are given below. (The multi-
plicative classes are closed under countable intersections and the additive classes

are closed under countable unions.)

:E
:E
:E

fo-
Ft:
F2:

{E:Eisaclosedset},
{E : E is an Fo-set},

{E : E is an Fo6-set},

Go: {E
Gr: {E

is an open set),

is an Go-set),

is an Goo-set).

For other finite ordinal numbers 7, the classes .F! and G, are defined in the
obvious way.

Deffnition ([14, p. 2731). For each finite ordinal number 7, a function
f : X --+ Y is said to be of Borel class I if f -' [If] is a Borel set of multiplicative
class 7 for each closed set W.

It is easy to verify for finite 7 that every function /: X --+ Y of Baire class 7
is also of Borel class 7. The converse is obviously false if one takes X : -E and
the discrete space Y : ,50 : {-1, 1}. In this case, the class of Baire functions
is precisely C(.R, S0). The following classical theorem establishes the equivalence
of the corresponding Borel and Baire classes for certain range spaces. (See [10,
p. 1a3l and [14, p. 393].)

Theorem 2.1 (Lebesgue-Hausdofi). Let 1 be a positive integer. Then, the
collection of Borel ciass 7 mappings of X into Y is the same as the collection of
Baire class 1 mappings when Y is Bå or Ik for Ic :7,2r. . ., a,nd when Y is the
Hilbert cube f'o .

Recently, C.A. Rogers [17] (see also [11]) gave sufficient conditions under which
the Borel and Baire classes coincide, generalizing the classical Lebesgue-Hausdorff
theorem. Unfortunately, Rogers' theorem does not yield the following analogue of
the Lebesgue-Hausdorff theorem where Y is the sphere ,S* for k > 0.

Theorem 2.2. For positive integers 1 and le , afunction f; X --r,5e is of
Baire class 1 if a.nd only if it is of Borel class 1.

Proof. Necessity was noted before, so we shall concern ourselves only with
the proof of sufficiency.

Supposefirstthat 1--L. Let f: X -+,Se beof Borelclass 1. Toprovethat /
is of Baire class 1, we shall construct a sequence of continuous functions {/-} that
converges pointwise to /. To this end, recall that * : (0,.. .,0,1) € S& g .p&*r
and define the sets
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and
B

Then the sets A and B
([14, p. 350]), there is a s

suchthat ACE and B
and define the functions

9z-f-9r.

and

ez: X .- {a e äe*l : llall St1z7
are Borel class 1 functions. By the Lebesgue-Hausdorff theorem (Theorem 2.1),
there are sequences of continuous functions

er*: X-- {u € So , lly - ooll > 1/8} (m:'1.,2,...)

and

ez*: X -' {u € E}}1 ' llyll 3 tlz} (m : 1,2,. . .)

that converge pointwise lo 91 ard 92, respectively. Therefore, for each positive
integer m, thefunction hm : grm * gz* is a continuous mapping of X into the
set {u € ä}*r :712 < llyll < 312} and the sequenc. {h*} converges pointwise to
gr-*gz: f .It follows,with P denotingtheradialprojectionof Äe*r\{O} onto
,5e, that f^: P oh* (m:1,2,...) it a sequence of continuous functions into
^9& converging pointwise to /. This completes the proof that / is of Baire class 1

from X into ,Se.

The case when 7 > 1 is handled by using the Banach theorem (see [L4,
p. 394]). This theorem asserts that for any positive integer 1 , the class of pointwise
Iimits of functions in the Borel class 1 is the Borel class .y + t.

Theorem 2.2 is thereby established.

Remark. As a consequence of Theorem 2.2, we also have that the functions
f: X -+ Skxli and /: X -+,9&x,S, areof Baireclass 7 whenandonlywhenthey
are of Borel class 7. An annular region in the plane and a 2-dimensional torus
are such spaces. Moreover, the above proof will work for any finitely connected
Jordan region in the plane.

are disjoint G6 -sets of X . By the separation theorem
ubset E of X which is simultaneously an Fo and Ga -set
C X \.E. Let Ao be a point in S'e with llyo - o"ll - Ll8
gt and gz by

g,(x): {{:.), itr:|'.\ E,

and

Then,
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3. Hyperspaces and radial cluster set functions

As in the introduction, we shall view radial cluster set functions /o associated
withcontinuousfunctions f: Bn --.S&\{m} asmappingsintocertainhyperspaces.
In the initial part of this section we define these spaces precisely a^nd give some
relevant results concerning them. The last part of the section will be devoted to
properties of radial cluster set functions "fo.

The collection of all nonempty, closed sets in Y is denoted by 2v. For the
purposes of the present section, the space Y will be assumed to be compact. The
collection C(f) will denote the subset of 2Y consisting of the connected sets (that
is, continua). The sets 2Y and C(f) possess a natural metric which we now define.

Deflnition. Suppose Y is a compact space. The metric d, called the -Elaus-
dorff metric, is defined on 2Y by

d(K,F): max {dist(z, F), dist(K, u) : u € K,u e F} ,

for K, F e 2v. The sets 2v and C(f) endowed with the Hausdorffmetric d are
called hyperspaces.

We infer from a theorem of D.W. Curtis and R.M. Shori [8, Theorem 2] and

[9] the following fact.

Theorem 3.1. If Y is any of the spaces ,Se or Io (k > 2), then 2Y and
C(Y) a,re homeomorphic to the Hilbert cube I'o .

The next corollary is an immediate consequence of the above theorem and the
Lebesgue-Hausdorff theorem (Theorem 2. 1).

