Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 17, 1992, 23–28

OPTIMAL TRANSMISSION OF GAUSSIAN SIGNALS INVOLVING COST OF FEEDBACK

O.A. Glonti and L.G. Jamburia

Tbilisi I. Javakhishvili State University, Laboratory of Probabilistic-Statistical Methods David Agmashenebeli Avenue 150a, 380012 Tbilisi, Georgia

Methods to analyse the problem of signal transmission through a noiseless feedback channel using the results of nonlinear filtering theory are given in [2]. In [1] we constructed an optimal transmission model for Gaussian signals taking into account the cost of transmission. The aim of this paper is to construct an optimal transmission scheme for a Gaussian signal involving the cost of feedback.

Suppose the transmitted message is a Gaussian random variable θ with $\mathbf{E}\theta = m$ and $\mathbf{E}(\theta - m)^2 = \gamma > 0$, and the transmission of θ is carried out according to the following scheme

(1)
$$d\xi_t = \left\{ \beta_t \left[A_0(t,\xi) + A_1(t,\xi)\theta \right] + (1 - \beta_t) \left[B_0(t) + B_1(t)\theta \right] \right\} dt + dW_t, \\ \xi_0 = 0, \quad t \in [0,T],$$

where $\beta = (\beta_t)_{t \leq T}$ is a $(\mathscr{F}_t^{\xi})_{t \leq T}$ -adapted stochastic process taking two values 0 and 1. Under $\beta_t = 1$ the transmission is with feedback and under $\beta_t = 0$ it is without feedback. Let

$$\delta(t) = \inf_{A_0, A_1, B_0, B_1, \beta, \hat{\theta}} \mathbf{E} \Big[(\theta - \hat{\theta}_t)^2 + c \int_0^t \beta_s \, ds \Big], \qquad c > 0,$$

where c is the cost of the feedback.

Let the following moment conditions

(2)
$$\mathbf{E}\left\{\left[A_0(t,\xi) + A_1(t,\xi)\theta\right]^2 \middle| \mathscr{F}_t^\xi\right\} \le P, \qquad \mathbf{E}\left[B_0(t) + B_1(t)\theta\right]^2 \le P$$

be satisfied, P > 0.

The functionals A_0 , A_1 , B_0 , B_1 , β are supposed to be such that equation (1) has a unique strong solution.

Denote

$$m_t = \mathbf{E}(\theta \mid \mathscr{F}_t^{\xi}), \qquad \gamma_t = \mathbf{E}\left[(\theta - m_t)^2 \mid \mathscr{F}_t^{\xi}\right].$$

The equations for m_t and γ_t are of the following form

(3)
$$dm_{t} = \gamma_{t} [\beta_{t} A_{1}(t,\xi) + (1-\beta_{t})B_{1}(t)] \cdot \\ \cdot \left\{ d\xi_{t} - [\beta_{t} A_{0}(t,\xi) + (1-\beta_{t})B_{0}(t) + (\beta_{t} A_{1}(t,\xi) + (1-\beta_{t})B_{1}(t))m_{t}] dt \right\}, \qquad m_{0} = m,$$

(4)
$$d\gamma_t = -\gamma_t^2 \left[\beta_t A_1(t,\xi) + (1-\beta_t) B_1(t) \right]^2 dt, \qquad \gamma_0 = \gamma.$$

Theorem. Suppose the transmission of a Gaussian variable θ is carried out according to scheme (1).

If $c \ge \frac{1}{4}\gamma P$, then the optimal strategy is $\beta_s^* = 0$, $s \in [0, t]$, i.e., transmission without feedback. The optimal coding is $B_1^*(s) = \sqrt{P/\gamma}$, $B_0^*(s) = -m\sqrt{P/\gamma}$, and optimal decoding m_t^* , for given β^* , B_0^* , B_1^* , is determined through (2) and (3). In that case

$$\delta(t) = \frac{\gamma}{1+Pt}.$$

Exactly the same statement is true if $c < \frac{1}{4}\gamma P$ and $t \leq a$ or $t \geq b$ with

$$a = \frac{\gamma P - 2c - \sqrt{\gamma^2 P^2 - 4c\gamma P}}{2cP}, \qquad b = \frac{\gamma P - 2c + \sqrt{\gamma^2 P^2 - 4c\gamma P}}{2cP}$$

If $c < \frac{1}{4}\gamma P$ and $t \in (a, b)$, then the optimal strategy has the form $\beta_s^* = I(t - x_0 \le s \le t)$, where x_0 is the unique solution of the equation

$$ce^{Px}\left[1+P(t-x)\right]^2 = \gamma P^2(t-x)$$

in the interval (0,t).

