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O. Introduction

Rigorous proofs of the convergence of the simulated annealing process in the
original formulation have only been given in the case of a finite state space. In
Geman and Hwang [5] the idea of a stochastic search of a minimlun was cast in
the form of solving a stochastic differential equation describing diffusion, together
with a proof of the weak convergence of the process. Kushner [11] and others
study generalizations of the process considered in [5].

The aim of this paper is to generalize the definition of the stochastic process
corresponding to the original simulated annealing algorithm to the case of an ar-
bitrary state space and study the weak convergence of the process. The results
are expressed in terms of the generating distributions and the sequence of suc-
cessive temperature parameters. At the same time we obtain estimates for the
(Dobrushin) coefrcient of ergodicity for an nth iterate of some important kinds
of generating distributions. These estimates are also of independent interest.

For most of the results the proofs are only sketched here. For full proofs
see [6].

1. Generalization of the discrete simulated annealing

We recall the discrete simulated annealing algorithm. The simulated anneal-
ing process is a time-inhomogeneous Markov chain on the configuration space
9 : {L,2,...,N}, generated by N x N-matrices Q and g. Here Q is a given
(transition) probability matrix, the generat ing distribution. The name derives
from the fact that Qi; gives the probability of testing the state j after the current
state i. The acceptance probability g controls the acceptance of new states for
the process. In the original simulated annealing algorithm q is specified according
to the Boltzmann statistics

( 1.1) q?i - min { t, .-(/u) - t(»l /r" 
}
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where 7, is the temperature pa.rameter at the nth step of the process.

The nth step transition probabilities P1] are given by

Pfr: 
{ DNt ikt

In other words, the process moves from i t" i (i I i) atter testing and accepting
j, or otherways stays at i.

For the purposes of generalization we rewrite (1.2) in an equivalent form:

Q 
'iQ?i,1- Dn*,

ifi+j,
if i - j.

Pfr: Q;iqii * 6;i » Q;x(t - qfi,).
k

The very idea behind the simulated annealing algorithm shows clearly how to
generalize (1.3) to the case of a non-discrete state space I ar,.d a measurable
bounded /: replace Q with a transition probability function, g;1 with a function
given by an expression similar to (1.1) and the Kronecker delta with a characteristic
function so that one writes

Q@,, dr)q'(*, r) d, * xe(*) IrQ@ 
,, dr) (1 - qn (*,, a)) d,

( 1.2)

( 1.3)

(1.5)

: 
l^(1.4) Pn (* , A)

where a€9 and Ac9.
In the sequel we study the convergence of the Markov process associated with

(1.4) allowirL1 I to be completely arbitrary. More specifically let I : (9,d,m)
be a state space, i.e. m is a probability measure on a o-algebra .d C P(9) of
the set 9. By L : L(9) we denote the set of all probability measures on the
space (9,d). The norm llpll of a measure pr is always the total variation norm.
We denote by Op(9) the set of all transition probability functions (t.p.f's) on
the space (9 , L). The function to be minimized (the energy function) can be any
bounded measurable mapping f : I -- R. For the sake of convenience we assume
that the absolute minimum of / will always be scaled to zero, this does not affect
the process

A function f : I -. R is called an energy function if it is .o/-measurable,
positive, bounded and if, in addition, ess.inf.rEs f : 0. We denote by M f : {u; €
9 I f@) : 0) the minimum sef of / and bv A/ the maximum variation of /:
Lf : sup,,t€e /(ar). Given the energy function /, the formula

qT(x , u) - e åmin {o '/( L) - tQ)}

defines lhe acceptance probability function 8r: I x I ---+ R. Here T > 0 is the
t emp er at ure p ar amet er.

Clearly the set My and the function g? are measurable,0 { qr ( 1. Note
that the set M1 may well be empty.

The equality of the conditions given in the following definition is apparent.
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Deffnition I-.1. We call a t.p.f Q e Op(9) symmetric, if the measures

Q@,du)m(dr) and Q@,da)m(d.r) on the product space S x I coincide. In
other words: for every Ar,Az € .cy' one has

ff
J o,*@")Q@, 

Ar) : 
J o,m(dr)Q@, 

A1).