Corollary 3.2. Let 1 be apositiveinteger andY be a,ny of the spaces,g&
and Ik (k > 2). Then, a function f mapping a space X into 2Y or C(Y) is of
Borel class 1 if and only if it is of Baire class 1 .

We remark that the corollpry is also true for le : L. This is established by
employing the fact that 2s' ar,d, 2I are homeomorphic to the Hilbert cube and
that C(^§1) and C(I) are homeomorphic to .I2 (see [8] and [16], respectively).

When k > 2, the point oo is not a local cut point of ,Se. That is, the set
N\ {-} is connected for each connected neighborhood N of m. We shall call
a member K of C(Sk) an oo-free continuumif it does not contain the point m.
The following theorem appears in the first cited reference for the case & : 2.

Theorem 3.3 ([6, p. 383], [tS, pp. 49 and 260]). If k > 2, then the collection
of a-free,Iocally connected continua in ^9& is dense in C(^9fr).

The proof is elementaryl and, the statement is false when & : 1.
The locally connected continua are characterized as the continuous images of

the unit interval r (see the Hahn-Mazurkiewicz-sierpinski theorem [15, p. 2bo]).
Using this theorem, we obtain the following corollary of Theorem 8.3.
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Corollary 3.4. Let k) 2 arad e > 0. If K e C(Sft) urd y is apoint
of ,5e such that dist(y, K) < e and y * *, then there exists a function f in
C (1, Sk \ {*}) such that /(0) : /(1) : y ffid d(flll,K) < ,.

We shall end our discussion of hyperspaces with a short summary of the
selection theorems needed in Section 6. As usual, a selection for a set-valued
function $: X -+ 2Y is a function g: X -+ Y such that g(o) e ö(*) for each
x ir X. The following theorem is a special case of a theorem of Himmelberg,
Van Vleck, and Prikry [12, p. 128].

Theorem 3.5. Let 1 be any positive integer. If $: X -- 2Y is of Borel
class 7, then $ has a Borel class 1 selection g: X --+ Y .

(Note that in the original statement of the Himmelberg, Van Vleck, Prikry theo-
rem, "Borel" is replaced by "Baire" since the authors defined their term "Baire"
using our definition of "Borel".) Corollary 3.2 and Theorem 2.2 together with
Theorem 3.5 yield the following corollary.

Corollary 3.6. Let 1 and lc be a positive integers. If Q is a Baire class 1
mapping of X into C(Sr) or 2sr , then ö has a Baire class 1 selection g: X ---+ §k .

An immediate consequence of the Tietze Extension Theorem ([13, p. 82]) and
Theorem 3.L is the following.

Proposition 3.7. Let lc > 1. If E is an Fo subset of X and $ is a Baire
c/ass I map of E into C(Sr), then there is a sequence of continuous mappings
ö,o: X - C$\ (* : 1,2,. ..) sucå that the sequence {ö*(r)} converges to
$(r) for each x in E.

In the upcoming lemmas, we shall need the notion of. unstable vaJues defined
next.

Deffnition ([13, p. 7al. Let f : X -+ Y be a continuous map. A point y
of Y is called an unstabJe value of f if for each positive number e there is a
continuous map 9: X -+Y such that dist (/(u),g(r)) < e when a e X and such
that y ( glX). Apoint yinY iscalled astablevaJueof / whenitisnot
unstable.

Concerning unstable values, the following useful Iemma is found in [t3, pp. 78-
791. It will be used in Section 5 as well as in the proof of Lemma 3.9 below.

Lemma 3.8. Let f : X --+ Rk be a continuous function. Then, the origin O
of Rk is an unstable value of f if and only if for each positive number 6 there is
a continuous function s: X + Er sucå that (i) f (r) : s(a) for ll/(r)ll > 6, (ii)
llg(r)ll 16 for ll/(r)ll S 6, and (iii) o 4 slxl.

The next lemma deals with the replacement of a double sequence of continuous
functions having oo as arl unstable value with a single finite-valued sequence of
continuous functions.
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Lemma 3.9. Let E be the union of a countable collection {81} of closed

subsets of X . Suppose that g: E -- Sk and that gi*: Ei -* ,St is a continuous
function having oo as an unstable vaJue for each pair of positive integers i *rd
m. If

)l*n,*@) : s(*), a € Ei (J : 1,2,"'),

thenthereisasequence g*: X --,S&\{*} (- :1,2,...) of continuous functions
that converges pointwise to g on E.

Proof. For each m,let

F* :{y e S&' lly- ooll > t/*).

Since .Ei is closed, we infer from Lemma 3.8 and the Tietze Extension Theorem

[13, p.82] that, for each rn, there is a continuous function hi*: X --+ F- such
that

llhp(r) - gi^@)ll 13f m, x € Ei (i : t,2,...).

For each pair of positive integers rn and j, let

t<j

Then, Hi* is a closed set contained in .E;. And, for each j, the sequence ä1-
(m : Lrzr. . .) is a nondescending sequence whose union is E; \ Ut<jEt. For each
rn, Iet H* be the closed set defined by H*:l)i<*Hi-. -Tlen,-the 

sequence

{H*} is a nondescending sequence whose union is .8.
Foreach m,let 9*@): hi^(x) for r € Hi*,where j 1m. Then, 9-

is a continuous mapping of. H* into F-. By the Tietze Extension Theorem,
the function g- has a continuous extension to a function mapping X into -F-.
Obviously, a 4 S*lX]. A straightforward argument shows that {g,,} converges
pointwise to g oa E.

Using Lemma 3.9, we derive the following result releva^nt to Theorem 1.1.

