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1. Recently Lalley and Robbins [2] suggested an asymptotically minimax
strategy of stochastic search for the so-called "princess and monster" game. Ac-
cording to this strategy, the movement of the monster in a convex domain O on
the plane, while it is looking for the princess, can be described by a piecewise
linear ergodic semi-Markov process X(t), whose stationary distribution proves to
be uniform on O. Thus, for any integrablefunction / on O one has

lim
1l ---+ oo

r - I.:1," f(x(r)) d,t-*- m ä's'' f (*) p(d*) ,

where p is the Lebesgue measure on the plane.
In the present paper we describe a generalization of this type of a process

to the multidimensional case. We suggest a variant of the Monte Carlo method
for multidimensional integration which might turn out to be rather effective in
a number of situations. Moreover, the stationary distribution of the embedded
sequence of hitting points of our process on the boundary äO of the domain O
appears to be uniform on O. Thus, the suggested procedure allows us to evaluate
surface integrals, too.

Recall that, in the multidimensional case, the crude approach enclosing a given
domain in a cube and then taking a random sample from the uniform distribution
on this cube turns out to be useless. In fact, the efficiency of such a sampling
procedure is very low. (For example, the ratio of the volume of a given ball in
an rn-dimensional Euclidean space to the volume of the smallest possible cube
enclosing it is r^12 l(2*l(lm+ 1)) , tending to zero very fast as m --+ oo. Thus,
almost all the simulated random samples will be lost.) Our approach, estimating
the integral to be evaluated by the average value of integrals over the segments
of straight lines along which the monster crosses the domain O (in this respect
it is similar to stereology), does not imply such losses. Also many other practical
methods have this property, too (see e.g. [1, 4]). But, as already mentioned
above, our method possesses an essential advantage: its unique feature is that it
allows us to evaluate simulta^neously also the surface integral over äO. It should
be noted that a direct application of our method leads to an estimate, not of
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f, but the ratio tlp($. In order to obtain an estimate of .[ itself one needs

an estimate of the volume of the domain O or of the area of 0O (cf. (S)). Of
course, we can estimate p(O) bV using our method another time (either starting
from some "good" domain O' with known parameters or by evaluating a known
volume of some domain Q" C O using our procedure in O). Moreover, it is worth
pointing out that knowing the volume of O we can, according to the properties of
our method, evaluate the area of the surface 0O, and vice versa, see formula (3)
below.

Let O be a convex domain in .E- having the property that its boundary äO
belongs to the class C1 (in fact it could be piecewise smooth as well). Let zs be
the area measure on 0O, i.e. z(.) : ro(.)lro(00) is the uniform distribution on
äO. The direction of the movement of the random walk process will be given by
the points on the unit sphere ,S : 5--r (with the center at the origin). For this
we assume that for each o : (rr,...,fr*) € äO an orthogonal transformation
F(a): R* + R* is given such that the image of. e* (€k,lc:1,...,rn, are the
elements of the canonical orthonormal basis in .R- ) under .F(r) is n, , the inner
normal vector to äO of unit length at the point c € AO.

A random walk process will be defined in the following way. Let {M?}o>t
be a sequence of i.i.d. random vectors on ,5a : .9 O {** > 0} such that for any
c € ,S".

(1) P(M? € ds,): C*x*),(ds,),

where ds, is a surface element on ^5 at the point , : (*tr...rn*),
C^: n{l-m)lzY(|1nz + i))

and ,\ is the area measure on ,5. The random walk X(t), t ) 0, starts at an
arbitrary point P6 € äO proceeding first with the unit speed in the directon of the
vector Mt: F(Po)Mf until it hits 0O (at the point Pr, ..y). Then, at this point
the ra^ndom walk process again chooses a new direction given by Mz - F(P1)M|
and proceeds in this direction, still with the unit velocity, until hitting äO for
another time (at the point P2 ), and so on. Denote by Tn the time when the
process arrives at the point P", moving along the nth segment of its trajectory.

The main result of the paper is the following

Theorem. The Markov chain {ft}i>o on 0Q a,nd the semi-Markov process

{X(t),, > 0} in O, defined above, are ergodic and their stationary distributions
a,re uniform on 0O artd A, respectively. Furthermore, for a.ny integrable function
/: O --+.R

(2) Iim I
rL+@ n

where B*- 7.t/271.5.

on R*.

lo'"
(*(*

f (x(r)) d,t - 
B,y=, t f @)p(d*) a.s.

/o(afl) r o

+ 1))/f( id and p- ,(*) is the Lebesgue measure
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Therefore, by this Theorem for any zs -integrable function g on AC)

i. 1
hm

n+x T7,

where dp, is the surface element

f = 1 in (2), we get

1f
,o1acr, Jung@)",(dP") 

a's'

on ACI at a point tr. Moreover, by choosing

i ge):
,d:1

:1,"

and therefore the limiting relation

r. I o, B*lr(0)
Irm -tn:;;15, &.s.,

f (x(r)) dt - 1 t f @) p(d*) a.s.
P(CI) J n

(3)

(2') Iim
u+oo

is valid in the multidimensional case as well.

