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ON QUASI.SCORE PROCESSES

A.A. Gushchin
Steklov Mathematical Institute, Vavilov Street 42, 117966 Moscow GSP-1, Russia

Abstract. In this paper we consider some aspects of quasi-likelihood methods used in
estimation of parameters of stochastic processes.

1. Let Pe be the distribution of a,n observed stochastic process or, more gen-
erally, let (Ps,O e @ g Re) be a family of probability measures on a measurable
space (O, ,9) with a filtration (%r,,t ) 0), and let O be an open subset of R,&.
In what follows we do not suppose that our model is fully specified. This means
that, if we know the true value 0 of the parameter, we do not know exactly the
measure Ps arLd we carl only say that Pe belongs to some family 96 of probability
measures on (Q,9).

Let us present some typical examples. Examples 2 and 4 are especially im-
portant. Examples 1 and 3 are particular cases of Examples 2 and 4, respectively.
They are presented in order to illustrate the main ideas in a simple framework.

Example 1. We observe a stochastic sequence (Xn,n 21) of the form

(1) X, - ?Xn-L * €nt Xo - 0,

where 0 e @ q Rl , en are independent random variables with zero mean and
finite variance o2 (the distribution of e,, may depend on n and g). Here O :
{(rr,...srnt...),nn € R'i, 9r: o{Xn,n < t}, I : Yr%r, 9s corrsists
of all possible distributions of the sequence (X") satisfying (1) under the above
assumptions on the distribution of the sequence (e,n).

Example 2. We observe a d-dimensional stochastic process X : (Xtr, > 0)
of the form

f "(0) 
d\, * mt!),

where ()1) is a real, increasing, right-continuous, predictable process with lo : 0,
(/r(r)) is a d-dimensional predictable process, and (rn1(d)) is a d-dimensional
Iocally square integrable martingale with nzs(d) : 0 and the quadratic character-
istic (rn(d)) ,: ti a"(0)d),", where (""(A)) is a predictable process with values in
the space of symmetric, non-negative definite d x d matrices. Predictability and
the martingale property are considered with respect to the filtration generated by
X. In the present case O, 9, (9r) arld 9s are constructed as in Example 1.

Xt : lr'
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Example 3. We observe a diffusion-type process X : (Xr,t ) 0) of the

d,X1: a1(0;X,Y)dt + dwt, Xo : 0,

where W is aWiener process, the process Y is also observable, but its distribution
is unknown.

Analogously, we can consider a counting process X with the intensity depend-
ing on 0 and another observable process Y, see Greenwood and Wefelmeyer [8].

Example 4. We observe a d-dimensional semimartingale X with a triplet
(A@),C(0),u(0)) of predictable characteristics. The family 9s consists of all
solutions to the corresponding martingale problem. More formally: a filtered space

(Q,.q,(%r,t ) 0)) , " d-dimensional cadlag adapted process X on (O, 9,(9r)) ,

a triplet (A@),C(0),u(0)), 0 e @ g R& (u candidate for the characteristics of
X, see Jacod and Shiryaev [15, III-2-3]) and an initial condition Pe,o,0 € O, on
(Q,9o) are given. Then 9e:9(90,X I Pe,o;B(0),C(0),"(0)), see Definition
III-2-4 in Jacod and Shiryaev [15].

2. Let us describe a general method of parameter estimation in the present

setting. We follow, in many respects, the paper of Godambe and Heyde [7]. This
method includes the standard methods of estimation: maximum likelihood, least-
squa,res, etc., under mild regularity conditions.

Let G : Gt(0;ur) be an R&-valued function of three arguments: observation
o € O (we will omit this argument in what follows), time t ) 0, and parameter
0 e @. It is supposed that, for every fixed d, the process G(0) : (Gr(0),t > 0) is
a &-dimensional locally square integrable martingale with respect to each measure
P6 from 96 , a,nd Go(O) : 0 for each d. The function G is usually called an es-

timating function or an estimating process. The estimator 61 corresponding to G
is the solution of the estimating equation G{0) : 0 (the terms ' M -estimator' or
'martingale estimator' are often used for such estimators). The problems of consis-
tency and asymptotic normality of M-estimators as well as some other estimators
were considered, in particular, in the series of papers of Chitashvili, Lazrieva and
Toronjadze in a rather general scheme, see Lazrieva, Toronjadze arrd Chitasvili
[2- ] and references given there.