Lemma 3.LO, Let E be an Fo subset of X and let $: E --+ C(Sk) be a
Baire class 7 function such that Q@) is oo -free for each a in E . Then, tåere is
a sequence h*: X -, .Se (*:7r2r...) of continuous functions sucå that each
h^ has oo as an unstabJe value a,nd, for each r in E, the sequence {tr*(r)}
converges to a point in $(r).

Proof. We may assume that E is the union of a nondescending sequence

{81} ot closed subsets of X. Since X is a complete metric space and dlr, is of
Baire class 1, by Corollary 3.6, there is a Baire class 1 selection h1: Ei -, ,Se for
öle; . By Theorem 2.2, the function h5 is a Borel class 1 mapping of .Ei into ,5&.
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Since {(c) is oo-free for each x ia E, we have that ä;: Ej -,S* \ {*}. We shall
show that hi is a Baire class 1 mapping of E; into ,So \ {-}. To this end, Iet
W be a relatively closed subset of ^9e \ {*}. Then W U {oo} is closed in ,Se.

Hence, h;rlwl - hi' [W u 1*1] is a G5-subset of Ei. We have shown that hi
is a Borel class 1 mapping of. Di into .9& \ {*}. Therefore, by the Lebesgue-
Hausdorfftheorem (Theorem 2.1), the function hi is a Baire class 1 mapping of
Ei into S* \ {*}. Consequently, for each j and rn. there is a continuous function
hi*: Ei --t .9& such that lim-* *hi^@) : hi@) for each x in Ei and ä;- has
oo as an unstable value.

In order to apply Lemma 3.9, we must construct the function g: E ---+,9e along
with the associated countably indexed collection of sets and the doubly indexed
collection of functions. Here, we shall use a doubly indexed collection {Ei*} of
sets and a triply indexed collection {gi*r} of functions instead. For each j, the
set Ei \ Ei-, (wiih Es : 0) is an .F|-set. So, for each j, there is a sequence

{E1*} of closed sets whose union is E; \ E j-, . 'We now define s(x) : ä;(r) when
a € Ei \ Ei-, and define 7i*t(a) : hi{*) when o € Ei*. Lemma 3.9 completes
the proof.

We turn now to the radial cluster set functions .fo associated with contin-
uous functions /: Bn + ,9k. We refer the reader to [7, Chapter 1] for a general
background concerning cluster sets. We shall begin with a precise definition of the
radial cluster set function. Throughout the remainder of this section, all functions
/ will be from the class C(B.,,S*) of continuous mappings of the ball B, into
the sphere 

^9&.

Deflnition. Let /: Bn +,Se be a continuous function on the ball. For each
point ( of the boundary ,S"-r of Bo,let /o(() denote the set of limit points
of the convergent sequences U(t-()), where {r,,.} is an increasing sequence of
positive numbers converging to 1.. The function /o is called the radial cluster set
function associated with f .

Clearly, for ( in ^S'-1, we have

/o(()- n
0<R<1

-n
0<^R<1

)Junss<1/ [{"e
(3)

Consequentlg one can easily verify that /o(O is in C(S*) for each ( in 51"-t.
Moreover, we have from formula (3) above the following bound on the Baire class
of;o.

Proposition 3.11. For each function f in C(B",Sk), the radial cluster set
function "fo i" of Baire class 2.
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The following example shows that the above proposition cannot be sharpened.

Example. Let E a,nd ä be mutually disjoint countable, dense subsets of ,51.

By a theorem of Bagemihl and Seidel [2, p. 194], there exists an analytic function

f on 82 such that 
c@rrt -I {u, c e Er \s/_\{o}, ceH.

As usual, we identify the complex plane C with E2; and, we have n-t[ft2] :
,S'\{-}. Thus, we shall assume that the above function / has values in §2\{m}.
Consider the continuous function g: C(52) + A given by

g(w):d(w,{o}), w e c(sz).

An easy calculation shows that g o /o is discontinuous at each point of S'. By
a theorem of Baire (see [14, p. 419]), the function g o -f@ is not of Borel class 1;

consequently, "fo is also not of Baire class 1.

Clearly, if E is a subspace of ,S"-r and /o(O is a singleton for each ( in E,
then /o can be identified with a radial limit function on E. Such functions are

necessarily of Baire class 1. We state this fact as a proposition.

Proposition 3.12. Let f be in C(B,,Sk). If E is a subset of Sn-r such

that f@lB is singleton-valued, then f@lB is of Baire class 1'

In [1, Definition 1.], Bagemihl and McMillan defined a notion of uniform con-

vergence of f to /@. (Although this concept was originally defined for rotates of
more general sets than radii, we shall, for simplicity, give only the definition for
the radial case.)

Deflnition. Let E be a subset of the boundary S'-l of Bn ar..d / be in
C(B*r§å). Then, / is said to tendor convergeuniformly to f@ alongthe radii
endingin .E provided the following holds: For each positive number e there exists
a number 6, in (0, 1] such that for each 6 in (0,6"] there exists a )6 in (0,6] such

that if ) e (0,.\61, then

a({l(re):1-6 ( r ( 1-)i,/o(()) <', (eE.

The above definition is equivalent to the requirement that the following two
conditions hold simultaneously:

( ) For each number r in [0,1), the family of real-valued functions

o(tll,e,,(ll,7lt'(C, e € E,

converges uniformly to 0 as s --+ L-.
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(5) The family of real-valued functions
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d(ffiol ( € E,,fo(o) ,

converges uniformly to 0 as r --+ 1-.

Let us show that if (a) and (5) hold simultaneously for the set E then they
also hold simultaneously for the closure E of the set E. Let e ) 0 and r e [0,1).
Then there is a positive number 3 such that 3 ( s ( s' < 1 implies

d (r [["e , s(I), f [[,(, , 'fl1) < e, ( € E.

