
Annales Academire Scientiarum Fennicre

Series A. I. Mathematica
Volumen 17, 1992 ,23-28

OPTIMAL TRANSMISSION OF GAUSSIAN
SIGNALS INVOLVING COST OF FEEDBACK

O.A. Glonti and L.G. Jamburia
Tbilisi I. Javakhishvili State University, Laboratory of Probabilistic-Statistical Methods

David Agmashenebeli Avenue 150a, 380012 Tbilisi, Georgia

Methods to analyse the problem of signal transmission through a noiseless
feedback channel using the results of nonlinear filtering theory are given in [2].
In [1] we constructed an optimal transmission model for Gaussian signals taking
into account the cost of transmission. The aim of this paper is to construct an
optimal transmission scheme for a Gaussian signal involving the cost of feedback.

Suppose the transmitted message is a Gaussian random variable 0 with Ed :
rn and E(d- *)2 :7 ) 0, and the transmissionof.0 is carriedout accordingto
the following scheme

(o:0, ,€[0,7],

where 0 : (§r)r<r is a (?f)1a7-adapted stochastic process taking two values 0
and 1. Under §t : 1 the transmission is with feedback and under 0t : 0 it is
without feedback. Let

where c is the cost of the feedback.
Let the followirrg moment conditions

be satisfied, P ) 0.
The functionals .4s , Ar, Bo, Br, 0 are supposed to be such that equation

(1) has a unique strong solution.
Denote

mt:E(o l.qf), 1t:r"l(a - *r)' l.Tfl

(1) ag:{\t[/o(r,o +At(t,€)a] + 0- p)[Bo(t) +B{t)o)\at+aw,,

6(') : 
oo,'','å'1 Br,§,,E [r'- a)' * c I" P'd']' c )o'

(z) n{[ao{r,O +a,(t, t)q'zVf} 3p, E[80(r) +Bt(t)o)' < p
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(3)

The equations

dmt:

Exactly the

7P-
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2c-

for ff;1 and T are of the followit g form

rl§th(t, () + (1 - g)8,(r)] '

. 
{r*, - l§rto(r,€) + (1 - §,)Bo(t) + (gtA,(r,0

+ (1 - g)Br(r)) *r) or\, Tng : n'1,

(4) d11: -t?lpyqr(t,o + (1 - B,1ar1t1)'at, -to: -t.

Theorern. Suppose the transmission of a Gaussian variable 0 is caried out
according to scåeme (1).

If c) llP, th", the optimal strategy is Bi :0, s € [0,t], i'e., transmission

without feedback. The optimal coding is Bi(s) : yEh, Bö(r) : -*r,fF77,
and optimal decoding ml, for given B* , Bö, Bi, is determined through (2) and

(3). In that case

6(,):;Tt

O'- 2cP ' 2cP

If c 1 ilP and t e (a,b), then the optimal strategy åas tåe form B! :
I(t - un ( s ( t), where c6 is tåe unique solufion of the equation

""P' l1 + P(t - *))' : 1P2(t - r)

in the interrral (0, t).
The optimal coding ruJes are determined as follows:

r;E
Bi(,) : l;, aä(,) : -*l;,

AI(',O- 
,Eexp {; l,' ,ii,du} 

[, 
*t 

l,'(1- 
p;) (al(,))'

Aä(r, () - -Ai(r, ()*i,

exp {- P 
1,"

pi d,\ o"l,

where mi and 1i ur" determined through equations (3) and ( ). In this case

6(r) - 1e- 
Pro

* cro.
1+ P(t - ro)

1P - 2c + t/12 P2 - 4c1P

To prove this theorem we need the followit g lemma.
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Lemma. Let B: (gr)r2o be areal function with values in [0,1] and let P
be a positive constant. Then the following inequality is vaJid

lo' "-' 
Ii p,o' 

d,s 1 t - lr' u"r"* å(r - "-" I: 
u'0").

If B has the form 0" : I(u ( s ( t), u e [0,t], tåen the inequality reduces into
an equality.

Proof. Let f, §"ds:u and B;:I(t-v1s<r). Then IiB:a":u.Let
us first show that rc 

= [" p,au
J" Bidu 1 

Jo

for any s € [0, 1]. This inequality is evident for s ( t - rt. Assume that for some

h 2 t - u an inverse inequality occurs. Then

,: lo'gidu: lo" 
uro"* l:,pi"du> lo" 

u,o"* l:,gud,u: fo'u,ou,

which is not true. Thus,

[' "-, [o p,o,d". [' "-, 
Ii pio" 

d".
lo - lo

One can easily see that

| "-, 
li eioud":t - u+ |tr - "-ru),Jo

and since , : I: g"ds, we obtain the required inequality.
The validity of the second assertion of the lemma follows by a direct verifica-

tion.

