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APPLICATIONS OF SELECTION THEOREMS
TO RADIAL CLUSTER SET INTERPOLATION
FOR FUNCTIONS ON THE UNIT BALL

Robert D. Berman and Togo Nishiura

Abstract. For B, = {||z|| < 1} and S"~! = {||z]| = 1} in R™ and a compact metric space
Y, let f® be the radial cluster set function corresponding to a continuous function f: B, — Y.
The function f® maps S™~! into the metric space C(Y) of continua in Y, where the metric
is the Hausdorff metric. Some topological properties of f® were investigated by F. Bagemihl
with W. Seidel in [2] and [3], and with J.E. McMillan in [1] when Y = S? and n = 2. Certain
problems left unresolved are easily reduced to “interpolation problems” on the boundary. These
interpolation problems are investigated here with the aid of the Borel measurable selection theorems
of C.J. Himmelberg, F.S. Van Vleck and K. Prikry [12]. The following is among the theorems
proved. If E is an F, subset of S*~! and ¢: E — C(S¥) (k > 2) is a Baire class 1 function such
that oo ¢ ¢(¢) for all { in E, then there exists a continuous function f: B, — S* \ {oo} such
that f®(¢) = ¢(¢) foreach ¢ in E. (oo is a distinguished point of S*¥.) A second theorem shows
that the assumption “co &€ ¢({)” can be dropped in exchange for a dimension assumption on E.
This second theorem will be employed in a follow-up paper to prove a longstanding conjecture of
Bagemihl and Seidel [2, p. 99] and to extend a recent result of L.W. Brinn [6].

1. Introduction

For n > 1, let B, and S™"! be the open unit ball {||z]] < 1} and its
bounding sphere {||z|| = 1} in n-dimensional Euclidean space R™; and, let Y be
a compact metric space. For a continuous function f: B® — Y and a point ( in
S™=1 the radial cluster set of f at {, denoted f®((), is the nonempty continuum
in Y consisting of the limit points of all the convergent sequences {f(rm()},
where {rm,} is a real-valued sequence increasing to 1. This function f® defined
on S™! with values in C(Y) (the collection of nonempty subcontinua of Y') is
called the radial cluster set function for f. The collection C(Y') is a closed subset
of the compact metric space 2¥ (the collection of nonempty closed subsets of Y")
endowed with the Hausdorff metric which is naturally induced on 2Y by the metric
of Y. (A short discussion of the “hyperspace” 2¥ is given in Section 3). Some
topological properties of f® were investigated by F. Bagemihl and W. Seidel in
1954-1955 ([2] and [3]) and by F. Bagemihl and J.E. McMillan in 1966 [1] for the

case of Y = S? (the Riemann sphere C = C' U {o0}) of complex variables. These
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earlier investigations had left unresolved certain problems which are easily reduced
to interpolation problems. By an interpolation problem, we mean the problem of
determining, for a subset E of S"~! and a class & of functions ¢: E — C(Y)
(such as a Baire class), whether each function ¢ in & is associated with some
continuous function f on B, into Y such that f® interpolates ¢ in the sense
that f®(¢) = ¢(¢) for each ¢ in E. With the appearance of the Borel measurable
selection theorems of C.J. Himmelberg, F.S. Van Vleck and K. Prikry [12] in 1985,
we are able now to prove the relevant interpolation theorems needed to resolve
these problems. The selection theorem that is used in our paper is given below as
Theorem 3.5.

Before stating our main theorems, let us set down some notation. General-
izing the complex variable case, we shall let Y be S¥ with co being the point
(0,...,0,1) of S*¥ (k > 1). We shall assume that R* is embedded into R¥*! in the
obvious manner and denote the stereographic projection by II: S¥ \ {0} — R*.

The first interpolation theorem concerns the class @ of Baire class 1 functions
¢: E — C(S*) where E is an F,-subset of S*~! and #({) does not contain co
for each ¢ in E. Recall that ¢ is of Baire class 1 provided it is a pointwise limit
(in the Hausdorff metric) of a sequence of continuous functions.

Theorem 1.1. Let n > 1 and k > 2. Suppose that E is an F, subset of
S™! and that ¢: E — C(S*) is a function with oo ¢ #(() for each ¢ in E. If
¢ is of Baire class 1, then there exists a continuous function f: B, — S*\ {co}

such that f®(¢) = ¢(¢) for each ¢ in E.

Our next result concerns radial-limit function f* of a continuous function
f: Bay1 — S*\ {co0}. By definition, f* is the function whose domain consists of
the set of points ¢ in S™ for which f®(() is a singleton and whose value f*(¢) is
the unique point in that singleton set.

Theorem 1.2. If k > 1 and h: S¥ — S* is a continuous function, then there
exists a continuous function f: Byt — S*\ {oo} such that f* = h.

Note that this shows that the homotopy classes of continuous mappings of S* into
itself are not preserved under pointwise convergence.

Our final interpolation theorem relaxes the condition co ¢ ¢(¢) for ( € E
that appears in Theorem 1.1. Here, we will need a stronger condition on the
Fy-set E, namely dim E < k — 2. (See Section 4 for a discussion on dimension.)

Theorem 1.3. Let n > 1 and k > 2. Suppose that E is an F, subset of
S™~! and that ¢: E — C(S*). If imE < k — 2 and ¢ is of Baire class 1, then
there exists a continuous function f: B, — S*\ {co} such that f®(¢) = ¢(¢) for
each ( in E.

The proofs of the above interpolation theorems are made possible by the
following characterization of the class of functions ¢ defined on subsets E of S™~!
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which are restrictions of some radial cluster set function f®. The statements of
the theorems will use the following two well-known notions. Suppose that E is
a subset of the sphere S®~!. For a sequence ¢pm: E — 2Y (m = 1,2,...) of
functions defined on the set F, we refer to the function ¢ as the topological limit
superior provided

¢(C) = nijZj¢m(C)s (EeE.

A function h: E — Y defined on the boundary set E is called a selection for a
function ¢: E — 2Y provided h(¢) € ¢(¢) when { € E. In case the functions are
defined on a set larger than E, we use the same terminology with the appended
phrase “on E”.

Theorem 1.4. Let n > 1 and k > 2. Then, the following two statements
hold.

(A) For each continuous function f: B, — S¥\ {co}, there is a sequence of pairs
hm: S~ 1 — S\ {0} and ¢m: S*! — C(S*¥) (m =1,2,...) of continuous
functions such that the function h,, is a selection for ¢, the function f® is
the topological limit superior of the sequence {¢m}, and

(1) "}i_r’noomax{”H 0hm({) —Mohmu1 ()| : ¢S} =0.

(B) For each sequence of pairs hy: S*™' — S¥\ {0} and ¢m: S~ — C(SF)
(m =1,2,...) of continuous functions such that hy, is a selection for ¢, there
is a continuous function f on B, into S*¥\ {oco} such that f®({) contains
#(¢), where ¢ is the topological limit superior of the sequence {¢}, and the
condition

(2) Jim_ [0 k(€)= T o hnya(¢)] =0

implies that f®(() = ¢(¢).