Remark. It is worth pointing out that at first sight the suggested process
could seem to be similar to the process considered by Turchin [a]. In his paper
a Markov chain {X"} taking values in O with uniform limiting distribution was
described. The mechanism of this chain is in short the following one. Given X,
we draw a straight line passing through this point in one of directions taken from
a given set of them (for example, we could take at random one of the elements of
a basis in .B* ), and then X,r11 is selected according to the uniform probability
distribution on the section of O on this line. Thus, the constructions of these two
processes are quite different. The essence of this difference is that in [4] there is
a Markov random walk in O, while we have a random walk on 0O. In fact, the
"generating mechanism" in [4] consists of a random sampling procedure of points
from the "punctures" of Q, and in our case the crucial point is the "reflecting
law". (The possibility to evaluate the surface integrals follows from the special
choice of this law.) Furthermore, the definition of the estimator as an arithmetic
mean of linear integrals over the punctures looks preferable even for the process
introduced in [ ]. Clearly such an integral over the nth puncture will be equal
to the conditional expectation of f (X") given X,.-1 and the direction of the nth
puncture. Thus its variance in non-trivial cases will be less than the variance of
f(X"). In fact, it is a priori obvious that the integral over the puncture gives
more information about the integral than simply the value of the function at one
point. Moreover, from the computational point of view a^n evaluation of such a
linear integral is usually not difficult and does not require much time. This was
confirmed in our simulations.
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2. We present here some notes on a practical realization of the method.
Formulae (2) and (2') suggest the use of the statistics

(4) * 1," 
r(x(t))at and f (x(t)) dt

/o(40)
n lo""

for large u and n as estimators of f. (The mixing rate of X(t), f ) 0, is
exponential, so that the error for a wide class of functions / will be of the order
u-rlz or n-1/2). Since the process X(t), t ) 0, is ergodic, the random walk can
start from any point on äO. The main problem is then to define, at the points P;,
the "correct sampling method" of the direction in which the random walk process,

will next cross the domain O.
The simplest way to generate the random vectors M! is the following one. It is

easy to see that for the vector M? : (2t ,. . . , Z*) the density function of the angle
@ : arcco"(Z*) of its deviation from e- is proportional to cos(O)sin--1(0).
Thus,

P(O < P):sin*-r(d), 0<0 !lr.
Therefore sin(O) : (Z? + "' + Zk-)'l' has the distribution function t^-L ,

0 < , < 1, while the vector ( sin(O)) -"'(rr,. . . ,2*-r) is uniformly distributed
over ,S*-2. Hence the random vectors

Mi and (r, V lR,. . . , Y*-Lv ln, (1 - vz)t/')

have the same distribution; here Y1 , . . ., Y*-r are independent standard normal
variables and R : (Yt2 +...+ YT-)tl'. Moreover, V : yr/(m-t), where the
random variable U is uniformly distributed on [0, 1], and is independent of Y1 ,

"', Y*-L'
The next step is to define the local rule F(c) of "rotation" of the vector

M! for the actual choice of direction M; of. the movement from a point o € AQ.
For this it will suffice, for example, to define locally the curvilinear systems of
coordinates on äO. If such a system is defined through a parametrization o; :
c;(€r,...,(--r), i:1,...)m) on a given part f C 0O of the surface then the
vectors

j*: jx(r) - j?, lljll,, k - 1r.. . )m - 1 Ul, i : 0*rl0(x)

will form an orthonormal basis of the systeml here | 'l' : (.,.). The matrix of
the tra^nsformation F(r) in this part f of the boundary will have rn columns
jt, ,,., j*-t, n, (all these vectors are considered to be columns). This scheme
is easy to implement when I admits a simple parametrization, say when I is
a part of a sphere, cylinder, plane etc. In more complicated situations, after
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having determined the normal vector Ttx one could
process to the set of vectors ek - (Ttrtek)Ttx t k -

The integral 
rT;+tI r@o)dt

JT;

r- t f@)p(d*),
J v,*

V* : {r' lrl < 1},

then apply an orthogonalization
1, . . , 1TTL.

is just the integral of / over the line segment P;P;+r. To evaluate it one could
make use of any suitable numerical integration formula.

Finally, one can obtain estimates of the variances of our estimators, too. For

this we first compute the sample covariances of the integrals of the random walk
over the segments P;P;+t and Pp11Pp+i+r k steps apart. Then the well-known
formula for the limiting variance of the sum of values of a functional on a Markov
chain can be applied.

To test the efficiency of the method we have carried out several evaluations
of integrals of the type

for smooth as well as discontinuous functions /. (Of course, in this special case

one could readily generate random vectors that are uniformly distributed in O :
V*. It is considered only as an illustrative example.) The integrals over the
segments were calculated by the trapezoidal quadrature formula by using the step
size lP;P;a1lf 40.

For rn : 20 the advantage of our method, when compared to the crude one,
becomes overwhelming. To obtain an estimate with the same order of the error
it requires thousands times less computer time. Typical results of the simulation
are given in the following table.

f (*) 102 . I 102 'åo 102 ' o1o

l, I' 2.0646 2.0665 .1147

2 sign( r *) 2.5807 2.6046 .1373

La 1.2903 1.2932 .1719

Here for each of the functions there were 10 series of the random walk process

consisting of 1000 steps for ,f : lrlu and, respectively, 100 steps in other cases.

Furthermore,

I;

1 10

/ro- ,I*,
is the estimate of I resulting from the ith series,

/1
oto - (o

10

(»'r
i:1

4-.) )''',

where

-10
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La is the indicator function of the set A : .\r/2oVzo (a ball with the volume

ipTro).
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