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Abstract. The non-linear autoregression

Un+r = Un - b .sign(U") * m * €,,

where f, is a white noise, emerges both in delta modulation and in sigma-delta modulation, see

[6, 10, 31]. We prove the existence of a unique invariant measure and some ergodic properties, and
discuss a time continuous approximation of the process.

1. Introduction

The technique of digitization of waveforms (signal or source compression)
Ieads in several situations to consideration of certain nonlinear stochastic difference
equations, see [2, 12, 16]. In (single-loop) sigma-delta modulation (see [10, 31])
and in (ideal) deltamodulation (see e.g. [6, 10]) an important role is played by
the first order nonlinear autoregression

(1) Un*t: Un-Q(U")+ m*€n,,

where e* is a white noise sequence and

n-0,1,

(2) Q@) '- b. sign(")
( b if,

\-a ir
u>0
u(0,

with ö > 0, i.e. Q(u) is a one-bit quantizer characteristic.
An interesting development of an approximate time continuous model for (1)

is given by P.W. Wong and R.M. Gray in [31] with a Gaussian white noise (,.
Their time continuous model is a Brownian motion with a drift considered (and
modified) in the intervals between certain stopping times. In the present paper
the properties of the process ?/ : {Un I n : 0, L,...} in (1) are surveyed as a
real valued, discrete time Markov process. The aspects of the theory of Markov
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processes required for this are found e.g. in 120, 21,25], see also [26]. we shall

briefly discuss another time continuous model, a stochastic differential equation

based on the drift function of (1) when the noise (,, is Gaussian.

In time series analysis the type of processes determined by (t) is regarded as

one of the so-called S0TA&(1)-processes, where SETARQ) stands for 'self-excited
threshold autoregressive of first order'. In our case there is one threshold, i.e. the

origin. Results on SE?1{R(1)-processes closely resembling (t) are found e.g. in

[1, 13, 24,22,30]. A comprehensive account of the theory of and the statistical
modeling by nonlinear autoregressions is the monograph by H. Tong [27].

The paper is organized as follows. In Section 2 the states of the process

Q/ xe classified in terms of the theory in [19, 28, 29], i.e. it is shown under
certain assumptions on the density of the noise (,., see Assumption 2.1, that Q/

is aperiodic and g-irreducible. A condition for stationarity, which is central in
the theory of delta and sigma-delta modulators, is derived and stated in (6). In
Section 3 the existence of a unique invariant measure and some ergodic properties

are established evoking stochastic Lyapunov functions (mean drift conditions).
In Section 4 a stochastic differential equation related to (i) by a mean square

convergence argument is discussed. Further results on this topic are found in

[16, 18]. The main proofs are given in the Appendix. The subsequent work [17]
will contain a more detailed probabilistic analysis of sigma-delta modulation, in
particular, of binary quantizer error.

2. Some elementary properties and classiftcation of states

Assume for the moment that % - {tl" I

Then the mean value function is a constant
from (1)

n - 0, 1,...) is a stationary process.

P : E(U"+r) - E(tl"), and hence

(3)

since we are, by
mean zeto. since

(4)

yields

(5) fY(u">o) -(b+m)l2b
\e(u,so)-(b-rn)lzb

-m)

convention (..f. [11, p. 197]), assuming that a white noise has

the quantizer characteristic in (2) can be written as

Q@)-zbr(u>0)-b,

is the indicator function of the positive real line, equation (3)

E(q(u"))

For this to make sense we must assume that l-l < ä' The equality lrnl : å is
clearly impossible, when the assumption E((") : 0 is imposed, unless the process
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is constant. Excluding the trivial process Un : Uo we have a necessary condition
for stationarity,

(6)

(e)

For the conclusion in (6) we assumed just the existence of the (zero) mean for the
distribution of the (,r's. We need to add some more restrictive hypotheses.

Assumption 2.1. The random variables (, have for each n : 0,1,. . ., ä
density function fg(a) such that
1./e(r))0foralla€R,
2. fe@) is continuous for aJI a € R,
3. E(€") :0,
4. E((3) :: o2 < q.

The continuity assumption2.L.2 is actually needed for the first time in the proof
of Proposition 3.1. From the assumed white noise property of the sequence €n we
have that Q/ is Markov with the sfafe space R,, and from (1) it follows that the
n - step (temporally homogeneous) transition probability

(7)

can be expressed as

(8)

P'("; A) :- P"(Un e A lUo - u)

where .A is a Borel set of the real line. In other words the n -step transition
density, p"@ | u), of the process Q/ exists, and for all o and u

pn(xl")>0.