The continuity of f yields the same inequality for all ( in
we have

Letting s' 1- ,

when B < s <,,,::::l;;ii*-;-1! ;" ""- l-,":",h., / r"(, or .,,
-E is continuous for each r in [0, 1). By an analogous argument, if (5) also holds
for E then it holds for the closure E; moreover, /o restricted to .E is continuous.

From the above discussion of the radial cluster set function "f@, we shall find
that formulas (3), (a) and (5) will lead us to the following set-valued function
statements:

Consider a continuous function f , B, --, ,Se and its associated radial cluster
set function ;ro' 5n-t - C6\. Suppose that E is a subset of ,S"-1 on which
/ tends uniformly to ,fCI along radii ending in E. (Such a set always exists since
any singleton subset of ^9"-1 is such a set.) For the set .8, we have from (4) and
(5) the existence of an increasing sequence {ri} of positive numbers converging to
1 such that if di is defined on §"-r by

Öi(O : U('() : ri 1r ( rial ), ( € S"-t,

then {/i} converges to /@ uniformly on .E in the Hausdorff metric as j tends
to oo. Associated with this continuous function {; on ,S"-1 is a continuous
point-valued function hi: S"-r -r ,5* given by

hi(e) - f(rjO, ( € s"-1

Both äi and h;..1 are selections for /i. There appears to be no other natural con-
nection between h; and åi11 which will yield necessary and sufficient conditions
on the sequence {öi} "t continuous functions of ^9"-r into C(S&) so that a con-
tinuous function f : Bn --+ ,Se for which /o is the topological limii superior of the
sequence {{;} will exist. (The definition of topological limit superior was given

tr.
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earlier in the introductory section, Section 1.) To establish another connection be-
tween ä; and ä;41, we shall exhibit another sequence {s-} of positive numbers
increasing to 1 related to the sequence {ri}. We infer from the compactness of
the set

{a e B, ; ri l llrll S ri+r }
the existence of numbers t1,l (l:0,1,...,If(j)) such that

ri : ti,o I til I ... < ti,x(i) : rj+r,
and

max{ll/(ti,r0 - f(tlpt)ll ,( e s"-'} <71i, (l:1,...,N(i)).
Let {s-} be a^n increasing enumeration of the set

{t11:i)1and0<l<NU)}.
For convenience, let us repeat Si for each m with ri S s- I ,j+r. Thus,
we have the existence of a pair of continuous functions h* and /,, defined by
h*(0 : fG*e) and /*(O : {/(rO : ri 1 r l riat} when ri 3 s* ( rj+r
and ( € ,S"-1 . Clearly, h- is a selection for $*, the sequence {Q^} converges
uniformly to "f@ on the set .8, /o is the topological limit superior of the sequence

{d-}, *d
J!5** {llh-(C) - ä-+r(()ll' ( e S"-'} : 0.

We shall collect these facts into our next theorem. This theorem contains state-
ment (.,4.) of Theorem 1.4 and the necessity part of Theorem 1.5.

Theorem 3.13. Fbr b > 1, let f : Bn + ,Sk be a continuous function on
the unit ball and;o' 5a-t -r C(Se) be its associated radial cluster set function
defrned on the boundary St'-1 . Then, for each positive integer m, there is a
pair of continuous functions h^ and ö* in C(S"-'.,S&) ana C(S'-',C(Sr))
respectively such that
(i) /@ is the topologicil limit superior of the sequence {ö*},
(ii) ä- is a selection for $^,
and
(iii) lim-*oomax{ llI}",(O -ä-+r(Oll '( e S'1-1} :0.
If f is frnite-vaJued (that is, f (r) f a for aJl a in Bn), then one can ensurethat
ö*«) is oo-free and h*(O { oo for all ( in Sn-L , and
(iii)'lim-*oomax{ lln" h*(O-TIoh*].1(()ll 

' 
( €,5"-r}:0.

Moreover, if f tends uniformly to f@ along radii ending in a subset E of S"-t ,
then one can aJso ensu.re that the sequence {$*} converges uniformly to f@ on E .

Observe that /-(O can be taken to be the singleton {lr-(()} for each rn and
each ( in ,S"-r in the discussion just preceding the statement of the theorem. With
this observation, we note that the idea of this proof is similar to that appearing
in [5, Lemmas 2.3 and2.4l.
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4. Tliangulation and dimension

We shall use triangulations of spaces to construct our homotopies in Section 5.

Also, we shall use the connection between the dimension of a space and the unstable
values of continuous maps. In this section, short discussions of triangulations and
dimension will be given for the convenience of the reader.

Let us begin with a brief discussion of finitely triangulable spaces X, simplicial
complexes (lf,,S) and the barycenter of a simplex.

By an m-simplex o ) we shall mean the convex hull of the rn * 1 element
set {os, ...,,fr*} in .8", where the vectors fii - fio (i : 1, ...,rn) are linearly
independent. The points oi ale called the vertices of the simplex a; and, the
point b(o) : (DLo r;) l@ * 1) is called tlne barycenter of the simplex o. The
simplex o will have lower dimensional simplices formed by the subsets of the set
of vertices of o. These simplices are called faces of the simplex o.

The ordered pair (I(,,S) consisting of a space K along with a finite collection
.S: {or,...roi} of simplices in .B" is said to be a simplicial complex provided
the following conditions are satisfied.