Examples of symmetric t.p.f's axe e.g. operators of the form Q(c, d-) : g(r,u)'
.*(dr), where g is symmetric. A symmetric t.p.f can be seen as a generalization
of a symmetric matrix in a discrete state space. A symmetric t.p.f Q e Op(9) is
called a generating distribution.

Suppose that (P;)p, is a sequence of t.p.f's on the space (.9,.d) and po e
L(9) is a given initial distribution For our purposes the sequence (P;)p, and
the distribution ps together define a discrete time inåomogeneous Markov process
with the state space I , since we a,re interested only in the distributions p,; of
random variables X; . For the successive distributions one writes pi : l.Li-tPi.
We will use the notation

p(m,k) : Pm+tPm*2...P*

so that one also h* lro : p,*p(*'k). Often we simply identify a Markov process
and the corresponding sequence (P,)ieN of t.p.f's with the understanding that the
process depends on the initial distribution.

We are now able to define the general simulated annealing process.

Deffnition L.2. Let / be an energy function defined in state space
(9,d,*), (Q;);eN a sequence of generating distributions, (fi)lerv a sequence
of temperature parameters, for which

A simulated annealingprocess is the nonhomogeneous Markov process (P;);eN in
the state space (9,.d,*), defined by

P;(a, A) : [ . Q,1*, tu) qr, (r,,') d,, + x A(n) l rQ 
n {r, dw) (t - q7, (a, u)) d,w

JA
where a €. .9 , A e .d , *d Xa is the characteristic function of A.

Routine verifications show that t.p.f's P; are well defined. The symmetry of
Q implies that the Bolzman distribution is an equilibrium distribution for Pl. BV
considering separately the cases /(") S f (r), f (r) 2 /(r) it is easy to see that the
'detailed balance equation' 

"-IG)lrq(x,c,;) 
: 

"-f@)l'rq(w,r) 
holds. Using this

and the symmetry of Q it is easy to see that the operator 4 has the equilibrium
distribution zr;,

r;(d,u) : C;e- f (') lT; m(4w),,( 1.6)

where Ci is the normalization constant, Ci: (lre-f@)lr'*@.))-' > 0.



42 Heikki Haario and Eero Saksman

2. The behaviour of the sequence (o")7=,
In the case of a continuous state space it is no more possible to prove con-

vergence results along the lines of [a] a.nd [1] since their method relies on the
convergence of the sequence DE, ll", -ri+t ll. For that reason this section con-
tains a more careful study on the properties of the equilibrium distributions.

In Theorem 2.2 we estimate the distance between two equilibrium distribu-
tions which correspond to different values of temperature. The estimate plays a
fundamental role in later considerations. In order to be able to state the theorem
we first define a quantity which describes the behaviour of an energy function /
in state spa,ce (9,.d,*) near its absolute minima.

We recall the definition of the distribution function )y of /: for o € R one
writes

(2.1) )y(r) : *{,l f (,) S *}.
Note that ,\1 is increasing, ).y@) :0 for r < 0, Å1(r) ) 0 for r > 0, and
Å1(c) : 1 for c > A/. Thus )y is also the distribution function of a probability
measure Åy@,r) concentrated on the interval [0, A/].