P' (u; A) : 
l^pn(r I ,) d*,

p rr-l n-2 n-Z
(11) p*@ ld : J*__,fe(. -"+ » e@) -n.m-»,,) fl /e(,,)a,,,

In order to briefly motivate this we iterate (1) obtaining

n-l n-2
(10) Un:u-l0fAl *n.m+»€r*(,_r,

i=0 i=0

where Uo: u. In view of the assumption that (6,(r,... ,€n-2,€,-r are indepen-
dent and identically distributed with the density f e@), it follows that
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which entails (9) under Assumption 2.L.L. (L (11) the
for any given sequence ni using the rule (1), us - u).

Some significant technical properties of the process

by the results in [29J or [19, 20,28J. In fact, due to (8)
every u e R

sequence u; is computed

% follow readily from (9)
and (9) we have that for

( 12)

(13)

z-nP'@;A) > 0i
n:L

if. g@) > 0, where g denotes the Lebesgue-measure. Equation (12) recapitulates
one of many similar definitions of. g-irreducibility, see [19, 28,291.In our case any
of them is easily verified. This means that every set in .R with positive Lebesgue-
measure is attainable by the process Q/ from any u € .R. Furtherrnore, (9) implies
lhat Q/ is an aperiodic process, see [20, p.20-21], i.e. there are no cyclical subsets
in the state space. For convenience of reference we collect these observations in
the next lemma:

Lemma 2.1. Under Assumption 2.1.L the process % in (1) is g-ineducible
and aperiodic, g standing for the Lebesgue measure.

Prcof. See e.g. [20, p. 11] or [28, p. 7a1].

3. Existence and uniqueness of the invariant measure,
ergodic properties

3.1. The mean drift condition. Ergodic and recurrence properties of a
Markov process are often conveniently established, if one can verify a set of mean
drift conditions (also known as Foster's conditions) for the given process, see [4,
L9,26,28,291.

Mean drift conditions: There exist a non-negative function V(.), a com-
pact set K g .R, and a number k ) 0, such that

whereKcisthecomp1ementofK,andforsomefixedB>

(14)

for all u € K.
The function I/(.)
We show next that

( 15)

is also sometimes called
the function

V (*) :: t2

a stochastic Lyapunov function.



has
(1)

( 16)

where E((3 ) - oz ,

Setting

iVonJin ear aut oregression

the properties required in (13)
with (15) we have

E(y(un+) lu"-
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and (14) under the condition (6). In fact, using

u)-v(")-2uE( - e(u")+(" lu"-
+ E((- Q(U") + m * €*)' I

12u(m-Q@))+4(b2*m2

u) * Zum

(Jn - u)

* o2),

( 17)

we have, in view

( 18)

by Assumption 2.1.4.

p(") :- 2u(* - Q@)) + 4(b2 * m2 * o'),

of (6), that

s(") I - oo l"l 1 f oo.

This means that the set K in the mean drift conditions above can be taken as K :
{l"l <.Rs} for a sufficiently large Eo. These observations verify the requirements
(13)-(14) and will be used in the proof of existence of a unique invariant measure,
see Proposition 3.1.

3.2.
denoted by

( 1e)

An invariant measure,

for any Borel set .4.

Proposition 3.1-. Suppose the density of the white noise fq satisfres the
conditions in Assumption 2,1 . Then there exists a unique invariant measure r for
the process Ql defined in (1) if and only if (6) åolds.

The proof of this proposition is given in Appendix.
In terms of the classification of Markov processes introduced in [29], we say

that the process Ql is a positively recurrent process. From the existence of an
invariant measure together with aperiodicity and g-irreducibility we obtain the
following results.

Proposition 3.2. The process Q/ is metrically transitive, if Us is distributed
according to the inva,riant measure zr(.).

Invariant measure: ergodic properties.
Tr ) is a (probability) measure satisfying

n(A): l*" @*)P' (*; A),
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Proof. We show first that the invariant measure is equivalent to the Lebesgue
measure p. By definition (19) and bV (8) we have

r(A): I^(l.o,ru lo),r(d0)) p@y)

since Fubini's theorem applies to the kernel pr(v I c). Hence z'(.) is absolutely
continuous with respect to the Lebesgue measure.