(i) I( : Ui;=roi.
(ii) If o € S and r is a face of o, then r € S.
(iii) If o, r €S, then either ofl r is empty or else is a commonface of o and r.
(As is customary, we shall sometimes suppress reference to the collection ^l and
just refer to a simplicial complex K.) The rn-skeleton (K,o,.9-) of a simplicial
complex (I(,S) is the simplicial complex for which S*: {o € ,S: dimo < m}.
Finally, it is intuitively obvious that dim K : max{dim o : o € ,t} .

A space X is said to be finitely triangulable if it is homeomorphic to a simpli-
cial complex K. A triangulation of X is a homeomorphism T: K ---+ X and the
mesh of the triangulation is the maximum of the numbers diam ("[cl]) , o e S.
The following is an elementary result.

Theorem 4.L. If X is a finitely tria,ngulable space and e ) 0, then there is
a triangulation such that its meså is less than e .

For ease of exposition, we make the following definition.

Deffnition. Let (ff,S) be a simplicial complex a,nd I/ be a space. For / in
C(K,Y) we define the oscillation of f with respect to ,S to be the number

,s(il = max {osc"(/) : o e S}.

Let us turn now to dimension. The theory of dimension for separable, metriz-
able spaces is well developed and can be found in [13]. We shall be dealing with
spaces X whose dimensions dimX are intuitively obvious. The following theorem
gives a characterization.
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Theorem 4.2 (113, p. 83]). For each nonnegative integer n, a space X has
dimX 1n if and only if for each closed set F of X and each continuous function
f from F into S" there is a continuous function g from X into Sn such that
slr: f.

In Section 3 we gave the definition of an unstable value. The following shows
a connection between dimension and unstable values (see [13, p. 80]) which will
be useful in Section 6.

Theorem 4.3. Let X beaspace witå dimX (k,Y beaspacecontaining
a;n open set G homeomorphic to Rk and f be a continuous mapping of X into a
spaceY. Then,aJlvaluesof f containedinG areunstable. Indeed,if e) 0 and
A € G, then there is a continuous mapping g of X into Y such that the inequality
dist (/(c),g(r)) < e holds for aII x in X, the equality f(r) : g(r) holds for r
in X\ f-'lcl,thevalue 9(c) is containedin G for x in f-rlc) andy isnotin
slxl.

5. Interpolation by radial cluster set functions
We shall need three types of continuous homotopies. The first corresponds to

two continuous functions ps and 91 from X into Et , the second to two continuous
functions ås and h1 from X into S* \ {*}, and the third to pairs of continuous
functions g: X --+ J?& and g: X ---+ C(So).

Lemma 5.1. Suppose that go and !1 are continuous mappings of X into Rk .

Then, there is a homotopy p.: X x I ---- Rk satisfying

p(*,0) : 9o(r) and p(*, 1) : 9r(r),
sucå that u - 11-t o p, satisfies

reX,

llz(c,s) - r(r,t)ll < M llgo(") - g'(")ll
for all r in X and all s, t in I.
(Recall that M is the Lipschitz constant corresponding to the inverse of the stere-
ographic projection fI: ,S& \ {*} -- Ao.)

Proof. Let p,(u,r) : (1 - r)so(r) -ts{*) for (r,t) in X x.I.
For the second type of homotopy, let ä6 and å1 be continuous functions from

X into S& \ {o"} and consider the closed set

D: {* € X: lläs(c) - är(r)ll < t}.
For each x in D, there is a unique geodesic from äs(r) to å1(c) in ,Sk. Conse-
quentlS there is a natural homotopy

B:Dx7-.',9&,
where §(r,.) is the geodesic from h6(c) to ä1(o) for o in X. Of course, B need
not have oo as arl unstable value. We have the following lemma when oo is an
unstable value of B.
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Lemma 5.2. Suppose that 6 e (0,1) and that hs and hy are continuous
functionsfrom X into F6: {a e S*,.lly-ooll > 6}. Let E beaclosed subset
of X and let D and B: D x I ---- .St be defined as above. If §l@no)xr hus
oo as an unstable value, then for each positive number e there is a homotopy
a: X x.[ ---l ^9& \ {*} such that

o(u,0) : äo(r) and o(r' 1) : hr(*), x e X,

and

lla(c,t) - 0(*,r)ll < ", (c,t) € (D n E) x I.
Proof. Without loss of generalitg suppose e < 6 /2. We infer from Lemma 3.8

the existence of a continuous function

u: (D n E) x I ----- ,9k \ {*}
such that u(x,O) : 0(x,0) : åo(r) and u(x,\) : B(x,1) : hr(") for all o in
D fl E, a.nd

llu(r,t) - p(*,t)ll < elz, (r,t) e (D n E) x I.
Next, we shall denote by P the natural retraction of .S* \ {oo} onto the closed set

{y e S* rllv- *ll > el?} aÅlet o: Pou. Then,

a(c,0) : ho(o) and a(x,\) : hr(r), o e DnE,
and

llo(r,t) - p(r,t)ll < elz, (x,t) e (D n E) x I.
Finally, extend a to (X x {0, i}) u ((A n E) x /) by letting

o(c,0) : ho(a) and a(c,1) : hr(r), r € X,

and then apply the Tietze Extension Theorem [13, p. 82] to complete the proof.

We shall have need of the next lemma concerning ä6 and h1 .

Lemma 5.3. Let hs and h1 be continuous mappings of X into Su \ {*}
suchthat lläo(r) - är(r)ll ( 1 for x in X. If

lläo(r) - ä,(r)ll < lllro(r) - -ll, x € x,
then there is a homotopy ac X x -[ ------ ,S& \ {*} such that

o(o,0) : ho(r) and a(a,,L) : hr(r), x € X,

and
diam(o(r,/)) : lläo(0)-ä,(")ll , xe X.