Deffnition 2.1. We denote by gt the Laplace transform of the measure
\y@x) and call it the steepness indicator of the energy function /. In other
words, for every z €C

(2.2)

Theorern 2.2. Let f
given as in (1.6) and let T*
is valid:

erQ)- t e
Jn

be an energy

(2.4)

lln, -o,-r ll : lrlurr,)/r- (e1e/7,))-' - "t!)/r--t (4g1r*-r))-'l-(ar;,
and estimate the integrand as follows:

l"- 
t t,t l r" (g r G l r))-t - "t 

t,) / r- - L (-g rO l T,_ r )) 
-' 

I

: ll,'::: ,*('- 
r(')'(er(')) -') o'l

= I,',::: ,(er(,)) 
-2e-t(du {r@)st(,)l +

(2.3) » .lln, - 7t;-1 ll s 2 los (#B)
i-k*l

Proof. Because of the logarithmic form of the estimate (2.3) it is clearly
enough to consider the case la : n - 7. First we note that it follows from the
definitions rhar [, s-f @)lr*1dw) : -qGlT). We may now write

ls,' (") l) du,.
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Substituting the estimate in (2.4), using tre-I@)lrf@)m(d,o;) : -9r'OlT)
and the fact that / ) 0 we get (2.3).

To state conditions for weak ergodicity, we recall (Dobrushin [3]) the concept
of coefficient of ergodicity. Let P e Op(9 ). The coeffi,cient of ergodicity of. P ,
denoted by 6(P), is defined as

6(P) -

Clearly 0 S 6(P) ( 1. In the case 6(P) < 1 the mapping P is a contraction
on the space Ä in the metric defined Uy ll. ll. From the definition it easily follows
that (cf. [e])

6(a P2' ' ' Pn) S

that in general one cannot ensure
For completeness, we include the
Theorem 2.2, Lemma 2.3 and [9,

sup llPP - 'lrll
Å,p€4,\*p llf - PII

tI
i:L

(-i ^rtr,)i:k

6(P,).

The following result (c.f. [10, Theorem 1]) follows rather easily from the definitions:
The nonhomogeneous Markov process (fi);eru is weakly ergodic if there exists an
increasing sequence (n;) of positive integers for which DE, [t - 6(P("i'"i+r))] :
@.

Simple estimates prove a useful lemma:

Lemma 2.3. Consider a simulated annealing process as in Definition L.2.
Write P: P*Px+t...Pn and Q:QxQ*+t...Q", where 1< & < n. Then

1-6(P))exp (r - 6(Q)) .

In the case *(M f) - 0 it is easy to prove
that the annealing process converges in norm.
following theorem, which can be proved using
Theorem 2.L):

Theorem 2.4. Let (Pr)=, be a simulated annealing process. Suppose that
*(Mt) > 0 and the following conditions åold: there exists an increasing sequence
of indices (ri)ieiv andanumber0< d< l sucå thatforevery i 21 tåe following
conditions are satisfi.ed:

(i)

(ii) »;:l:+1 a r+ 
- oo.

annealirg process (P, )f converges
with "(A) - m(Afi Mt)l*(Mr).

i,-
i:1

Then the simulated
limit distribution rr ,

in the norm and åas the
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As a corollary, we obtain a basic result, familiar for discrete simulated anneal-
ingprocess: Suppose that rn(My) > 0. If.6(Q;palQik+2...Q«;+rl*) ( 6 < 1 for
all i € .lf , then the simulated annealing process is strongly ergodic with the limit
distribution zr, provided Ti > k§f llog(f 1 2). We remark that the conditions for
convergence in the discrete case have been carefully analyzed, cf. e.g. [2] and [7].

3. The weak convergence of the simulated annealing process

The starting point of this section is Theorem 3.1, which states that even in
the case m(Mt): 0 we have lim;*." llp, - rill : 0 under suitable conditions.
The weak convergence of the process is thus reduced to the weak convergence of
the equilibrium distributions.

Theorem 3.L. Let (P;)E, be a simulated anneiling process. Suppose that
the following conditions hold: there exist seguences (r, )ne, and (ri )ie ry of indices
and a number 0 < d ( 1 sucå that (n;);Ey is increasing and limi-oo i - ri -
oo : limi-oo r;. Suppose aJso that the following three conditions are satisfied:

(i)

(ii )

(iii')

lim
k*oo

-Snr+1 ,1f 1

e L5:nj*t-r Ti : OO,

k

»
i:rx

(iii) 
_151

Then liml*"" ll Ft - ?r'i ll - 0.