The proof of statement (B) of the above theorem is carried out by piecing together
specially constructed homotopies.

In the above mentioned paper of Bagemihl and McMillan [1}], a natural no-
tion of “uniform convergence of f to f®” is defined (see Section 3 for a precise
definition). The next theorem characterizes those set-valued functions ¢ defined
on the boundary S™~! for which some continuous function f: B, — S¥\ {oo}
converges uniformly to ¢ in the sense of Bagemihl and McMillan.

Theorem 1.5. Let n > 1, k> 2 andlet ¢: E — 25" be a function defined on
a subset E of S™™. Then, there exists a continuous function f: B, — S*\ {0}
that tends to ¢ uniformly along radii ending in E (in the sense of Bagemihl and
McMillan) if and only if there is sequence of pairs hpy: S*™! — S*\ {co} and
bm: S*1 — C(S*) (m =1,2,...) of continuous functions such that each h,, is a
selection for ¢, , the above condition (1) holds, and the sequence {¢m} converges
uniformly to ¢ on E.
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In a follow-up paper, we shall apply the above theorems to prove a long-
standing conjecture of Bagemihl and Seidel [3, p. 99] along with some related
results. The conjecture concerns the image sets f®[E] of certain subsets E of S!
for functions f that are analytic on the unit disk D = B,. The related results
deal with the “uncountable-order sets” for f® (see [5] and [4] for discussions) as
well as uniform convergence in the sense of Bagemihl and McMillan of f to f®
along radii ending in a closed, nowhere dense set E. (See also [6].)

The paper is organized as follows. In Sections 2-4 we develop the necessary
material concerning Borel and Baire classes of functions, hyperspaces, and radial
cluster set functions. The construction of the homotopies that are required for the
proofs of Theorems 1.4 and 1.5 are carried out in Section 5. Finally, the proofs of
the main theorems are begun in Section 3 and completed in Section 6.

We conclude the introduction with some conventions that will be followed in
the paper. The overline notation for the closure 4 of a set A has already been
used in Theorem 1.4. The boundary and the diameter will be denoted by 0A
and diam(A), respectively. The oscillation of a function ¢ on a set A, denoted
osca(¢), is diam (¢[A4]). Finally, I is the closed interval [0,1] and I“° is the
Hilbert cube.

2. Borel and Baire classes

For the present section, X and Y are complete, separable metric spaces.

In the proofs of our interpolation theorems (Theorems 1.1 and 1.3), we will
invoke measurable selection theorems. The selections will yield Borel measur-
able point-valued functions. The Borel measurable functions are classified into
subclasses indexed by the countable ordinal numbers. This is analagous to the
corresponding classification of Baire functions (the smallest class of functions that
contains the continuous functions and is closed under pointwise convergence). We
shall be concerned here only with the finite Borel and Baire classes. Even for the
finite case, subclasses having the same index do not agree in general. (See [14,
p. 391], [11], and [17].) We will prove in this section that the two classifications
agree for mappings of X into S* for k> 1.

Let us begin by recalling the definition of the finite Baire classes for functions
f: E > Y, where E is a subspace of X. The inductive definition begins with the
class C(E,Y’) of continuous functions from E into Y.

Definition ([14, p. 392]). The function f: E — Y is of Baire class 0 precisely
when f € C(E,Y). And, for a positive finite ordinal 7, the function f is the said
to be of Baire class v provided it is the pointwise limit of a sequence of functions
contained in the Baire class v — 1.

Before proceeding to the definition of the Borel classes of functions, let us re-
call some facts about the Borel sets in the space X . The class of Borel sets is the
smallest o-algebra of sets containing the closed sets. The Borel sets are classified
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into subclasses indexed by the countable ordinal numbers (see [14, pp. 344-345]).
In our discussion, we shall need only the three multiplicative classes Fy, G1, F»
and the three additive classes Go, Fy, G2 which are given below. (The multi-
plicative classes are closed under countable intersections and the additive classes
are closed under countable unions.)

Fy = {E : E is a closed set}, Go = {E : E is an open set},
Fy ={E:Eisan F,—set}, G1 = {E: E is an Gs—set},
F, ={E: Eis an Fy5—set}, G2 = {E: E is an Gs,—set}.

For other finite ordinal numbers 7, the classes F,, and G, are defined in the
obvious way.

Definition ([14, p. 273]). For each finite ordinal number 7, a function
f: X =Y is said to be of Borel class v if f~![W] is a Borel set of multiplicative
class v for each closed set W.

It is easy to verify for finite 4 that every function f: X — Y of Baire class 7
is also of Borel class v. The converse is obviously false if one takes X = R and
the discrete space Y = S° = {—1,1}. In this case, the class of Baire functions
is precisely C(R,S?). The following classical theorem establishes the equivalence
of the corresponding Borel and Baire classes for certain range spaces. (See [10,

p. 143] and [14, p. 393].)

Theorem 2.1 (Lebesgue-Hausdorff). Let v be a positive integer. Then, the
collection of Borel class v mappings of X into Y is the same as the collection of
Baire class ¥ mappings when Y is R¥ or I* for k =1,2,..., and when Y is the
Hilbert cube I*°.

Recently, C.A. Rogers [17] (see also [11]) gave sufficient conditions under which
the Borel and Baire classes coincide, generalizing the classical Lebesgue-Hausdorff
theorem. Unfortunately, Rogers’ theorem does not yield the following analogue of
the Lebesgue-Hausdorff theorem where Y is the sphere S* for k > 0.

Theorem 2.2. For positive integers v and k, a function f: X — S* is of
Baire class v if and only if it is of Borel class 7.

Proof. Necessity was noted before, so we shall concern ourselves only with
the proof of sufficiency.

Suppose first that ¥ = 1. Let f: X — S* be of Borel class 1. To prove that f
is of Baire class 1, we shall construct a sequence of continuous functions {fn,} that
converges pointwise to f. To this end, recall that co = (0,...,0,1) € S¥ ¢ R¥!
and define the sets

A= [fyeY sy ool = 1/4)]
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and
B=f"[{yeY:lly— ool <1/8}].