Proof. Obviously, the uniquegeodesic joining ä6(c) and ä1(c) in ,Se does not
contain oo. Consequently, there is a natural way to construct the homotopy o.

In order to construct the third homotopy mentioned at the beginning of this
section, we will need some auxiliary propositions.
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Proposition 5.4. Let h: X -. Sk and l:: X --+ 2sk be continuous funcfions.
Then, there is a continuous function $: X --+ Zsr such that, for each x in X ,

$(a) c g(u), h(r) e g(x),

and
d(ö(*),,b@)) < 2 disr (lr(r), ,b@)).

If, for some t, ,!@) is in C(^9&) , then $(a) can be ensured to be in C(Sk) atso.

Prcof. Let p: X -» R be the continuous function defined by

p(*) -dist (ntd,rh(r)) , r€x,
and put

ö(") - $(r) u {y € sk ,W - h(r)ll < p@)}.

One easily verifies that ö satisfies the conditions of the proposition.

Proposition 5.5. There exists a continuous fun ction

@: C(1,.B0), Cg,ak1 x I x I ----- Rh

such that

(i) O(/, e,,0,1): fll) and
/[/] c @(f ,g,s,.[) c /[/] u s[/]u [ftt),0{o)] for s in lo,t/21,(ii) O(/, e,7,1): slll and
g[I)cQ(f ,g,s,r) c /[I] uslllu U(t),g(o)] for s in lL/2,t),

and
(iii) O(/,e,s,0) : Q(f ,g,s,1) : h(s) = (t - s)/(0) + se(l) for s in I.

Proof. We shall construct a continuous function

!t: C(I,Eo), Cg,ahl x [0,4] x [-6,6] -+ Ae

which, when rescaled, will result in the desired function o. We will define Å on
the subset of the domain defined with [-6,6] replaced by [0,6]. The function is
then extended to the entire domain by the symmetry condition

A(/, 9, s,t) - A (f , g, s, -f ).

We first define two continuous functions

g: C(L,Ek) x C(I ,Eo) x [o, T] ---+ .Bk
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{:: C(I ,En) x C(I ,rtn) x [0,4] + Rk

428

and

as follows:

r f(7\- 01u<2
I iie'- ,1. zZ "? t

ö(f ,g,") : 
I ii;ljir,+ 

(, - 3)g(1), x;:;l
(s(0), 51u17.

and
( (1 -r)/(0) *ue(1), 0 ( u ( 1

,b(f,s,r) :{ s(2-r), 71u<-2
I s(0), 21u <-4.

We define A on the set [0,  ] x [0, 6] by

( ö(f ,s,s*t), (s,r) € [0,a] x [0,3]
It(f,g,s,f): 1r!j,g,3-t*s), (s,t)e [0,4] x[3,6], t-s12

I U(/, s,"lQ -2)), (s,t) € [0,4] x [3,6], t- s) 2.

Figure 1 below depicts graphically some of the significant features of the func-
tion Ä.

It is a routine matter to prove that Å is continuous. The following facts are
also easily checked.

(i) /t/l : A(/,e,0, [-6,6]) and

flll c tt(f ,s,s, [-6, o]) c /trl u g[/] u [/{t), e(0)] for s in [0,2] ,

(ii) g[4 : 
^(/,e, 

1, [-6, 6]) and

elrl c /r(f ,0,s,[-6,0]) c /14 ug[I|u [/(1),e(0)] for s in [2,4],
and
(iii) 

^(/, 
e, s, -6) : Å(,f, e, s, 6) : i@ - s)/(0) + |se(t) for s in [0,4] .

The rescaling of Å to obtain O presents no difficulty. This completes the
proof of the proposition.

It is to be noted that the function (D of Proposition 5.5 is not commutative in
the first two variables, that is, we do not necessarily have Q(f , g, s, l) : Q(g, f , s,t) .

Nor, is it true that /(.) : O(/,9,0,') ""d g(') : O(.f, 9,1,').
Our final homotopy concerns functions g: X --+.R& and $: X --+ C(S&). Let

us begin with the existence of certain homotopies for simplicial complexes.

Lemma 5.6. Suppose that (K,,9) is a simplicial complex and that the
functions l: in C(K,C(S*)) and g in C(K,RL) aresuchthat ä: II-r og is a
selection for tfs , where k > 2. Let e be a positive number such that

,s(rh)(eandrs(g)<e.



Applications of selection theorems to radial cluster set interpolation 429

6

/(0)

5

/(0)
4

/(0)
3

flrl
2

slrl

slll

2 flrl 3

Figure 1.

Then, there is a function a in C (K x I , Ro) satisfying

sucå that B - 11-t od satis/tes

r € K,

Proof. The proof is by induction on dimK. When dimK:0, the space
K is a finite set. So, the existence of the function o with the required properties
follows immediately from Corollary 3.4 when dimK :0.