Proof of the theorem. For fixed coding functionals Ao, Ar, Bs, 81 and
strategy B fhe optimal decoding is rn1. Hence,

6(') : 
or,o,'åf.,r,,, 

u 
[.r' * " lo' 

P" d")'

We construct first the optimal coding functionals for a fixed strategy B. Rewrite
the moment condition in the following form

(b) [Ao(r,6)*,4r(r, €)*r)' +t,q?(t,0 < p, fro1t;+41(t)*)' +iB?(t) < P.
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(6)

If we choose ,4i(r, €) : tffii , where 7i is a solution of (4) for a given functional
.4i and a fixed .B1, then the inequality reduces into an equality. Hence äf is the
optimal coding. The moment condition is satisfied for .Afi(f,O : -,4i(t,€)*I,
where rn| is a solution of (3) for given ,4,fi , Ai, li. If we solve the equation (4)
for Af (t, €): JPIfi, we obtain

*7t:
-P f' p"d,

le ro

and therefore the optimal

Ai(t, () _

Thus

^tt)1"*p{ -p lr'g,ds- lr'

E [ ve-P I: P'd' 
^'- 

L1 + 1 I:(1 - p,)B?(r), -P I' e'ou d,,

The equation for 1 can be written in the form

^tt:^texp{- lr' 
g"t"A?(s,od" - lr'rr- 

p").t"a?(s)ds\.

From (5) it follows that yAl(t,O < P. Therefore,

1 + 1 I:O - g,)B?(r), -P [' §udu d,,

coding has the form

t, [: §,ds[, * , 
Ir'(, - 

p,)B?(r), -P I' eudurr].

d,l
J

ding functionals

rn that

,rr] .

(1 - 0)B?(r) d').

6(t) - inf
Bo,Bt,9

*cl,'U"O'l'

If follows from (5) that B!(t) < P/t.If we choose Bi(t): t/F77 and Bfr(f) :
-mtm, then the condition (5) is fulfitle,C and

-l rePI'l"ds f6(,)-itfrl *,1,

Thus, for a fixed strategy B , our construction gives the optimal
and the optimal decoding.

Now we construct the optimal strat"gy. It can be easily sh

6(r)-irlrnf 7 *c['- "i- " 
Ll + p"p I: p"o, 

I: e-p I: p"ou d,, ' " 
Jo

co(

ow

0'

,s

C(

cr

p

P
-e7
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We denote the expression in the brackets by 6B(f ). Using the inequality from the
previous lemma we obtain

Consider the function

^,--Pxf(*): t#U-0t+cr, ce [o,t].

The properties of the derivatives of this function easily show that this function
increases for all z € [0,1], if c > fup and therefore /(r) > /(0) : ''tl!+ Pt).
If c ( 1Pf4 an.d t / (",å), where the numbers o and å have been defined in the
enunciation of the theorem, then again f(") 2.t lQ + Pt), t € [0,r] . If. c < ltP
and f € (o,ö), then f'(") <0 for z € [0,rs) and /'(r) ) 0 for x e (xs,t], i.e.,

/(") > "f(ro), c € [0,1], where o6 is the unique solution of the equation

Using the properties of the function / we can obtain the following statements:
If c ) äZP, th"n for any strategy B we have

6p(t) > 
, +o, (note that o = lr' 

P" ds I t),

arrd for 0I :0, s € [0, r],
6p.(t):; O,

i.e., 0* is the optimal strategy.
If c < !1P and t 1a or t) b, then the same results hold.
If c< llP andt€(a,ö),then

^,.Pxo
6 p(t) >, 

_ r-----C _;n * cx o.

Let Bi : I(t - ao I s < ,). Then, according to the second statement in the
previous lemma, we obtain

-P ft p,a"
le Jo

1 + P(t - t: 0"d')

""P' [r + P(t - *)1' - tPz(t - *).

* c 
lr' o, d,s.

68.(t)_
1

i

-P [,

t-
'Pro

=

-P

(t-
-P

T

7e

+P
7e

+P

dr)]t

+

idt

PT

,,

p:

n
0/

;)

tt

ol

-
J,

)

fit

*c 
fo' 

u:0,

0r

which completes the proof of the theorem.
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