Then the sets A and B are disjoint Gs-sets of X. By the separation theorem
([14, p. 350]), there is a subset E of X which is simultaneously an F, and Gj-set
such that A C E and B C X \ E. Let yo be a point in S* with |lyp — oo|| = 1/8
and define the functions ¢g; and g, by

ae) = {1 18 g
and
92=Ff-g1.
Then,
g1: X = {y € §*: |ly — 00| > 1/8}
and

g2: X = {y € R*"" : |ly| < 1/2}

are Borel class 1 functions. By the Lebesgue-Hausdorff theorem (Theorem 2.1),
there are sequences of continuous functions

gim: X = {y € St |ly — oo > 1/8)} (m=1,2,...)

and
g2m: X = {y € R** iy <1/2})  (m=1,2,...)

that converge pointwise to g; and g,, respectively. Therefore, for each positive
integer m, the function A, = gim + g2m is a continuous mapping of X into the
set {y € RF!:1/2 < |ly|| < 3/2} and the sequence {h,} converges pointwise to
g1+92 = f. It follows, with P denoting the radial projection of R¥*1\ {O} onto
Sk that fr, = Pohp, (m =1,2,...) is a sequence of continuous functions into
S* converging pointwise to f. This completes the proof that f is of Baire class 1
from X into S*.

The case when 5 > 1 is handled by using the Banach theorem (see [14,
p. 394]). This theorem asserts that for any positive integer v, the class of pointwise
limits of functions in the Borel class « is the Borel class v + 1.

Theorem 2.2 is thereby established.

Remark. As a consequence of Theorem 2.2, we also have that the functions
fi X - S*x I and f: X — S*¥x S7 are of Baire class v when and only when they
are of Borel class 4. An annular region in the plane and a 2-dimensional torus
are such spaces. Moreover, the above proof will work for any finitely connected
Jordan region in the plane.
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3. Hyperspaces and radial cluster set functions

As in the introduction, we shall view radial cluster set functions f® associated
with continuous functions f: B, — S¥\{oo} as mappings into certain hyperspaces.
In the initial part of this section we define these spaces precisely and give some
relevant results concerning them. The last part of the section will be devoted to
properties of radial cluster set functions f®.

The collection of all nonempty, closed sets in Y is denoted by 2Y. For the
purposes of the present section, the space Y will be assumed to be compact. The
collection C(Y) will denote the subset of 2¥ consisting of the connected sets (that
is, continua). The sets 2¥ and C(Y") possess a natural metric which we now define.

Definition. Suppose Y is a compact space. The metric d, called the Haus-
dorff metric, is defined on 2Y by

d(K, F) = max {dist(u, F),dist(K,v) : u € K,v € F},

for K, F € 2¥. The sets 2¥ and C(Y) endowed with the Hausdorff metric d are
called hyperspaces.

We infer from a theorem of D.W. Curtis and R.M. Shori [8, Theorem 2] and
[9] the following fact.

Theorem 3.1. If Y is any of the spaces S¥ or I* (k > 2), then 2¥ and
C(Y) are homeomorphic to the Hilbert cube I“°.

The next corollary is an immediate consequence of the above theorem and the

Lebesgue-Hausdorff theorem (Theorem 2.1).

Corollary 3.2. Let v be a positive integer and Y be any of the spaces S*
and I* (k > 2). Then, a function f mapping a space X into 2¥ or C(Y) is of
Borel class « if and only if it is of Baire class 7.

We remark that the corollary is also true for ¥ = 1. This is established by
employing the fact that 25" and 2! are homeomorphic to the Hilbert cube and
that C(S') and C(I) are homeomorphic to I? (see [8] and [16], respectively).
When k > 2, the point oo is not a local cut point of S*¥. That is, the set
N\ {oo} is connected for each connected neighborhood N of co. We shall call
a member K of C(S¥) an oco-free continuum if it does not contain the point co.
The following theorem appears in the first cited reference for the case k = 2.

Theorem 3.3 ([6, p. 383], [15, pp. 49 and 260]). If k > 2, then the collection
of co-free, locally connected continua in S* is dense in C(S¥).

The proof is elementary; and, the statement is false when k = 1.

The locally connected continua are characterized as the continuous images of
the unit interval I (see the Hahn-Mazurkiewicz-Sierpinski theorem [15, p. 256]).
Using this theorem, we obtain the following corollary of Theorem 3.3.
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Corollary 3.4. Let k > 2 and ¢ > 0. If K € C(S¥) and y is a point
of S* such that dist(y,K) < ¢ and y # oo, then there exists a function f in
C(I,S*\ {oo}) such that f(0) = f(1) =y and d(f[I],K) <.

We shall end our discussion of hyperspaces with a short summary of the
selection theorems needed in Section 6. As usual, a selection for a set-valued
function ¢: X — 2 is a function g: X — Y such that g(z) € ¢(z) for each
z in X. The following theorem is a special case of a theorem of Himmelberg,
Van Vleck, and Prikry [12, p. 128].

Theorem 3.5. Let v be any positive integer. If ¢: X — 2Y is of Borel
class -y, then ¢ has a Borel class v selection g: X — Y.

(Note that in the original statement of the Himmelberg, Van Vleck, Prikry theo-
rem, “Borel” is replaced by “Baire” since the authors defined their term “Baire”
using our definition of “Borel”.) Corollary 3.2 and Theorem 2.2 together with
Theorem 3.5 yield the following corollary.

Corollary 3.6. Let v and k be a positive integers. If ¢ is a Baire class vy
mapping of X into C(S¥) or 25" | then ¢ has a Baire class 7 selection g: X — S¥.

An immediate consequence of the Tietze Extension Theorem ([13, p. 82]) and
Theorem 3.1 is the following.

Proposition 3.7. Let k > 1. If E is an F, subset of X and ¢ is a Baire
class 1 map of E into C(S*), then there is a sequence of continuous mappings
¢m: X — C(S¥) (m = 1,2,...) such that the sequence {¢m(z)} converges to
é(z) for each = in E.

In the upcoming lemmas, we shall need the notion of unstable values defined
next.

Definition ([13, p. 74]). Let f: X — Y be a continuous map. A point y
of Y is called an unstable value of f if for each positive number ¢ there is a
continuous map g: X — Y such that dist (f(z),¢(z)) < e when z € X and such
that y ¢ ¢g[X]. A point y in Y is called a stable value of f when it is not
unstable.

Concerning unstable values, the following useful lemma is found in [13, pp. 78-
79]. It will be used in Section 5 as well as in the proof of Lemma 3.9 below.

Lemma 3.8. Let f: X — R* be a continuous function. Then, the origin O
of R* is an unstable value of f if and only if for each positive number § there is
a continuous function g: X — R* such that (i) f(z) = g(z) for ||f(z)|| > 6, (ii)
lg(2)ll < & for || f(z)|| <6, and (iii) O ¢ g[X].

The next lemma deals with the replacement of a double sequence of continuous
functions having co as an unstable value with a single finite-valued sequence of
continuous functions.
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Lemma 3.9. Let E be the union of a countable collection {E;} of closed
subsets of X. Suppose that g: E — S* and that gjm: E; — S* is a continuous
function having oo as an unstable value for each pair of positive integers j and

m. If
n}Enngm(x) = g(z), zteE; (j=1,2,...),

then there is a sequence gm: X — S¥\ {00} (m = 1,2,...) of continuous functions
that converges pointwise to g on E.

Proof. For each m, let
Fn={y€S":|ly—oo| >1/m}.