Suppose now that n is a positive integer, dim K : n, and that the proposition
holds for simplicial complexes having dimension less than n. Recall that å(o)
denotes the barycenter of a simplex o and that (K"-r, Sr-r) denotes the (n - 1)-
skeleton of. (K,,S). Clearly, (fr,§) given by

/(o) * e(1)

§- Sn-rU{{at"l} :o€S, dimo-n}

++->

\
/(1)

slI) g

\

l--}
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and
o €S, dimo:n)

is a simplicial complex with dim K : n- 1. Observe that thegeneral assumptions
on the iunctions $, g, ffid ä apply to their restrictions a fr. By the induction
hypothesis, there exists a function d in C(fr * !,,Rr) satisfying the conclusions

of the proposition with dim K replaced by dim K : n - L.
The construction of the function a will be made in two steps. We first define

o ,n fr as follows:

q(e,D: o(a((,'),4((,'),0,r), ((,r) € Kn-1x I,
and, for each o in ^S with dimo: n,

o((,r):o(a((,'),4((,'),1,r), e:b(o), t e I,
where A((,.) denotes the restriction of A to {(} x.[ and ö is the function defined
in Proposition 5.5. For the second step of the construction, we will extend the
function a to each n-simplex a in ,S. Let o be one such n-simplex. Since the
boundary 0o as well as the barycenter ö(o) are contained in K, we shall use the
the function iD to construct the desired extension. For each r not in AoU {ä(o)},
let ( : ((c) be the unique point of äo such that the line segment p6 : [(, ö(a)J
contains u a^nd then let p<: lt1 --+ f be the linear function such that pC(O : 0
arrd pC (A(")) : 1. Then, we extend ot to q as follows:

a(r,t): o (a((,'),ä(ö(a),'),pc(r),t) , (r,t) e o x I.
Now, the construction of the function a; K x I -----+.Bt is completed. Clearly o
is continuous.

Let us verify that a has the required properties. If r is in fr , the result
follows from the induction hypothesis and the properties of the function O of
Proposition 5.5. So, we assume that r is in some n-simplex o of S,, indeed, in
o \ (äo U {å(o)}). The condition (iii) of Propositon 5.5 ensures that a(o,0) :
o(c,l). To show that llo(c,O) -g(r)ll ( 5dimr", let ( : ((r) be as in the
construction of o(c,t). Using the induction hypothesis and the condition on the
oscillation of g, we obtain
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fr-uE-Kn-ru{a(") :

s llg(r) - s(ä(")) ll + llg(a(")) - a(a("),0) ll

+ lla(a1o),0) - CI((,0)ll

s (b(")) ll

so that

llg(r) - a(r,0)ll
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as required.
Essentially the same calculation as above, with r/ in place of g and the

Hausdorff metric d in place of the Euclidean norm, proves that the condition
d(rh@),9@,1)) 1 5"Me also holds.

The proof of Lemma 5.6 is concluded.

We are now able to prove our third homotopy lemma.

If g: X + px and $: X --+ C(So) are continuous, then there
ai X x I 

-, 
Rk sucå that, for all r in X ,

(i) a(a,0) - a(n, 1),
(ii) a(a,0) - s(*) ,

and
(iii) d(r-1[c(c, r)] ,ö(*)) < 2dist (n-t o s@),ö(r)) * eM ,

where fI is tåe stereographic projection of Sk \ i*) onto Rk and M is the
Lipsehitz constant of fl-l .

Proof. The proof is a simple combination of Proposition 5.4, Theorem 4.1,
Lemma 5.6 and Lemma 5.1.

6. Proofs of the main theorems

This section is devoted to the proofs of our main theorems. The statement (A)
of Theorem 1.4 and the necessity part of Theorem 1.5 have already been proved
by Theorem 3.13. Let us first prove a lemma.

Lemma 6.L. Let X be a finitely triangulable space and k > 2. Suppose
that g*: X + Rk and tft*: X -- C(Sk) (*:7,2,...) is a sequence of pairs of
continuous functions. Then there is a continuous function F: X x [0, *) ----- Rk
sueh that the topological limit superior Q of the sequence {rb*} satisfres
(i) d(r) c u$@lil, *[] for att x and alt j

artd
(ii) d(b^@),II-'lf1",l* - t,-])]) converges to 0 at each x for which

lls^@) - e*+r(x)ll + dist(n-' o s^(*), {*(r))
converges to 0 as m tends to oo.
Moreover, if E is a subset of X on which the sequence {rb*} converges

uniformly and on which the sequence

{ lls-(.) - g-+,(.)ll 1 dist(tI-1 o e^(.),r1,*(.))}
converges uniformly to 0, then the sequence

{a (0O,u-' [r(. ,,[* - r, -])l)]
also converges uniformly to 0 on E.

0

is a homotopy
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Proof. We shall construct F on X ,l* - 1,rn]. Let ö* be the continuous
function given by Lemma 5.4 corresponding to the functions h* : Tl-L o g* and

$*. Then, h- is a selection of ö* and r/-(r) c ö*(x) for each r in X. Let )-
be the homotopy joining g* and g--u1 given by Lemma 5.1, and let a- be the
homotopy corresponding to gmt Öm a^nd e- :|lm given by Lemma 5.7. Now,
define .F on X xlm- 1,rn] byusing o- ontheinterval l*-1,*-il and )-
on the interval l* - L,rn]. One easily verifies that the function .F satisfies the
requirements of the lemma.

Now the proofs of the remaining parts of Theorems 1.4 and 1.5 will follow
easily. For the statement (B) of Theorem 1.4, one easily can construct a function

with the required radial limit behavior by applying Lemma 6.1. The Tietze Exten-
sion Theorem permits the extension of the function / to all of. Bn. The sufficiency
part of Theorem 1.5 is equally easily established.

Proof of Theorem LI. Suppose .E is an Fo set in ^9"-1 and ö: E --. C(So)
is a Baire class 1 function with oo 4 ö@) for each r in E . Since .E is an F, -
set, we have by Proposition 3.7 a sequertce $*: ,9'-1 -» C(So) (* : 1, 2, . . . ) of
continuous functions such that

Jg'/*(') _ ö(*), fr e E.