Conversely, it 9@) > 0, then Pt(r,.4) > 0 bv (g). Thus, (19) entails that

"(A) > 0. Hence we have established the asserted equivalence between p(') *d
"(.).Suppose now that A is an invariant set in the sense that

(20) P'(r,A): t for almost all c € A and r(A) 10.
Hence, for almost all x e A

Pt(r, A") : 0,

which in its turn implies "(A):0, since P'(r,.), p(.) and r'(.) are equivalent
measures. Thus zr(A):1, and any invariant set has z'(.)-measure 1 or 0. This
establishes the assertion as claimed.

The definition of an invariant set and that of metrical transitivity invoked in
(20) can be translated into the identically named concepts in ergodic theory, see [9,
p. 207-208] or [23, p. 42] and vice versa, as shown in [25, p. 95-97]. In fact, for any
transition probability Pt(.; .) and invariant measure ,(.), r probability measure
P, can be constructed on the space of all real valued sequences with nonnegative
indices, denoted by Rz+, so that P, is invariant under the shift transformation
on that space. Next we prove an ergodic theorem using these remarks.

Proposition 3.3. For ill u e R and aJl real valued functions r!(.), integrable
w.r.t. the invariarfi measure r , we have

(21) ,rrl* # å'hQ;) - l:'h@)' ( d*),

where Uo : u, and the convergence holds for every u.

Proof. Let us consider x: (r0,rr,...), a generic element of the sequence
space Rz+ referred to above. Let, furthermore, r be the shift transformation,i.e.
r(x) : (*r,*r,. . .). Let also rp(x) :: ,0 . Then we can take ,lr(Ut): {(p(rn(X))) ,

where ri denotes the ith successive application of the shift transformation. We
know, by Proposition 3.2 and by the argument preceding the proposition under
consideration, that r is ergodic. Hence the ergodic theorem, see e.g. [23, p. 441or

[25, Corollary 5, p.44], implies (21) for almost every u. Using the equivalence of
g and zr, established in the proof of Proposition 3.2, we obtain the convergence
in (21) for every u.
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Example 3.4 (Decoder in sigma-detta modulation)' The process % in (l)
plays the role of the encoder state in what is known as a (single loop) sigma-

delta modulator, see [8, ].0, 31]. The actual output (i.e. the encoded or quantized

sequence) ir {8(U") | n : 0,1,... }. The decoder output, denoted by yn, of the
sigma-delta modulator is given by

1

An:- F
N-1

» e(u"-i)
i:0

The number .nf is known as the
concept. In the stationary state
.nf large

(22)

oversampling ratio,
we have by (3) and

UnNm.

see t8] for discussion of this
(21) that for any n and for

Since the second moment of. Q(U"-;) is equal to ä2 and the process ?/ isrnetrically
transitive, the approximate equality in (22) is valid also in mean square, (see [11',
p. 178]). Thus, if the input sequence to the sigma-delta modulator is taken as

(rn + €"), the decoder output converges for higher oversampling ratios .lf to the
dc-Ievel of the input, which is a reasonable property for a quantizer of this type.
There are, however, simpler ways of obtaining (22) than proving a full ergodic
theorem.

4, Remarks on a time continuous model

Rewriting ( 1) as

Un+t-U":-Q(U")+m+€^

makes it natural, at least in the case of a white Gaussian input (r, to consider its
approximation by means of the stochastic differential equation (SDE)

(23) du(t) - -A ("(t)) dt * m . dt * o . dus(t),

where tu(t) is a standard Wiener process. The SDE (23) is known in stochastic
control theory as a 'bang-bang'-feedback system, c.f. [3]. The existence of a strong
solution to (23) is well known and easily established. Techniques for computing
the transition densities of (23) are found in [1a]. A straightforward solution to the
associated stationary Fokker-Planck equation (see [15, p. 23t]) is obtained as
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where p,(u) :: -Q@) * rn denotes the drift function of the SDE in (23). In other
words /"(u) is the invariant density of the process defined in (23). Our attention
to this SDE is additionally justified by the fact that for any t > 0

p{A(u(r)) - -å} - 
(t' : T') [o "fi(a+*1u 

du: (b - m)/2b,'t o2.b J_*"
which agrees with (5).