Since E; is closed, we infer from Lemma 3.8 and the Tietze Extension Theorem
[13, p. 82] that, for each m, there is a continuous function hjm: X — Fp, such
that

|hjm(z) = gjm(z)| £3/m, z€E; (j=12,...).

For each pair of positive integers m and j, let

Hjm= ﬂ {z € Ej : dist(z, Ey) > 1/m}.
I<j

Then, Hjm, is a closed set contained in E;. And, for each j, the sequence Hj,,
(m =1,2,...) is a nondescending sequence whose union is E; \ Ui<; E;. For each
m, let Hp be the closed set defined by H,, = Uj<mHjm. Then, the sequence
{Hm} is a nondescending sequence whose union is E.

For each m, let gm(z) = hjm(z) for 2 € Hjn,, where j < m. Then, gn
is a continuous mapping of H,, into F,,. By the Tietze Extension Theorem,
the function g¢,, has a continuous extension to a function mapping X into Fj,.
Obviously, co ¢ gm[X]. A straightforward argument shows that {g.,} converges
pointwise to ¢ on E.

Using Lemma 3.9, we derive the following result relevant to Theorem 1.1.

Lemma 3.10. Let E be an F, subset of X and let ¢: E — C(S*) be a
Baire class 1 function such that ¢(z) is co-free for each z in E. Then, there is
a sequence hy,: X — S* (m = 1,2,...) of continuous functions such that each
hm has oo as an unstable value and, for each z in E, the sequence {hm(z)}
converges to a point in ¢(z).

Proof. We may assume that E is the union of a nondescending sequence
{E;} of closed subsets of X. Since X is a complete metric space and ¢|g; is of
Baire class 1, by Corollary 3.6, there is a Baire class 1 selection k;: E; — S* for
#|E; . By Theorem 2.2, the function h; is a Borel class 1 mapping of E; into Sk.
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Since ¢(z) is co-free for each z in E, we have that h;: E; — S¥\ {co}. We shall
show that k; is a Baire class 1 mapping of E; into S*\ {co}. To this end, let
W be a relatively closed subset of S* \ {oo}. Then W U {oo} is closed in S*.
Hence, hj_l[W] = hj_l [W U {o0}] is a Gs-subset of E;. We have shown that h;
is a Borel class 1 mapping of E; into S¥\ {co}. Therefore, by the Lebesgue-
Hausdorff theorem (Theorem 2.1), the function h; is a Baire class 1 mapping of
E; into S*¥\ {oo}. Consequently, for each j and m there is a continuous function
hjm: E; — S* such that limm—co hjm(z) = hj(z) for each z in E; and hj, has
oo as an unstable value.

In order to apply Lemma 3.9, we must construct the function g: E — S* along
with the associated countably indexed collection of sets and the doubly indexed
collection of functions. Here, we shall use a doubly indexed collection {E;n,} of
sets and a triply indexed collection {g;mi} of functions instead. For each j, the
set E;\ Ej_1 (with E; = 0) is an F,-set. So, for each j, there is a sequence
{Ejm} of closed sets whose union is E;\ E;_,. We now define g(z) = hj(z) when
z € Ej\ Ej_; and define gjmi(z) = hji(z) when z € Ej,,. Lemma 3.9 completes
the proof.

We turn now to the radial cluster set functions f® associated with contin-
uous functions f: B, — S¥. We refer the reader to [7, Chapter 1] for a general
background concerning cluster sets. We shall begin with a precise definition of the
radial cluster set function. Throughout the remainder of this section, all functions
f will be from the class C(B,,S¥) of continuous mappings of the ball B, into
the sphere S*.

Definition. Let f: B, — S* be a continuous function on the ball. For each
point  of the boundary S"~! of B,, let f®({) denote the set of limit points
of the convergent sequences {f(rm()}, where {rn} is an increasing sequence of
positive numbers converging to 1. The function f® is called the radial cluster set
function associated with f.

Clearly, for ¢ in S™"!, we have

o) = ﬂ Ur<s<if[{r¢: R<r < S}]

0<R<1

= n f{r¢:R<r <1}

0<R<1

(3)

Consequently, one can easily verify that f®({) is in C(S¥) for each ¢ in S*1.
Moreover, we have from formula (3) above the following bound on the Baire class

of f®.

Proposition 3.11. For each function f in C(By,,S*), the radial cluster set
function f® is of Baire class 2.
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The following example shows that the above proposition cannot be sharpened.

Example. Let E and H be mutually disjoint countable, dense subsets of S L
By a theorem of Bagemihl and Seidel [2, p. 194], there exists an analytic function

f on Bj such that
_J{1}, CeE
ro=-{8 ten

As usual, we identify the complex plane C' with R?; and, we have II"}[R?] =
52\ {oo}. Thus, we shall assume that the above function f has values in §?\{co}.
Consider the continuous function g: C(S?) — R given by

g(W) =d(W,{0}), W eC(s?).

An easy calculation shows that g o f® is discontinuous at each point of S*. By
a theorem of Baire (see [14, p. 419]), the function g o f® is not of Borel class 1;
consequently, f® is also not of Baire class 1.

Clearly, if E is a subspace of S®~! and f®(() is a singleton for each ( in E,
then f® can be identified with a radial limit function on E. Such functions are
necessarily of Baire class 1. We state this fact as a proposition.

Proposition 3.12. Let f be in C(B,,S*). If E is a subset of S™™! such
that f®|g is singleton-valued, then f®|g is of Baire class 1.

In [1, Definition 1], Bagemihl and McMillan defined a notion of uniform con-
vergence of f to f®. (Although this concept was originally defined for rotates of
more general sets than radii, we shall, for simplicity, give only the definition for
the radial case.)

Definition. Let E be a subset of the boundary S"~! of B, and f be in
C(Bn, S¥). Then, f is said to tend or converge uniformly to f® along the radii
ending in E provided the following holds: For each positive number ¢ there exists
a number &, in (0, 1] such that for each § in (0, 8,] there exists a As in (0,6] such
that if A € (0, As], then

d({f(rQ):1-6<r<1-1},f%(() <e, C(€E.

The above definition is equivalent to the requirement that the following two
conditions hold simultaneously:

(4) For each number r in [0,1), the family of real-valued functions

a(f[ir,scl), FIrG,0) . CeB,

converges uniformly to 0 as s — 17.
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(5) The family of real-valued functions

d(FIrC.OL £2(0),  CeB,

converges uniformly to 0 as r — 17

Let us show that if (4) and (5) hold simultaneously for the set E then they
also hold simultaneously for the closure E of the set E. Let € >0 and r € [0,1).
Then there is a positive number 3 such that 3 < s < s’ < 1 implies

d(f[ir¢, sC), FIr¢,s'Cl]) <e, C€E.