The optimal coding rules are determined as follows:

$$B_1^*(s) = \sqrt{\frac{P}{\gamma}}, \qquad B_0^*(s) = -m\sqrt{\frac{P}{\gamma}},$$
$$A_1^*(s,\xi) = \sqrt{\frac{P}{\gamma}} \exp\left\{\frac{P}{2}\int_0^s \beta_u^* du\right\} \left[1 + \gamma \int_0^s (1 - \beta_u^*) \left(B_1^*(u)\right)^2 \exp\left\{-P \int_0^u \beta_r^* dr\right\} du\right],$$
$$A_0^*(t,\xi) = -A_1^*(t,\xi)m_t^*,$$

where m_t^* and γ_t^* are determined through equations (3) and (4). In this case

$$\delta(t) = \frac{\gamma e^{-Px_0}}{1 + P(t - x_0)} + cx_0.$$

To prove this theorem we need the following lemma.

Lemma. Let $\beta = (\beta_t)_{t \ge 0}$ be a real function with values in [0,1] and let P be a positive constant. Then the following inequality is valid

$$\int_{0}^{t} e^{-P \int_{0}^{s} \beta_{u} du} ds \leq t - \int_{0}^{t} \beta_{s} ds + \frac{1}{P} \left(1 - e^{-P \int_{0}^{t} \beta_{s} ds} \right)$$

If β has the form $\beta_s = I(u \le s \le t)$, $u \in [0, t]$, then the inequality reduces into an equality.

Proof. Let $\int_0^t \beta_s \, ds = v$ and $\beta_s^* = I(t - v \le s \le t)$. Then $\int_0^t \beta_s^* \, ds = v$. Let us first show that

$$\int_0^{\mathfrak{s}} \beta_u^* \, du \le \int_0^{\mathfrak{s}} \beta_u \, du$$

for any $s \in [0, 1]$. This inequality is evident for s < t - v. Assume that for some $t_1 \ge t - v$ an inverse inequality occurs. Then

$$v = \int_0^t \beta_u^* \, du = \int_0^{t_1} \beta_u^* \, du + \int_{t_1}^t \beta_u^* \, du > \int_0^{t_1} \beta_u \, du + \int_{t_1}^t \beta_u \, du = \int_0^t \beta_u \, du,$$

which is not true. Thus,

$$\int_0^t e^{-P\int_0^s \beta_u du} ds \le \int_0^t e^{-P\int_0^s \beta_u^* du} ds$$

One can easily see that

$$\int_0^t e^{-P \int_0^s \beta_u^* du} ds = t - v + \frac{1}{P} (1 - e^{-Pv}),$$

and since $v = \int_0^t \beta_s \, ds$, we obtain the required inequality.

The validity of the second assertion of the lemma follows by a direct verification.

Proof of the theorem. For fixed coding functionals A_0 , A_1 , B_0 , B_1 and strategy β the optimal decoding is m_t . Hence,

$$\delta(t) = \inf_{A_0, A_1, B_0, B_1, \beta} \mathbf{E} \Big[\gamma_t + c \int_0^t \beta_s \, ds \Big].$$

We construct first the optimal coding functionals for a fixed strategy β . Rewrite the moment condition in the following form

(5)
$$\left[A_0(t,\xi) + A_1(t,\xi)m_t\right]^2 + \gamma_t A_1^2(t,\xi) \le P, \qquad \left[B_0(t) + B_1(t)m\right]^2 + \gamma B_1^2(t) \le P.$$

The equation for γ_t can be written in the form

$$\gamma_t = \gamma \exp\Big\{-\int_0^t \beta_s \gamma_s A_1^2(s,\xi)\,ds - \int_0^t (1-\beta_s) \gamma_s B_1^2(s)\,ds\Big\}.$$

From (5) it follows that $\gamma_t A_1^2(t,\xi) \leq P$. Therefore,

(6)
$$\gamma_t \ge \gamma \exp\Big\{-P\int_0^t \beta_s \, ds - \int_0^t (1-\beta_s)B_1^2(s) \, ds\Big\}.$$

If we choose $A_1^*(t,\xi) = \sqrt{P/\gamma_t^*}$, where γ_t^* is a solution of (4) for a given functional A_1^* and a fixed B_1 , then the inequality reduces into an equality. Hence A_1^* is the optimal coding. The moment condition is satisfied for $A_0^*(t,\xi) = -A_1^*(t,\xi)m_t^*$, where m_t^* is a solution of (3) for given A_0^* , A_1^* , γ_t^* . If we solve the equation (4) for $A_1^*(t,\xi) = \sqrt{P/\gamma_t^*}$, we obtain

$$\gamma_t^* = \frac{\gamma e^{-P \int_0^t \beta_s ds}}{1 + \gamma \int_0^t (1 - \beta_s) B_1^2(s) e^{-P \int_0^s \beta_u du} ds},$$

and therefore the optimal coding has the form

$$A_{1}^{*}(t,\xi) = \sqrt{\frac{P}{\gamma}} e^{P/2 \int_{0}^{t} \beta_{s} ds} \Big[1 + \gamma \int_{0}^{t} (1 - \beta_{s}) B_{1}^{2}(s) e^{-P \int_{0}^{s} \beta_{u} du} ds \Big].$$