Finally we outline a justification for the approximation of (1) by the SDE in
(23). We set first

At, :: tn - tn-t,
andfor tn-11t1t

A, :An-r- a'rii"1z,-r)(t - t,-r) + *.(t - t,-r) + o(w(t,)- ur(r,-r)),

where At^ t:An =(Jn. Evidently this defines a time continuous interpolation of
Q/ . Then we have

Proposition 4.L. If Lt" --+ 0 with n -+ {oo , then

E\lrr^-U.l')*0.
Proof. This follows by using Ito's lemma on F(u1" ,A n) ;: (ur. -A n)' , by

certain upper bounds and by Bellman-Gronwall's lemma. The straightforward
details are omitted.

Appendix: Proof of Proposition 3.1

In this Appendix we present a proof of the existence of an invariant measure
i.e. Proposition 3.1. The difficulties posed by the threshold in the quantizer map
Q(.) *" made explicit in this particular proof, c.f. [7].

By [28,Theorern 4.2,, Theorem 4.3] or [19], for a g-irreducible process the
conditions (13)-(14) and the weak continuity or the FbIIer condition would imply
the existence of a unique inraria^nt measure (see (19) above). The weak continuity
condition is formulated as follows.

Feller condition: The function s@) defined by

s(x) :: [ \ilor@ I *)dy
Jn

is a continuous function for every bounded measurable l(.).
In the present case we have, however,

Pr@ lr) -fe?-@-Q@) +*))(24)

and the required continuity need not hold for every /(.) with the assumed prop-
erties. It turns out on the other hand that we are able to prove the following
lemma on figåtness using (13) with V(x) : a2 , and. that this will entail directly
the desired conclusions about the invaria"nt measure.



Nonfinear autoregression in the theory of signal comptession 59

Lemrna A,.L. Let (6) aad Assumptions 2.1.1 . 2.1.3, and 2.1'.4 hold. Then
the rneasures r"(A), defined on the BoreJ sets A C R by

(25) 7r,(A),: * »-" F;(A),
i=0

are tight, where for

(26)

with P'(r; A) defrn
that /å 12 Fo(d*)

Proof. Let us c

(27)

The function p(.) is

the assumption (6),

i : Lr2,...

Fi(A):: l*r,-, ( d,r)P'(, ; A)

ed in (7) and assuming that ^F0 is a distribution functio

onsider the function p(.) defined in (17) as

p(") :- 2u(m - Q@)) + 4Q2 * mz + o').

Iinear for u in either half-axis and it decreases to -oo,
as l"l increases. We set

K:- {l"l S no},

n sucå

under

where .Bo is so large that
sng" c(u) < 0.

In addition we set

(28) -lc :: -/c(no) :: ,sup 
p(u), M :: sup p(u).

Thus, it follows that

r(e(ui) I %) < -r1ao;e(l%l > Eo I %) + Mp(lujlS eo I %).

Rearranging this inequality we obtain

(2e) rlno;e(l4l >80 lUo)< Mp(lujl<Ro l%)-n(p(ui) l%).

It follows from the definition of p(.) (cf. (27)) combined with the inequality (16)
that

-n(B@) I %) < -n{n(v1ui+t) -v(ui) I ui) I u.}(30) \s\ 
: -r,{v(ui+) -v(ui) I %i.
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Summing the inequalities (29)-(30) gives

e(8.)*Er,,r,, > Eo l%) < u -rj(v1u*) l%) +v(uo).

Averaging over .F,6 entails, as \'{e are assuming that E(y(%)) : /: x2Fs(dn) <
fm, that

(81) e(n.)l i r('rr, ;, Eo) < M +E(Y(%)),
";,

since -V(U,) < 0. By the definitions in (25)-(26), as P(lU;l > Eo):4(K"),
\'{e carr rewrite (31) as

(32) rn(K')= 
å (* *E(v(%)),

since /c(.Rs) > 0 by (28). Furtherrnore, by (28) and the properties of the function
n1.;, [(Ro) --+ *oo as -86 becomes larger, whereas M stays constant for increasing
.86. Hence, the inequality (32) indicates that there is a compact set G, like K for
-86, large enough satisfying

""(G))1-e,
for any e > 0 and all n. This establishes the tightness of the sequence rnl as

claimed.

Proof of Proposition 3.L. The necessity of the condition (6) has already been
discussed in Section 2. We shall establish the sufficiency of (6) under the stated
assumptions on /a (.) . The basic outline of the argument is based on and, in fact,
completes a similar proof in [7, p. 831-835].