The continuity of f yields the same inequality for all ¢ in E. Letting s' — 1~,
we have

d(f[ir¢,s¢l], fTrC,0T) <& C€F,

when 3 < s < 1. Therefore, (4) holds for E. We now conclude that f[[r(, C)] on
E is continuous for each r in [0,1). By an analogous argument, if (5) also holds

for E then it holds for the closure E; moreover, f® restricted to E is continuous.
From the above discussion of the radial cluster set function f®, we shall find
that formulas (3), (4) and (5) will lead us to the following set-valued function

statements:

Consider a continuous function f: B, — S* and its associated radial cluster
set function f®: $"~1 — C(S*). Suppose that E is a subset of S"~! on which
f tends uniformly to f® along radii ending in E. (Such a set always exists since
any singleton subset of S™~! is such a set.) For the set E, we have from (4) and

5) the existence of an increasing sequence {r;} of positive numbers converging to
g J p gimng
1 such that if ¢; is defined on Sm=1 by

$; () ={frQ):rj <r<rjyi}, (eSS

then {¢;} converges to f® uniformly on E in the Hausdorff metric as j tends
to co. Associated with this continuous function ¢; on S™! is a continuous
point-valued function hj: S™~! — S¥ given by

hi(¢) = f(rj¢), (eS™h

Both hj and hjy; are selections for ¢;. There appears to be no other natural con-
nection between h; and hjy; which will yield necessary and sufficient conditions
on the sequence {¢;} of continuous functions of S"~! into C(S*) so that a con-
tinuous function f: B, — S¥ for which f® is the topological limit superior of the
sequence {¢;} will exist. (The definition of topological limit superior was given
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earlier in the introductory section, Section 1.) To establish another connection be-
tween hj and hj;1, we shall exhibit another sequence {s,} of positive numbers
increasing to 1 related to the sequence {r;}. We infer from the compactness of
the set
{z €Bn:rj <|lzll <rjsr}

the existence of numbers ¢;; (I =0,1,...,N(j)) such that

rj =tjo <tjy <ot <ENG) = Ti,
and

max {|| f(t;10) — f(tjua Il : ¢ € S} <1/,  (I=1,...,N(j)).

Let {s,} be an increasing enumeration of the set
{tji:j>1and 0 <1< N(j)}.
For convenience, let us repeat ¢; for each m with r; < s, < rj31. Thus,
we have the existence of a pair of continuous functions h,, and ¢,, defined by
hm(¢) = f(sm¢) and ¢m(¢) = {f(r() : rj < < rjpa} when 1 < sm < 7jga
and ¢ € S"~!. Clearly, h,, is a selection for ¢, the sequence {¢,,} converges
uniformly to f® on the set E, f® is the topological limit superior of the sequence
{bm},and 1
Jim_max {|hn(C) = hms (O] : € € S} = 0.

We shall collect these facts into our next theorem. This theorem contains state-
ment (A) of Theorem 1.4 and the necessity part of Theorem 1.5.

Theorem 3.13. For k > 1, let f: B, — S* be a continuous function on
the unit ball and f®: S*~! — C(S¥) be its associated radial cluster set function
defined on the boundary S™~!. Then, for each positive integer m, there is a
pair of continuous functions hn and ¢m in C(S"7',S¥) and C(S™71,C(S*))
respectively such that

(i) f® is the topological limit superior of the sequence {¢m},
(i1) hm is a selection for ¢,
and
(i) limm—sco max { [m(¢) = hma1(C)] : ¢ € S71} = 0.
If f is finite-valued (that is, f(z) # oo for all z in B, ), then one can ensure that
ém(¢) is oo-free and hm({) # oo for all ¢ in S™~!, and
(i)’ limm—oo max { [T1 0 Am(¢) =T 0 Amy1(¢)] : ¢ € S*71} = 0.
Moreover, if f tends uniformly to f® along radii ending in a subset E of S®~!,
then one can also ensure that the sequence {¢,,} converges uniformly to f® on E.

Observe that ¢»(() can be taken to be the singleton {hm({)} for each m and
each ¢ in $™~! in the discussion just preceding the statement of the theorem. With

this observation, we note that the idea of this proof is similar to that appearing
in [5, Lemmas 2.3 and 2.4].
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4. Triangulation and dimension

We shall use triangulations of spaces to construct our homotopies in Section 5.
Also, we shall use the connection between the dimension of a space and the unstable
values of continuous maps. In this section, short discussions of triangulations and
dimension will be given for the convenience of the reader.

Let us begin with a brief discussion of finitely triangulable spaces X, simplicial
complexes (K, S) and the barycenter of a simplex.

By an m-simplex o, we shall mean the convex hull of the m + 1 element
set {Zo,...,Zm} in R"™, where the vectors z; — zo (¢« = 1,...,m) are linearly
independent. The points z; are called the vertices of the simplex o; and, the
point b(c) = (31—, z:)/(m + 1) is called the barycenter of the simplex o. The
simplex ¢ will have lower dimensional simplices formed by the subsets of the set
of vertices of 0. These simplices are called faces of the simplex o.

The ordered pair (K, S) consisting of a space K along with a finite collection
S = {o1,...,0;} of simplices in R™ is said to be a simplicial complex provided
the following conditions are satisfied.

(i) K= U?:loi'
(ii) If o € S and 7 is a face of o, then 7€ S.
(iii) If o, 7 € S, then either 0 N 7 is empty or else is a common face of ¢ and 7.

(As is customary, we shall sometimes suppress reference to the collection S and
just refer to a simplicial complex K.) The m-skeleton (Kp,,Sy) of a simplicial
complex (K, S) is the simplicial complex for which S,, = {c € S : dimo < m}.
Finally, it is intuitively obvious that dim K = max{dimo : o € S}.

A space X is said to be finitely triangulable if it is homeomorphic to a simpli-
cial complex K. A triangulation of X is a homeomorphism T: K — X and the
mesh of the triangulation is the maximum of the numbers diam (T[0]), ¢ € S.
The following is an elementary result.

Theorem 4.1. If X is a finitely triangulable space and € > 0, then there is
a triangulation such that its mesh is less than ¢.

For ease of exposition, we make the following definition.

Definition. Let (K, S) be a simplicial complex and Y be a space. For f in
C(K,Y) we define the oscillation of f with respect to S to be the number

ws(f) = max {osc,(f) : 0 € S}.

Let us turn now to dimension. The theory of dimension for separable, metriz-
able spaces is well developed and can be found in [13]. We shall be dealing with
spaces X whose dimensions dim X are intuitively obvious. The following theorem
gives a characterization.
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Theorem 4.2 ([13, p. 83]). For each nonnegative integer n, a space X has
dim X < n if and only if for each closed set F' of X and each continuous function
f from F into S™ there is a continuous function g from X into S™ such that
glr = f.

In Section 3 we gave the definition of an unstable value. The following shows
a connection between dimension and unstable values (see [13, p. 80]) which will
be useful in Section 6.