Here we want to compare estimators corresponding to different estimating
processes. Let lc : 1 for simplicity. Suppose, for each 0, the process G(0) :
(Gt(0),, > 0) (a dot stands for differentiation with respect to 0) is a special
semimartingale with respect to every Pe € 9e with a canonical decomposition

G'(0) - Mc,r(0) *Gr(0),,

where Mc(0) is a Pa -local martingale and G(0) is predictable with finite variation.
(It should be noted that the processes Mc(0), G(0) (and (G(d)) later) may
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depend, generally speaking, on the choice of Pp in the class 9s , so our notation
is slightly ambiguous.) Then, under rather broad assumptions,
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(2) (cr q>;'/'Gr(o)G, - o) -) n(0, 1)

_rt

G;(0)

@'
if the class E is large enough, there exists a process A € E

Gr(o)- -(cf q,,ee)),

in law under Ps as t -) oo.
The asymptotic criterion of optimality of estimating processes proposed by

Godambe and Heyde [7] is based on (2). Let I be a class of estimating processes
satisfying (2) for each d and Pa e 9e . Then a process G is optim al in g if. it
maximizes the limit of the expression

for all t ) 0, G e 9, 0 e @ and Ps e 9e. (Nothing changes if we multiply e,
or the right-hand side of (a), by any non-zero constant, but it is more convenient
to take this constant to be -1.) Then the process Q maximizes the ratio (B) for
every fixed f because of the Kunita-Watanabe inequality

(3)

But typically,
such that

(4)

(5)

at fixed t (E,
gale, G(0) is a
Moreover,

Gr(o), :
(cr0)),

(ct o),e(E>:
(ct 0)),

Thus, the estimator corresponding to the process Q is optimal in the sense of (2).
Another a so-called fixed sample optimality criterion, going back to the paper

of Godambe [6], is also considered by Godambe and Heyde [7]. They suggest
maximizing

(n'c,Q))'
EeG'(0)'

stands for the expectation under Pe). But if Mc(O) is a martin-
square integrable martingale under Pe and (4) is fulfilled for Q .

EeGr(0) - WGr(0)- -Ea(Ct 0), Q(0)) r,

r,eGr(o)' - E6(cf il)r,



32

and
(DeGrQ))'
EeGr(0)' Br( G(o)),

by the Kunita-Watanabe inequality. Thus, a process Q satisfying ( ) is optimal
in the sense of the fixed sample criterion as well.

Instead of (2) rve can also consider another type of asymptotic behaviour of
an estimator:

(E, Gt(o)')-Ltz (p, Gt(q)@ - q 
-, 

tr(o, 1)

in law under Pe as t + oo. It is usually valid for ergodic models, under more
restrictive assumptions than (2). Here we are interested in maximizing the expres-

sion (5) as well.
It should be noted that another asymptotic behaviour of M-estimators (even

maximum likelihood estimators) than the one stated in (2) and (6) is possible, see

the review of Barndorff-Nielsen and Sorensen [1]. The argument showing that the
process Q satisfying (a) is optimal does not lead to the desired result in this case.

In the multi-parameter case ( & > 1) we use the following result instead of
(2)'

in law under Pe as f -» oo. Here

(c(o)), : ((Gi(o), Gi@)lui,i 3 k) ,

Gt(0) : (0G ;,t(0) I 00 i,i, j ! k),

@(a) is defined as in the one-dimensional case, and ? stands for transposition.
Analogously to the case & = 1, if there exists Q e g such that

(4.) G,(0): -(c@),Q@)'>,

forall ,>0, Ge9,0e O ardPec-- 9s,therl

ct(0)r (c@));'c,(0) s-Q,Q), (QQ)>;'Q,@) : (Q(a)),

(here (G(g),Q@)')r: ((Gi(0),Qi@))r,,i,i s k) and A ( B means that the
matrix B - A is non-negative definite). Thus, the process Q satisfying (4*) max-
imizes (in the sense of the partial ordering indicated above) the matrix expression
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(Er(ct o),Q(o)),)'

(6)

(2. )

and

(3. ) G,(o)'(ct o));'G,@)
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for all t ) 0, and Q is optimal in the class I in the sense of the limiting behaviour
(2-) of the estimator corresponding to it. In the same way it can also be proved
that Q maximizes the expression

(5. )

(7)

3. Here we shall confine our attention on the relations (4) and (4*). Estima-
tors corresponding to estimating processes will not be considered.

Let I be a class of estimating processes G for which the process G(e) is
well-defined for all d e O. A process Q e g will be called an optimal estimating
process or a quasi-score process if it satisfies (a) ( /c : t ) or (4.) ( k > 1 ) (see a
justification later on for the second term). How can the optimal estimating process
be found?

It is clear that, to prove (4*), it suffices to check (4) for every component G;
of the function G : (Gt,...,G*)r and for every direction d;, I < j ( &. So we
shall consider the case O e RI only.