Let us first define a linear operator T on the space of all the probability
distribution. .F,(.) on .E by

(33) (TF'XA) ,: I r6*yP1(o;A),
Jn

where .4 is a Borel set of R. It follows by (25) and (26) that

(rzr,)(.a) : * I l*r,raoe,@; 
A)

- n-l

(s4) :*P F;+{A)

t3-1 l: : » Ft(A) +:(r"(/) - rä(A))n- ni=0
1: r.(A) + ;(F"(A) - nr,nl).
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Hence we have for aII Borel sets A, not just for continuity sets (a set / is called
a n-continuity set, if its boundary has ?r-measure zero, see e.B. [5, p. 303]), that

(35)

(38)

Next, the condition (6) entails by Lemma A.1 that the measures zr, are tight.
Hence there exists a subsequetce Trnh converging to a probability measure zr in
the sense of weak convergence, denoted by nnr + 7r, or equivalently, for all
r-continuity sets .4

(36) n"r(A) - r(A).

We shall now prove that

(37) (Tn'"rXA) - (tzr)(a)

holds for all Borel sets .4. The difficulty is that r,r 1zr does imply, by any
standard characterization of weak convergence [5, p. 303], that

t(r,,,X/) -Tr',(A)l s *lr"(.t)-r'0(A)l <:.

l**,r (d*)e@) -) l*" @*)p(*)

for any bounded continuous function g. This would be the desired result (37)
provided the choice 9@) :: Pr(o;A), A *y Borel set, would give a continuous
function of u. In the present situation, as already pointed out (see (8), (24)), we
do not have this property.

'We can, however, obtain (38) for g@) :: Pr(rr;,4) by means of the following
argumentation. What we need is the fact that origin, or the threshold of the quan-
tizer in (1), is the only discontinuity of the function 9@) :: Pl(r; A). In order to
be assured of this we have imposed the continuity condition in Assumption 2.1.2.

Let us define for an arbitrary 6 > 0

Ia(*):-{il,r, i3I|x|?3:

The function /o(.) is bounded and continuous) and so is

? o(x) :: Ia(')P' (*; A)'

for an arbitrary Borel set A C R. Next,

(3e) 
I l",rnx@*)P' 

(*; A) - l**,r(d*)po(r)l S TTnx(Ao ),
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where A5 :: { lrl . 6} , and similarly

(40) ll*"foOr'@;A)- l**{a*)oo(,)l s n(Aa).

As in the proof of Proposition 3.2 we see that every F;(.) is actually equivalent to
the Lebesgue-measure g. Hence, every Ttnk has the same property. As p(Aa) : 6 ,
we have for some function E(6) that

r"*(Ae) < E(6),

where 8(6) --+ 0 as 6 J 0. Furthermore, A6 is an open set and the standard
portmanteau theorem, see e.g. [5, p. 303], entails that

"(Aa) < li=+x|,r",(Aa) < E(6).

Hence, for any Borel set .4

By (39) and (40) we obtain an upper bound for the right hand side of (41), yielding

(41)

(42)

(43)

I l",rnx@r)P' 
(*; A) - l*"@*)P'(r;A)l

S 
I I"Trnx@r)P' 

(*;A) - l^,rntc@*)po(r)l

+ 
I I 

",rnx@r)p 

e(r) - I.n(dr)p o(r) 
I

+ 
I l"n(d,r)po(r) - I.n(d,r)P' 

(*;A)1.

On the right hand side of (42) the sum of the two probability terms is smaller than
or equal fo 2E(6). The middle expression can be made arbitrarily small by letting
k become sufficiently large by weak convergence, since (38) holds for po(c). Note
that & and 6 can be treated independently. Hence we have actually proved that

(Tn*-XA) --+ (TzrXA)

for any Borel set A. We know, in addition, that Tn' is a probability measure, which
we denote by p.The inequality (35) entails now that n"r(A) converges to 1t(A)
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for every Borel set A. Hence, we have ror I p by the standard characterization
ofweak convergence used above. Thus the proofof (37) above can be repeated by
using pr instead of zr as the limiting measure in the weak convergence arguments.
This means that both o"r(A) -- p(A) a^nd (Tzr,n*XÅ) - (tp)(a) or, in view
of (35) that p(.4) : (TpXA) for any Borel set .4, which by definition (see (19))
means that there exists an invariant measure. As any rp-irreducible, aperiodic
Markov-process, c.f. Lemma 2.1, has at most one invariant measure, the assertion
about uniqueness follows, finishing the proof.
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ful discussions. This work was done during the author's stay at the Center for
Stochastic Processes at the University of North Carolina at Chapel Hill.
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