Theorem 4.3. Let X be a space with dimX < k, Y be a space containing
an open set G homeomorphic to R* and f be a continuous mapping of X into a
space Y. Then, all values of f contained in G are unstable. Indeed, if ¢ > 0 and
y € G, then there is a continuous mapping g of X into Y such that the inequality
dist (f(x),g(x)) < € holds for all z in X, the equality f(z) = g(z) holds for z
in X \ f7![G], the value g(z) is contained in G for z in f~'[G] and y is not in
g[X].

5. Interpolation by radial cluster set functions

We shall need three types of continuous homotopies. The first corresponds to
two continuous functions gy and g; from X into R*, the second to two continuous
functions ho and hy from X into S*\ {oo}, and the third to pairs of continuous
functions g: X — R* and ¢: X — C(S*%).

Lemma 5.1. Suppose that gy and g, are continuous mappings of X into RF.
Then, there is a homotopy pu: X x I — RF satisfying
,u(:E,O) = go(.’z) and lu(z’ 1) = gl(x)’ e X,
such that v = II7! o u satisfies
v(z,8) = v(z,t)| < M |lgo(z) — g1()]
forall z in X and all s, t in I.

(Recall that M is the Lipschitz constant corresponding to the inverse of the stere-
ographic projection II: S*\ {o0} — RF))

Proof. Let u(z,t) = (1 —t)go(z) — tg:1(z) for (z,t) in X x I.

For the second type of homotopy, let hy and h; be continuous functions from
X into S*\ {oo} and consider the closed set

D ={z € X:|ho(z) — hi(z)|| < 1}.

For each z in D, there is a unique geodesic from ho(z) to hi(z) in S*. Conse-
quently, there is a natural homotopy

B: D x I — Sk

where B(z,-) is the geodesic from ho(z) to hi(z) for z in X. Of course, 8 need
not have co as an unstable value. We have the following lemma when oo is an

unstable value of 3.
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Lemma 5.2. Suppose that § € (0,1) and that ho and h; are continuous
functions from X into F5 = {y € §* : |ly — oo|| > 6}. Let E be a closed subset
of X and let D and B: D x I — S* be defined as above. If Bl(enD)yx1 has
oo as an unstable value, then for each positive number ¢ there is a homotopy
a: X x I — S*\ {00} such that

a(z,0) = ho(z) and a(z,1) = hy(z), z € X,

and
la(z,t) — B(z,t)|| <&, (z,t)e(DNE)xIL

Proof. Without loss of generality, suppose ¢ < §/2. We infer from Lemma 3.8
the existence of a continuous function

v: (DNE)xI— S*\ {0}

such that v(z,0) = f(z,0) = ho(z) and v(z,1) = B(z,1) = hy(z) for all z in
DNE, and

lv(z,t) — B(z,t)|| < /2, (z,t) e (DNE)xI.
Next, we shall denote by P the natural retraction of S¥\ {co} onto the closed set
{y € S*:|ly—oo|| >¢/2} andlet @ = Pov. Then,

a(z,0) = ho(z) and ofz,1) = hy(z), ze€DNE,

and

la(z,t) — B(z,t)|| < e/2, (z,t) e (DNE)xI.
Finally, extend o to (X x {0,1})U ((DNE) x I) by letting

a(z,0) = ho(z) and a(z,1) = hy(z), z € X,
and then apply the Tietze Extension Theorem [13, p. 82] to complete the proof.

We shall have need of the next lemma concerning hy and h;.

Lemma 5.3. Let hy and hy be continuous mappings of X into S* \ {0}
such that ||ho(z) — hi(z)|| <1 for z in X. If

[o(z) — Ra(z)l| < [|ho(2) —ool|,  z € X,
then there is a homotopy a: X x I — S¥\ {co} such that
a(z,0) = ho(z) and a(z,1) = hy(z), z € X,
and
diam (a(z,I)) = ||ko(z) — h1(z)]|, z € X.
Proof. Obviously, the unique geodesic joining ho(z) and h;(z) in S* does not
contain oco. Consequently, there is a natural way to construct the homotopy «.

In order to construct the third homotopy mentioned at the beginning of this
section, we will need some auxiliary propositions.
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Proposition 5.4. Let h: X — S* and 1: X — 25" be continuous functions.
Then, there is a continuous function ¢: X — 25" such that, for each z in X,

P(z) C ¢(z), k() € 6(),

and
d(d(z),¥(z)) < 2 dist (h(z),¥(z)).
If, for some x, y(z) is in C(S*), then ¢(z) can be ensured to be in C(S*) also.

Proof. Let p: X — R be the continuous function defined by

o(z) = dist (h(2), 6(z)), 7€ X,
and put
$(z) = p(z) U {y € 5* : lly = h(z)|| < p(2)}.
One easily verifies that ¢ satisfies the conditions of the proposition.

Proposition 5.5. There exists a continuous function
®: C(I,R*) x C(I,R*) x I x I — R*

such that

(i) ©(f,9,0,I) = f[I] and
flIl C ®(f,9,s,1) C fI]Ug[IU [£(1),9(0)] for s in [0,1/2],

(i) @(f,9,1,1)=g[I] and
J gl C ®(f,9,s,1) C flI]Ug[I1U [£(1),9(0)] for s in [1/2,1],

(iii) @(f,9,s,0) = ®(f,g,5,1)=h(s) =(1-s)f(0)+sg(1) for s in I.
Proof. We shall construct a continuous function

A: C(I,R*) x C(I,R¥) x [0,4] x [—6,6] —> R*

which, when rescaled, will result in the desired function ®. We will define A on
the subset of the domain defined with [—6,6] replaced by [0,6]. The function is
then extended to the entire domain by the symmetry condition

A(f,g,s,t) = A(fygas9 _t)-
We first define two continuous functions

¢: C(I,R*) x C(I,R*) x [0,7] — R*
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and
v: C(I,R¥) x C(I,R*) x [0,4] — R*
as follows:
f(1), 0<u<2
f3—w), 2<u<3
¢(f’g)u): (4_u)f(0)+(u_3)g(1)’ 3SUS4
9(5 —u), 4<u<h
g(O), 5 S u < 7
and
(1-v)f(0) +vg(1), 0<v<1
¢(fag’v)= 9(2—‘0), 1SUS2
9(0), 2<v<4
We define A on the set [0,4] x [0, 6] by

A(f,g,8,t) =< ¥(f,9,3—t+s), (s,t)€[0,4]x[3,6], t—s<2
b(f,9,s/(t—2)), (s,t) €[0,4] x[3,6], t—s>2.

Figure 1 below depicts graphically some of the significant features of the func-
tion A.

It is a routine matter to prove that A is continuous. The following facts are
also easily checked.