Let us first assume that the class 96 contains only one measure Pp for each 0.
Then under certain differentiability (with respect to 0) conditions on the family
(P6) the score process V(d) : (Vr(0),, > 0) can be defined as the derivative
(with respect to d) of the logarithm of the likelihood ratio process or by using
some other differentiability concepts (for example, see the definition of local (in
time) differentiability of the family (Pe) in Jacod [13]). It was noticed by Feigin

[5] that the score process V(d) is a P6-local martingale. We suppose here that
I/(d) is a Pe-Iocally square integrable martingale. A remarkable fact is that under
certain regularity conditions on the elements of I

Gr(o) -
forall ,>0, Ge9,

The argum"rrt, io verify this are easy. Let P be a probability measure such
that PEs, K Ple, for all t ) 0, 0 e @, and let Z(0) 

= 
(ZrQ),, > 0) be the

density process of P6 with respect to P. Then V1(d) : Zt(0)lZt(d). Since G(d)
is a Pp-local martingale (G(0) e .(rc.(Pe)) we have G(0)Z(0) € .,fi".(P). This
relation implies G@)Z(0) + C(0)Z(0) e .z/$".(P). Dividing the latter process
by Z@) we get G(0) + G(0)V(0) e ft".(P6) (in particular, if G(6) : 1 we see

rhat V(0) e .21""(Ps)). So the predictable process with finite variation G(0) +
(C@),V@)) is, by the definitions of the processes G(d) and (C@),V(O)>, also a
Pa-local martingale. Hence, it is equal to zero identically.

Now let us proceed to the general case. Fix a mapping r: 0 ---+ Pe € 9e (for
instance, in Example t fix a distribution of "the error" e" ). If this mapping is
smooth enough the score process V"(0) can be defined and

(n, Gr(o))' (p, Gr(o)Gt(q,) (e ,,Gt(g)).

-(ct o),v(g)),

- (ct o),,v" (o)) ,G,(0)-
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the optimal
known that

Vr" (o) - dG,(d) + tr"(q,

where the Pa-locally square integrable martingale V"(0) is "orthogonal" to the
process G(0), i.e., (C@),'t"@)> = 0. According to (7),

0, G € 8,, 0 € O.
estimating process
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This fact is very important not only for finding
but also for other reasons. For example, it is well-

t:
d(G(o),v "(d)) 

"
d(G(o)),

(ct o),v"(q>?

v{(0) - - lr'
a^nd the first term on the right-hand side is "the projection" of the process V"(0)
on "the stable subspace" generated by G(d), see Jacod [12]. This "projection"
does not depend on the mapping zr (but it may depend ot Ps together with A(r)
ana (C(a)) ). Moreover, by the Kunita-Watanabe inequality

(8) (v"(d))r >
Gr(o),:@.)f

(ct e)),

This inequality gives a lower bound for the Fisher information which is, in fact,
the expectation of the left-hand side of (8). As mentioned above, the right-hand
side of (8) is maximal in the class I if G is the optimal estimating process. This
inequality is connected with the Cram6r-Rao inequality, see Gushchin [9].

Now, suppose the optimal estimating process Q exists. BV (a) and (7) we
then get

(c(a), v"(o) - e(p)) : o

for all G e I . Thus, the optimal estimating process Q(d), provided it exists,
is "the projection" (for any fixed d) of the process V"(0) on the set 9(0) :
{CQ),G e 9}. More formally: let 9*(Ps) be the smallest subspace in the
space .rilfo.(P6) of P6-locally square integrable martingales which is stable under
stochastic integration and contains 9@), then the projection of. Vn(0) on 9.(Ps)
is well-defined, it belongsto 9(0) and coincides with Q(0).

Thus, the optimal estimating process, provided it exists, can be found as

follows: choose a mapping r: 0 --+ Pe such that (7) is valid, then Q(0) can be
obtained as the projection of V"(0) or 9*(P6). Of course, one needs to prove
independently that the found projection satisfies (4).

It should be noted that, typicallS the mapping 7r carr be chosen in such a
way that the process V"(0) already belongs to 9(0).

The above arguments explain the use of the term 'quasi-score process' with
respect to Q. The term 'quasi-score function' has been usually used for concrete
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estimating functions in particular cases, while the property (a) or (4*) has been
used (explicitly or implicitly) to prove the optimality of the quasi-likelihood func-
tion in some or other sense, see Thavaneswaran and Thompson [17], Hutton and
Nelson [11], Godambe and Heyde [7], Sorensen [16], Jacod [14].