S'-1 -+ Sk (m- 1,2,.. .) of con-
value of each h* and

r € E.,,l% h*(*) € ö(*),

Indeed, we may assume that h-(c) f m for all o and all rn. For each m, let
9m:floä-. Then,

J*llg*(r) -em*r(r)ll -0, tr € E,

because lim-*oo h*(*) exists and is not equal to oo. Lemma 6.1 will now com-
plete the proof of Theorem 1.1, in the same manner as it concluded the proof of
Theorem 1.4.

Proof of Theorem1.2. Let & ) 1 andsupposethat ä: ,Se -*,5e isacontinuous
function. Let x^: (0, . . . ,\ra*) g rBe be determined by an increasing sequence

{o-} of real numbers such that lim-* q am : oo and lim-*oo(o-+r - a-) : 0.
Clearly, lim-*oo[I-'(r-) : oo. For each m,, let h*: Sk -- ,Sfr \ {m} be a
continuous function such that h*(*) : h(x) if llh(r) - -ll > 1/rn and such

By Proposition 3.10, there is a sequence hrn:
tinuous functions such that oo is an unstable



that h*(r) _ II-'(**) if h(*) - oo. Such a
Extension Theorem. Obviously, the sequence

With g* - II o h* , w€ have that
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_1% llg*(r) - em*r(r)ll - 0,

function will exist by the Tietze
{h*r} converges pointwise to h.

r € Sk-1.

Now, the continuous function F: Sk x [0, m) ----- .9e \ {*} can be constructed by
using Lemma 5.1 on the functions g- *d g-+, to define .F' on ,S& x fm - l,m)
for all posiiive integers rn. This completes the proof of Theorem 1.2.

The proof of Theorem 1.3 will follow from the next two lemmas.

Lemma 6.2. Let X be a finitely triangulable space and E be an Fo subsef
of X such tåat dim E < k -2, where lc> 2. Suppose that rl.t*; X --+ C(Sk) and
h^: X -- .t& \ {*} (- -- 1,2,. . .) i" a sequence of pairs of continuous functions.
Then, there is a continuous function F: X x [0, *) ---- .Sr \ {*} such that the
topological limit superior $ of the the sequence {tlt^} satisfres

(i) d(") C F(a,U, *)) for all r and all j ,

and
(ii) d(h*@),F(*,1*-1,*))) (*:1,2,...) converges to 0 whenever

lim--."(llh *(*) - ä-+r(r)ll * dist (h*(*),/-(r))) : 0.

Moreover, if H is a closed set contained in E such that {t*} "on "rges 
uniformly

on H and the seguence {lln^ - hm+rll + dist(lz- ,rbå} converges uniformly to
0 on H, then the sequenc" {d(ö(.),F(.,1* - t,-]))} aJso converges uniformly
to0onH.

Proof. The proof is similar to that of Lemma 6.1. We first construct
a sequence ö*: X -- C(Sk) (* : !,2,. .. ) of continuous functions by using
Lemma 5.4 such that h* is a selection for $* and tlt^(r) c ö*(") for all u in
X. We then use the same homotopy om as in the proof of Lemma 6.1. The proof
will use a different homotopy joining ä,,, and hn+r. Let {E*} be an nondecreas-
ing sequence of closed sets whose union is .8. For each rn, let

D* : {x e X : llh*(x) - hrn+tll S t1.

The set (E* n D^) x.[ has dimension less tha^n ,t by the product theorem of
dimension theory [13, p. 33]. If B^: (E*nD*)x I --- ,Sk is the natural homotopy
from ä- to haql on E* l^tD- defined by mearrs of the unique geodesic joining
t*(r) to ä-."1(c), then 0* h* oo as a^rr unstable value by Theorem 4.3. Let
),^: X x I + S* \ {*} be the homotopy corresponding to h^, h*+t and e- :
lf m on E*n D* given by Lemma 5.2. (Note that the compactness of E^fi D^
yields the appropriate 6 in Lemma 5.2.) The function .F is now constructed in an
analogous manner as in Lemma 6.1 by using o- and )*. The verification of the
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properties of .F is made by using the following observation: If a point a of .E is
such that

_lg5 llh*(c) - h*+{r)ll : o,

then there is an rns such that c is in E^ n D^ when rn ) mo.

Lemma 6.3. Let X be a finitely triangulable space and E be an F, subset
of X such that dimE<k-2,wherek>2. Then,foraBaire classI function
$: E + C(Sr), there is a continuous function F: X x [0, *) ---r ,Se \ {oo} sucå
that

ö(*) F(*,1*,*)) , n € E.

Proof. By Proposition 3.7, there is a sequence $*: X -- C(^9e) (m : L,2,. . .)
of continuous functions such that lim--*tb*@) : ö(") for each a in E. Let
{E*} be a nondecreasing sequence of closed sets whose union is .8. Then, the
Baire class 1 function /ls- has a selection H*: E* -» ,9k of Baire class 1 (Corol-
lary 3.6). Since E,,. C Em+r, we may assume that H*(X) : ä-+r(c) when
x isin E*. Let h: E --+ Sk be defined by h(a) : H*(r) for r in E^. For
each m and each j, there is a continuous functiot him: E* +,S& such that
lim;*oo hi*@) : h(r) for each r in E*. Since dim.E- 1k, we have by The-
orem 4.3 that oo is an unstable value of. hi*. Therefore, by Lemma 3.9, there
is a sequence h^: X -, ,9k \ {-} (*: L,2,...) of continuous functions that
converges pointwise to ä on .8. Lemma 6.2 completes the proof.

Finally the proof of Theorem 1..3 is a straightforward application of
Lemma 6.3 and the Tietze Extension Theorem.

-n
Llm

t1I

t2)

t3l

t4l

t5l

t6l

t7l

t8l
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