(i) flI]=A(f,9,0,[—6,6]) and
7111 € A(f,9,5,(-6,6)) € FIIIUITIU [£(1),9(0)] for s in [0,2],
(i) g[I]=A(f,9,1,[—6,6]) and
LS [-6,60) € AN UL [F0,00)] for s in [2.4]
an
(iii) A(f,9,s,—6) = A(f,g,5,6) = 1(4 — 5)f(0) + 3sg(1) for s in [0,4].
The rescaling of A to obtain ® presents no difficulty. This completes the
proof of the proposition.
It is to be noted that the function ® of Proposition 5.5 is not commutative in
the first two variables, that is, we do not necessarily have ®(f, g,s,t) = ®(y, f, s,1).
Nor, is it true that f(-) = ®(f,9,0,-) and ¢(-) = ®&(f,9,1,-).
Our final homotopy concerns functions ¢g: X — R* and ¢: X — C(S*). Let
us begin with the existence of certain homotopies for simplicial complexes.

Lemma 5.6. Suppose that (K,S) is a simplicial complex and that the
functions ¢ in C(K,C(S*)) and g in C(K,R*) are such that h=I"1og isa
selection for 1, where k > 2. Let € be a positive number such that

ws(¥) < € and ws(g) < e.
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£(0) F(0) ——¢(1) glI]

£(0)
1(0)

3 R~ ~<gll] 9(0)
f]

f(1) glI]

Figure 1.
Then, there is a function o in C(K x I, R¥) satisfying
a(z,0) = a(z,1) and [la(z,0) — g(z)|| < 59™ K¢, zeK,
such that 8 = II7! o a satisfies
d(¢(z),B(z, 1)) <59™K Me,  zeK.

Proof. The proof is by induction on dim K. When dim K = 0, the space
K is a finite set. So, the existence of the function a with the required properties
follows immediately from Corollary 3.4 when dim K = 0.

Suppose now that n is a positive integer, dim K = n, and that the proposition
holds for simplicial complexes having dimension less than n. Recall that b(c)
denotes the barycenter of a simplex o and that (Kp_1,S,-1) denotes the (n—1)-

skeleton of (K, S). Clearly, (K,S) given by

S=5,,U {{8(0)} : 0 € S, dimo = n}
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and

K=US=K,1U{b0):0€S, dimo=n}

is a simplicial complex with dim K =n—1. Observe that the  general assumptions
on the functions %, ¢, and h apply to their restrictions to K. By the induction
hypothesis, there exists a function a in C (K x I, R¥) satisfying the conclusions
of the proposition with dim K replaced by dimK =n—1.

The construction of the function « will be made in two steps. We first define
a on K as follows:

a((at) = (D(a(Ca )’a(Ca )7 O’t)’ (Cat) € Kn—l X I,

and, for each ¢ in S with dimo =n,

Ot((,t) = Q(a(Ca - )aa(Ca : )a lat), C = b(o'), te I,

where a((,-) denotes the restriction of & to {{} x I and & is the function defined
in Proposition 5.5. For the second step of the construction, we will extend the
function « to each n-simplex o in S. Let o be one such n-simplex. Since the
boundary Jo as well as the barycenter b(o) are contained in K, we shall use the
the function ® to construct the desired extension. For each z not in doU {b(c)},
let ¢ = ((z) be the unique point of do such that the line segment p¢ = [¢,b(0)]
contains r and then let p¢: u¢ — I be the linear function such that p¢({) =0
and p¢(b(c)) = 1. Then, we extend a to o as follows:

a(z,t) = (5((, . ),5(17(0), . ),pc(z),t) , (z,t) €0 x I.

Now, the construction of the function a: K x I — R* is completed. Clearly, o
is continuous. _

Let us verify that o has the required properties. If z is in K, the result
follows from the induction hypothesis and the properties of the function @ of
Proposition 5.5. So, we assume that z is in some n-simplex o of S, indeed, in
o\ (80 U {b(c)}). The condition (iii) of Propositon 5.5 ensures that a(z,0) =
a(z,1). To show that [la(z,0) —g(z)|| < 59™Ke, let ¢ = ((z) be as in the
construction of a(z,t). Using the induction hypothesis and the condition on the
oscillation of g, we obtain

[|a(¢,0) = (b(0),0) || < [la(¢,0) — g(O)ll + [|9(¢) — g (b(0)) |
+Mb@)—a“@ﬁ”
<(2-5"1 4+ 1),
so that
lg(z) = a(z,0)l < [lg(z) = g(6(e)) [| + [l9 (5(o)) — «(b(2),0)
+ [|a(b(e),0) — a(¢,0)]
<e+5" e+ (2-5" 4+ 1)e < 5%,



Applications of selection theorems to radial cluster set interpolation 431

as required.

Essentially the same calculation as above, with 1 in place of ¢ and the
Hausdorff metric d in place of the Euclidean norm, proves that the condition
d(¥(z), B(z,I)) < 5"Me also holds.

The proof of Lemma 5.6 is concluded.

We are now able to prove our third homotopy lemma.

Lemma 5.7. Let X be a finitely triangulable space, ¢ > 0 and k > 2.
If : X —» RF and ¢: X — C(S*) are continuous, then there is a homotopy
a: X x I — R* such that, for all z in X,
(i) a(z,0) = a(z,1),
() o(z,0) = g(z),
and
(i) d(II7! [a(z, I)], ¢(x)) < 2dist (TI7! o g(z), 4(z)) + €M,
where II is the stereographic projection of S* \ {co} onto R* and M is the
Lipschitz constant of I 1.

Proof. The proof is a simple combination of Proposition 5.4, Theorem 4.1,
Lemma 5.6 and Lemma 5.1.

6. Proofs of the main theorems

This section is devoted to the proofs of our main theorems. The statement (A)
of Theorem 1.4 and the necessity part of Theorem 1.5 have already been proved
by Theorem 3.13. Let us first prove a lemma.

Lemma 6.1. Let X be a finitely triangulable space and k > 2. Suppose
that gm: X — R¥ and ¥m: X — C(S*) (m = 1,2,...) is a sequence of pairs of
continuous functions. Then there is a continuous function F: X x [0,00) — R¥
such that the topological limit superior ¢ of the sequence {t,,} satisfies

(i()1 ¢(z) C I [F(,[j,00))] for all z and all j
(i) d(¥m(z), I [F(z,[m - 1,m])]) converges to 0 at each x for which
lgm(2) = gm41(2)]| + dist (T 0 gm(2), YPm(2))

converges to 0 as m tends to co.
Moreover, if E is a subset of X on which the sequence {1} converges
uniformly and on which the sequence

{“gm() - gm+l(')” + diSt(H_l 0 gm('), d"m())}

converges uniformly to 0, then the sequence

{d(¢(), 7 [F(-,[m—1,m])])}

also converges uniformly to 0 on E.