9yQlTn,*)
1I.

?yQlTn*+r)

Proof. (i) and (ii) are the conditions for weak ergodicity. In contrast to the
earlier cases, we no more have DE, ll"r - 7rd+l ll < *. However, it is still possible
to verify that llp; - zr;ll is small by writing it as a sum of appropriate terms
including sums of the form Dlqoy ll"r - Ti+t ll , which can be controlled by suitable
r(&) using Theorem 2.2.

Theorem 3.1 is perhaps not too transparent. To express it in terms of more
concrete conditions, we may state the result e.g. in the following form: Suppose
that 6(Q;"..tQ;"+2...Q1i1r;") <d< l forall i > l andsome s ) 1. Then
lim,*-lltr"- z'"ll :0, provided that there exists e €]0,1[ such that for f 21
one of the following two conditions is satisfied

,r, (1 +e)sLf'' l"s(i+2) '



Weak convergence of the simulated annealing process

-' log(i +2)
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(iii" )

Again, we meet the logarithmic rule, familiar from the discrete case' An-
other consequence is the following, expressing a basic demand for a stochastic
minimization algorithm:

Corollary 3.2. Suppose that the conditions of Theorcm 3.1 are fulfrlled and

e > 0. Then
< s) - 1.

Proof. Using the explicit formula (1.6) we easily see that lim,-oo r"{w I f (u)
> 

") 
:0. This observation together with Theorem 3.1 imply the claim.

We next give examples on weak convergence of the Metropolis process. For
that end we suppose for the last part of this section that the state space I
has a -Efausdorfftopology I and the o-algebra d is generated by the open sets

tl e 0. We denote the weak convergence (which is defined exactly as in the case

of a metric space) by l";-+). Suppose that the conditions of Theorem 3.1 are
fulfilled. Suppose in addition that rn --+zr, where r e L(9). Then obviously

Hn -"+r '

Example 1. Suppose that the assumptions of Theorem 3.L are satisfied for
the simulated annealing process (P;)E, . Suppose also that / achieves its absolute
minimum at oo € 9. Then Fi-6+6,o.

The example generalizes the situation where a continuous function on a com-
pact subset of R" acquires its absolute minimum in one point only. Here we do
not require any regularity of the function /, consequently we have to be more spe-
cific: we say that an energy function f acquires its absolute minimum at xs € ,9 ,

if for every neighbourhood B of rs there exists e > 0 such that

*({,1/(,) Se}\a) :s.

Evidently it is now enough to verify the following: for every neighbourhood B of
os w€ have limi-oo n';(B) : 1.

Example 2. Suppose that the state space I of asimulated annealing process
(4)8, is a compact subset of R" equipped with inherited topologg and lel m
be the normalized restriction of the Lebesgue measure ot ,9 ; we assume also that
I has interior points. The energy function / is assumed to be continuous and
Ml : {*trrr,...,nr}, where all the si are interior points of 9. Suppose also
that for each i € {1,...,r} we have

f (*) xix, I n(r - r i),
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where g;:R r+ R is homogeneous of degree o; ) 0. We may assume that

6(Q;"+tQ;"+2...Q(;+rl,) <d< l forall i > l andsome s ) 1. Supposealso
that there exists e e]0,1[ such that for i 2 1 either one of the conditions (iii')
and (iii") is valid or that

los(i +2) ,-;
Then p;n+r , for

T;1
l̂l;-il-cl2l

q

7t - » Dj6,,.
j:L

The coeffi.cients D i have a representation of the form

D1: uj j - 1,.
»l: t 1)i'

with
,i : *({v € R" lgi(y) S i}), i :1,...,e.

Remark. We may .pply the above theorem to the case where / is twice
continuously differentiable in some neighbourhood of the set My : {rr ...,frr}
with positive definite Hessian matrixes in My. Then it is easily seen that the
coeffi.cients Di are inversely proportional to the square roots of the Hessian de-

terminants at corresponding points xi. In the case when M1 consists of lower
dimensional manifolds the convergence of the sequence 7ri may be ascertained by
assuming / to be smooth enough (c.f. [8]).