Example 1 (continued). Let

E -{" , G,(o): 
å 

ck(o)(xr - oXx-,)(

where ck(O) is a function of (Xr, . . ., X*-1 ) . Here

nrL

G "(0) - » ö1,(0)e 1, - » ck(0) X r,-1,
Ic-l k-l

G,(o)_ - i ck(o)x/c-lr
lc:1

:å ck(o)r-) 
)

lr' 
a"( o)f 

"(o) 
d^, ( : lr' o,( o) dm"(r)) 

)

and
-nt-

Q"@) : i LX*-,(X* - oX*-r)
Ic: I

is the quasi-score process. The corresponding quasi-likelihood estimator coincides
with the least squares estimator. The quasi-score process coincides with the score
process if the errors have a Gaussian distribution.

Example 2 (continued). It is natural to take

a, ( 0) dx,

where o(d) is a predictable process with values in the space of å x d matrices such
that G(0) and G(0) are well-defined. Here

E -{" : Gt(o)

G,(o)- - lr' 
o,(o)i,(o) d^,,,

and it is easy to see that the quasi-score process is defined by

- 1,,

(e) QrQ) -t:: 
IO,

j,@)'",t e) dx, i,(q' o;t e)f ,(o) d^,,

see Hutton and Nelson [11]. The quasi-score process coincides with the score
process if, for example, Å1 : I and (*r@)) is a standard Wiener process.



36 A.A. Gush chin

Example 3 (continued). Let

n : {" , Gr(o): 
lo' 

o"@;x,Y)dx" - Io' 
o"rr,x,Y)a"(o;x,Y)ds

(: lr' a"(o;x,vlaw")\

where a(0;X,Y) is a predictable process such that G(g) and GQ) "r"
defined. Here the quasi-score proces

firt
Qr@): 

Jo 
u"(trx,Y)dx" - Jo 

u"(trx,Y)a"(o;x,Y)ds

coincides with the score process if Y is a deterministic process.

Example 4 (continued). Let

well-

* : {" : Gt(o): 
fo' 

o"(0)dx:(o) * 
lr',1 *Q;r)(r.t -,e11d" d,)},

where X" is the continuous martingale part of. X, trl is the random measure

associated with the jumps of X, a(0) and 1(0) are predictable functions such

that G(d) and G(0) are well-defined. The form of the quasi-score function was

indicated by S6rensen [16] if X is quasi-left continuous and by Jacod [14] for the
general case. The quasi-score function is of the same form as the score function in
the situation when the corresponding martingale problem has a unique solution,
and the density process and the score process can be computed.

S6rensen [L6] gave some examples showing that quasi-likelihood estimators
based on the Hutton-Nelson quasi-score process (9) can be unsatisfactory in com-
parison with maximum likelihood estimators. This can be easily explained. In
Example 2, if the distribution of the error term (*r@)) is known, the correspond-
ing score process cannot be in the class I as defined in Example 2. In this case

the maximum likelihood estimator has better properties than the quasi-likelihood
one. On the other hand, if the distribution of the error term is unspecified (as in
Example 1 where we only know the first two moments of the distribution of. en)
we cannot use the class I as defined in Example 4 since the estimating function
from this class can depend not only on 0 but also on the distribution of errors.
In this situation the function Q defined by (9) is the best possible. It should
be noted that additional information about the distribution of errors allows us to
enlarge the class of estimating functions and to improve the quality of estimation,
see, e.g., Heyde [10].

Finally, we note that Chitashvili, Lazrieva and Toronjadze [4] recently con-
sidered a,nother approach to the problem discussed here in a scheme generalizing
the partial likelihood scheme.
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4. In conclusion let us note that the modern martingale theory makes it
possible to formulate rather weak conditions for the validity of the property (7)
and the properties (a) and (4.) in particular cases. Jacod [14; Proposition 3.17 and
the proof of Theorem 3.19] proved (4-) in the situation of Example 4. The equality
(7) is proved in the sarne paper [14; Theorem 2.31 and the proof of Theorem 3.5],
provided the existence of a process Y with bounded jumps such that for each d

Y is a P6-semimartingale with canonical decomposition

G(0) e 21.@t), H(0) is a predictable process with finite variation. The as-

sumption that Y has bounded jumps was weakened by Gushchin [9, Theorem 2].
Analogously, the conditions in Proposition 3.17 in Jacod [14] can be weakened. It
should be noted that Theorem 2 in Gushchin [9] can be generalized to estimat-
ing processes not necessarily restricted by the relation (10). These results will be
published elsewhere.
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[1]

12)

t3l

l4l

t5l

t6l

t7l

t8I

tel

Y-G(o)+H(o),
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