432 Robert D. Berman and Togo Nishiura

Proof. We shall construct F' on X x [m —1,m]. Let ¢,, be the continuous
function given by Lemma 5.4 corresponding to the functions h,, = II"! 0 g, and
tm . Then, hp, is a selection of ¢m and Ym(z) C ¢m(zx) for each z in X. Let Ap,
be the homotopy joining ¢, and gm+1 given by Lemma 5.1, and let «,, be the
homotopy corresponding to ¢m, ¢m and e, = 1/m given by Lemma 5.7. Now,
define F on X x [m —1,m] by using am on the interval [m — 1,m — 7] and Am
on the interval [m — J,m]. One easily verifies that the function F' satisfies the
requirements of the lemma.

Now the proofs of the remaining parts of Theorems 1.4 and 1.5 will follow
easily. For the statement (B) of Theorem 1.4, one easily can construct a function

fi{z € Bn:1/2<|lz] < 1} — S*\ {00}

with the required radial limit behavior by applying Lemma 6.1. The Tietze Exten-
sion Theorem permits the extension of the function f to all of B,,. The sufficiency
part of Theorem 1.5 is equally easily established.

Proof of Theorem 1.1. Suppose E is an F, set in S"~! and ¢: E — C(S¥)
is a Baire class 1 function with co ¢ ¢(z) for each z in E. Since E is an F,-
set, we have by Proposition 3.7 a sequence ¥m,: S*7! — C(S§%) (m =1,2,...) of
continuous functions such that

lim Ym(z) = ¢(2), r€E.

m—0o0

By Proposition 3.10, there is a sequence hyp,: S*™' — S¥ (m =1,2,...) of con-
tinuous functions such that oo is an unstable value of each h,, and

lim hn,(2) € ¢(z), z € E.

Indeed, we may assume that h,(z) # oo for all z and all m. For each m, let
gm = Il o hy, . Then,

n}i_inoo lgm(z) = gm+1(2)|| =0, T€E,

because limpy,— oo hm(z) exists and is not equal to co. Lemma 6.1 will now com-
plete the proof of Theorem 1.1 in the same manner as it concluded the proof of
Theorem 1.4.

Proof of Theorem 1.2. Let k > 1 and suppose that h: S¥ — S* is a continuous
function. Let z,, = (0,...,0,a,) € R* be determined by an increasing sequence
{am} of real numbers such that limm e @m = 00 and limpy—oo(@m+1 —am) = 0.
Clearly, limm— oo I} (zn) = c0. For each m, let h,: S¥ — S¥\ {co} be a
continuous function such that hn(z) = h(z) if ||h(z) —oo|| > 1/m and such
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that hn,(z) = II7!(z,,) if h(z) = co. Such a function will exist by the Tietze
Extension Theorem. Obviously, the sequence {h,} converges pointwise to h.
With ¢, = Il o by, , we have that

lim |lgm(z) = gmir(2)] =0, =€ S,
m—0o0

Now, the continuous function F: S¥ x [0,00) — S*\ {00} can be constructed by
using Lemma 5.1 on the functions ¢, and gm+1 to define F on S* x [m — 1,m)]
for all positive integers m. This completes the proof of Theorem 1.2.

The proof of Theorem 1.3 will follow from the next two lemmas.

Lemma 6.2. Let X be a finitely triangulable space and E be an F, subset
of X such that dimE < k — 2, where k > 2. Suppose that ¥,,: X — C(S*) and
hm: X — S*¥\ {c0} (m =1,2,...) is a sequence of pairs of continuous functions.
Then, there is a continuous function F: X x [0,00) — S* \ {co} such that the
topological limit superior ¢ of the the sequence {¢,} satisfies

(i) ¢(z) C F(z,[j,00)) for all z and all j,
and
(ii) d(¥m(z), F(z,[m —1,m])) (m =1,2,...) converges to 0 whenever
limm oo (|Bm(z) = hms1(z)|| + dist (Am(z), ¥m(z))) = 0.

Moreover, if H is a closed set contained in E such that {{,} converges uniformly
on H and the sequence { ||hm — hAmt1| + dist(hm,¥m)} converges uniformly to
0 on H, then the sequence {d(¢(-), F(-,[m — 1,m]))} also converges uniformly
to 0 on H.

Proof. The proof is similar to that of Lemma 6.1. We first construct
a sequence ¢n,: X — C(S*) (m = 1,2,...) of continuous functions by using
Lemma 5.4 such that h,, is a selection for ¢, and ¢¥m(z) C ¢m(z) for all z in
X . We then use the same homotopy an, asin the proof of Lemma 6.1. The proof
will use a different homotopy joining A, and hm41. Let {E,,} be an nondecreas-
ing sequence of closed sets whose union is E. For each m, let

D ={z € X :||hm(z) = hms1]| < 1}.

The set (E, N D) X I has dimension less than k by the product theorem of
dimension theory [13, p. 33]. If Bn: (EmN Dy ) x I — S* is the natural homotopy
from Ay to hmy1 on Ep N Dy, defined by means of the unique geodesic joining
hm(z) to hm41(z), then B, has co as an unstable value by Theorem 4.3. Let
Am: X x I — S¥\ {co} be the homotopy corresponding to hm, hmtq and e, =
1/m on E,, N D,, given by Lemma 5.2. (Note that the compactness of E,, N D,
yields the appropriate § in Lemma 5.2.) The function F is now constructed in an
analogous manner as in Lemma 6.1 by using a,, and \,,. The verification of the
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properties of F is made by using the following observation: If a point z of E is
such that

lim_ o (2) = hmsa(2)] =0,
m—00
then there is an mg such that z isin E,, N D,, when m > my.

Lemma 6.3. Let X be a finitely triangulable space and E be an F, subset
of X such that dim E < k — 2, where k > 2. Then, for a Baire class 1 function
¢: E — C(S*), there is a continuous function F: X x [0,00) — S¥\ {0} such
that

é(z) = n F(z,[m, o)), z€E.

1<m

Proof. By Proposition 3.7, there is a sequence ¢,,: X — C(S¥) (m =1,2,...)
of continuous functions such that lim;,—c ¥m(z) = ¢(z) for each ¢ in E. Let
{E} be a nondecreasing sequence of closed sets whose union is E. Then, the
Baire class 1 function ¢|g,, has a selection H,,: E,, — S* of Baire class 1 (Corol-
lary 3.6). Since E,, C Em41, we may assume that Hp,(X) = Hpt1(z) when
z isin E,. Let h: E — S* be defined by h(z) = Hn(z) for z in E,,. For
each m and each j, there is a continuous function hjn: E, — S* such that
lim;j_.oo hjm(z) = h(z) for each z in E,,. Since dim E,, < k, we have by The-
orem 4.3 that oo is an unstable value of hjm,. Therefore, by Lemma 3.9, there
is a sequence h,: X — S*\ {oo} (m = 1,2,...) of continuous functions that
converges pointwise to » on E. Lemma 6.2 completes the proof.

Finally, the proof of Theorem 1.3 is a straightforward application of
Lemma 6.3 and the Tietze Extension Theorem.
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