The final example shows that the weak convergence of the sequence p; does

not necessarily follow if / is only assumed to be continuous-even if cooling is log-
arithmic and the generating distributions Q; behave well. Note that the example
furnishes a,n counterexample where M1 consists only of two interior points of L
Thus the non-existence of the weak limit is not due to non-tightness or irregular
boundary behaviour.

Example 3. Suppose that I : [0,1] and rn is the Lebesque measure
restricted on I . There exists a continuous energy function f: I *+ [0, oo[ such
that My: {å,f }, but the sequence zr; is not weakly convergent for the choice
T; : C llog(i a 2), C > 0 being arbitrary.

We point out that under suitable extra conditions it is possible to get rid of the
asumption that the generating distributions are symmetric. The considerations
become more difficult, but still one obtains similar theorems. We also believe
that it should be possible to obtain more delicate conditions for convergence,
comparable to those presented for the discrete case (cf. eg. [7], [2]); evidently the
assumption on general state space makes the proofs much more difficult even for
partial results.

t8t
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4. Estimates for 6(Q')

In the enunciation of Theorems 2.4 and 3.1 we face the following condition:

(4.1)

The question arises: what is the connection between the n; and the properties
of Qi in (a.1). If we assume, loosely speaking, that the sequence Q; is slowly
narying, we may assume in (a.1) that Q,r,-p1 x Qn;+z § ...A, Qr,*r. Thus we
restrict ourselves to the study of the condition

which we shall encounter in this section. It is to be noted that, regardless of
the simulated annealing process, the estimates obtained for 6(Q') are of certain
independent interest.

Certainly the most important type of a continuous state space is a bounded
subset of R";usually I is a parallelepiped. In this case the generating distribu-
tions Q;, used in practice, typically have the form

(4.2)

(4.3)

(4.4) r ^/ (width of p)-2 ,

Q;(r,A)- pi(A-*),

where pl; does not depend on r. Naturally (4.3) does not necessarily make sense
if c is near the boundary 0,9 , so that (4.3) must be supplemented by a condition
which states that the boundary 09 is reflecting. This simply means that if the
chosen new point lies out of I , it is carried back by suitable reflections with
respect to the hyperplanes which determine the boundary 09.

The main results of this section are Theorems 4.2 and 4.3. Theorem 4.2
estimates 6(Q') for general p. Theorem 4.3 states, roughly speaking, that for
@.2) to hold r must be chosen asymptotically as

in the case that pr is an equidistribution or an (approximately) normal distribution
of a given size. Some additional interest for (a.a) comes from the fact that in some
practical implementations 'convergence' of the simulated annealing process would
mean that the 'width' of the distribution p; in (4.3) finally decreases to zero along
with 4.

Now we turn to the details. We choose .9 :10,1]", where n € N. The
measure nz is the usual Lebesgue measure ort ,?. In order to be able to handle
the reflecting boundary, we interpret I as a (topological) subset of. 9", where
9n :fuf22 (this means that the points n,a € R' areindentified it Lr(x-y) e
Z). Addition on the torus is defined in the usual way. We denote 6y g the
carronical surjection 9: R ---+ 9n and by fr the usual Haar measure orr go
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multiplied by 2.. clearly fr.19 : nz. As usual, we denote the family of all the
Borel sets of a topological space X by 9(X).

We observe first that the reflections we need are easy to define on 9": in
fact the mappings R*: 9" - 9o,

Rp: a: (cr, ...,,fin) - (rr r...rfrk-rt-&krfrk+tt,.,ron) lc:lr...rn

and all their possible combinations together comprise all the reflections with re-
spect to the boundary of. I that are needed to bring any point r e 9" ir,lto I .