Thus

$$\delta(t) = \inf_{B_0, B_1, \beta} \mathbf{E} \left[\frac{\gamma e^{-P \int_0^t \beta_s \, ds}}{1 + \gamma \int_0^t (1 - \beta_s) B_1^2(s) e^{-P \int_0^s \beta_u \, du} \, ds} + c \int_0^t \beta_s \, ds \right].$$

If follows from (5) that $B_1^2(t) \leq P/\gamma$. If we choose $B_1^*(t) = \sqrt{P/\gamma}$ and $B_0^*(t) = -m\sqrt{P/\gamma}$, then the condition (5) is fulfilled and

$$\delta(t) = \inf_{\beta} \mathbf{E} \left[\frac{\gamma e^{-P \int_0^t \beta_s ds}}{1 + P \int_0^t (1 - \beta_s) e^{-P \int_0^s \beta_u du} ds} + c \int_0^t \beta_s ds \right].$$

Thus, for a fixed strategy β , our construction gives the optimal coding functionals and the optimal decoding.

Now we construct the optimal strategy. It can be easily shown that

$$\delta(t) = \inf_{\beta} \mathbf{E} \left[\frac{\gamma}{1 + P e^{P \int_0^t \beta_s ds} \int_0^t e^{-P \int_0^s \beta_u du} ds} + c \int_0^t \beta_s ds \right].$$

We denote the expression in the brackets by $\delta_{\beta}(t)$. Using the inequality from the previous lemma we obtain

$$\delta_{\beta}(t) \geq \frac{\gamma e^{-P \int_0^t \beta_s ds}}{1 + P(t - \int_0^t \beta_s ds)} + c \int_0^t \beta_s ds.$$

Consider the function

$$f(x) = \frac{\gamma e^{-Px}}{1+P(t-x)} + cx, \qquad x \in [0,t].$$

The properties of the derivatives of this function easily show that this function increases for all $x \in [0,1]$, if $c \ge \frac{1}{4}\gamma P$ and therefore $f(x) \ge f(0) = \gamma/(1+Pt)$. If $c < \gamma P/4$ and $t \notin (a,b)$, where the numbers a and b have been defined in the enunciation of the theorem, then again $f(x) \ge \gamma/(1+Pt)$, $x \in [0,t]$. If $c < \frac{1}{4}\gamma P$ and $t \in (a,b)$, then f'(x) < 0 for $x \in [0,x_0)$ and f'(x) > 0 for $x \in (x_0,t]$, i.e., $f(x) \ge f(x_0)$, $x \in [0,t]$, where x_0 is the unique solution of the equation

$$ce^{Px} [1 + P(t - x)]^2 = \gamma P^2(t - x).$$

Using the properties of the function f we can obtain the following statements: If $c \geq \frac{1}{4}\gamma P$, then for any strategy β we have

$$\delta_{\beta}(t) \ge \frac{\gamma}{1+Pt}, \qquad (\text{note that } 0 \le \int_{0}^{t} \beta_{s} \, ds \le t),$$

and for $\beta_s^* = 0, \ s \in [0, t],$

$$\delta_{\beta^*}(t) = \frac{\gamma}{1+Pt},$$

i.e., β^* is the optimal strategy.

If $c < \frac{1}{4}\gamma P$ and $t \le a$ or $t \ge b$, then the same results hold. If $c < \frac{1}{4}\gamma P$ and $t \in (a, b)$, then

$$\delta_{\beta}(t) \geq \frac{\gamma e^{Px_0}}{1 + P(t - x_0)} + cx_0.$$

Let $\beta_s^* = I(t - x_0 \le s \le t)$. Then, according to the second statement in the previous lemma, we obtain

$$\delta_{\beta^*}(t) = \frac{\gamma e^{-P \int_0^t \beta_s^* ds}}{1 + P(t - \int_0^t \beta_s^* ds)} + c \int_0^t \beta_s^* ds$$
$$= \frac{\gamma e^{-Px_0}}{1 + P(t - x_0)} + cx_0,$$

which completes the proof of the theorem.

References

- GLONTI, O.A., and L.G. JAMBURIA: On the optimal transmission of signals involving the cost for transmission. - Fifth International Vilnius Conference on Probability Theory and Mathematical Statistics, Abstracts of Communications III, Vilnius, 1989, 142– 143 (Russian).
- [2] LIPTSER, R.SH., and A.N. SHIRYAEV: Statistics of random processes I-II. Springer-Verlag, New York, 1977/1978 (English translation).