We denote by l?;, i, : n* 1,.. .,2n, the different combinations of the reflections
E;, other than .81, ...,Rn In total the set {r?;}?lr consist of the mappings

x : (atr. . . ,,frn) r-+ (*o1, *tzr.. . , *or,), x €. 9"

where the signs are chosen in all possible ways. Write ,So :]0, L[". It is clear that
we may write

2n

(4.5) 9n:!R,{S')+S,,
i=1

where ! stands for disjoint union and .9r is a subset of. 9" with the property
ft(Sr):0.

Deffnition 4.1. We denote by /t"(9") the probability measures p on 9n
which are absolutely continuous with respect to fiä and remain inva.riant under
the basic reflections:

p(RlA)) : p(A), i:7,...,D, Ae g(9").

From the above definition it readily follows that each p € l\" remains invariant
under all the reflections R;, i : 7, . . . ,2n .

Given a-rry p e L"(9") we may define a transition probability Q r or I as

follows:
2n

(4.6) eu@,,A):» p(a;(t)-r),
i=1

where r e I and A e g(9). The verification that Qr is a transition probability
is straightforward using (4.5) and the fact p, < fr. It is not difficult to show
that Q u is symmetric, and thus a generating distribution of the type outlined in
the beginning of this section: Qu@,.) is the measure pr centered at o with the
overlapping part reflected.

A small computation, using definition (4.6) and the properties of the re-
flections Ei, provides us with the result that for pr,ltz e L"(9") one has

Q urQ,r, : Q pr*t , Pr * Pz standing for the convolution on 9n .

Theorem 4.2 below shows that considering I as a subset of 9" leads us to
useful estimates for 6(Qr, Q r, . . .Q rr).
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Theorem 4.2. Let us denote by ap the bth Fourier-coefficient of the measure
p e I.s(9"); ox : Isr"p(d")exp(-rik.a), k e 2". Denote (1,0,0,...,0) :
e1€Zn.LetreZ+.Then

(4.7) (»
k+0

k ezn

*ez+
lorI")'''

Proof. The upper estimate is obtained by showing that 6(Qu) < llp -
2-"fr,11s" and estimating the right hand side by Hölder's inequality and Par-
seval's formula. The lower estimate is obtained by establishing

26(Q)2ilfi,o --ll 2 iloz*",|.

Here ps : 6oQ p, 66 being the Dirac delta measure at 0.

Suppose next that p e Ä(R"). In a natural way p defines a measure p on
9" via the canonical surjection 9: Rn ---+ 9n;

rr@) : p(g-'@)).

We call fi, e L(9") the retarded distribution corresponding to the distribution
p e Å(R") (actually we need the concept of the retarded distribution only in order
to define the normal distribution on ,9").

The following theorem involves the most important types of generating dis-
tributions.

Theorem 4.3.
a) Let d e]0,1[. Let p, € A(R") be the norma] distribution with zero mea^n

and cova^riance matrix o2 I, o > O. Then there exist consta.nts C1(d,n),
C2(d,n) > 0 sucå tåat

6((Qt)') S d,

b) Let d €10, 1[. Let p € A(R")
Ir;l 3 e, i_ 1,.. .rn! , where
C!2@,n) > 0 sucä that

C{d,n)o-' and

Cz(d, n)o-' .

if
if

be the equidistri bution on

€ €]0 ,,*1. Then there exist
the set A, - {r I

constants Ci(d,n) ,

6((Q r,)') s d,

A proof is obtained by .pplying

if r>Ci(d,n)u-'and
if S Ci(d,n)t-' .

the previous theorem. We skip the details.
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Remark. Since e and o measure the width of the generating distribution, the
results obtained above give rise to formula (4.4). Also, suppose that I : [0,1]"
and Q; : Q r, where p is as in Theorem 4.3.a, otherwise we make the same

assumptions as in Example 3.1.. Then an appropriate condition for the temperature
sequence is

Teozlog(k+2)> C,

(together with condition (iii") of Section 3) where

C_
tf Icoth-t1zt lzn) + 1]

7r2

The main content of the above formulae is that they describe the relation of the
width o and an appropriate choice of the temperature sequence (?6).
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