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The present paper is devoted to the problem of parameter estimation of the
intensity function Aa of a Poisson process defined on a bounded subset U C Rd ,

d > l. We consider estimators based on n independent observations of this pro-
cess. The minimum distance estimator d| is constructed and its asymptotical
properties are described. Traditionally, in problems of this type one investigates
the asymptotics of the maximum likelihood estimators 0,, which are under regu-
Iarity conditions also consistent, asymptotically normal and have the local asymp-
totic minimax property (LAM). In that case the LAM property means that the
mean risk of the estimator attains the lower bound of Hajek-LeCam (see, for ex-
ample [1], [2], [5]). Recall that this bound is derived under the condition of local
asymptotic normality of the family of measures {P;"),, € o} induced in the space
of all realizations of a Poisson process. For a wide class of loss functions I(.) it
has the following form:

lim tim igf sup F,et(\fnl(00)-,/r(6, - d)) > Er(O,6*0 nloo ö" le-eol<A 
Y \ I

where /(0s) is the Fisherinformation, g{e}:..r1/(0,J), J standingfor the unit
matrix, and the infimum is taken over all the estimat"r ä, b*"d on the first
n observations. Note that the supremum in this inequality is taken over all the
members P["),0 e {0:10 -0ol< 6} of the originalfamily p[d,0 eO.

It is also known that the maximum likelihood estimators usually are not
robust, so if we take the supremum over a class of distributions, then LAM could be
some other estimators. P.W. Millar [6-7] has shown, using the theory of L. LeCam

[4], that for some "natural" neighbourhoods {Pj"), h € N"} of the true distribution
P[? 

"similar 
bound also exists, i.e.,

cToo n*oo An ä€^&"

where g{e} : J/(0,"(00)). The optimal estimators in this sense are not the
maximum likelihood estimators but the so-called minimum distance estimators.
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Our purpose in this article is to apply Millar's result, mentioned above, to the
problem of parameter estimation in the case of a spatial Poisson proce§s.

Without loss of generality we may suppose that the observed Poisson process

is definedon the unit cube [/: [0,t]d. Let 9a standfor the o-algebraof Borel
sets in u a^nd, respectivelS M fot the set of all measures g defined on (u,91)
taking values in the set {0,L,2,,...}. Let t// be the o-algebra of subsets of M
induced by the mappings B --+ g(B), B € 9a. Let A be a given finite measure

defined on (U, 9a),, and (Q, g,P) be the basic probability space. We call a

random element ö(r,.) a Poisson process with intensity A if Ö(r,') is defined on
subsets B e 9a and the random variable ö(r, B), c,r € O, takes values \n (M,.,'il)
and

(A) for any B € 9a the random variable ö(r,B), u.r € O, has a Poisson distri-
bution with parameter Å(B);

(B) for any collection of disjoint sets Bt, ..., B^ e ga, the random variables

ö(.,81), ..., ö(',8*) arc independent.

Let @ be an open subset in .B&. Suppose for every 0 g O a measure A0

on (U, 9a) is defined. Furthermore, suppose that all the measures {Ä6,0 g O}
arecontinuous,i.e.,forevery d e O and f € U onehas A6({t}) : O. Every
measure Å6 corresponds to a Poisson process with intensity Åp. The measure A6

is called a leading measure or intensity because, according to the definition, for
any B e 96 Es$(w,B): 

^p(B).The main problem: it is necessary to estimate the parameter d given n inde-
pendent observations dr , . . ., ön of a Poisson process with intensity A6 . Let 0o

be the true value and p some finite measure oa U , p(U) < m. Let Lz(p) be the
space of all the square integrablefunctions f(t), t € U, with respect to tr"r with a

norm defined by

ll/ll : ( l,t'rrl r@r))'/' .

Let us introduce the empiric measure

Å"(a)- öi@)

and the notation

-n1s
N,Lj:L

L(o,t) - Ao ([0, ,]), L"(t) - A" ([0, ,]), t > o.

estimator (MDE) 0; through the equalityWe then define the minimum distance

llrt o;) - L"ll- llrtq-L"ll ,

and suppose that this equation has a unique solution.
We use the followirg conditions:

inf
0€o



On minimum distance estimation for spatial Poisson proce.sses

Here (.,.)
in Rk.
Moreover,

is positive definite.

We denote by B, the space spanned by the functions rlj(t)
and by n the projection operator from Lr(p) to B,t . We also
for the linear operator from Px to B rt defined by

,r-tf.lr, llL(o) -'(do ) ll > o'

D. Differentiability: the function L(0,.), 0 e O, is diflerentiable in d at the
point 0s in the J'rechet sense in the space Lz(p), i.e., there exists such a
vector-function i(ds, t1 : (Lrpo, t), . . . , L*(Lo,t)) tt "t

llnf q-Leo) - @f0o),(0-dr)) ll -o(te-0ol).

and I ' I stand for the inner product and, respectively, the norm

suppose the matrix

r(0)- Leo,t)L(oo,t)' p(d,t)(Ltoo),L1oo)') = I"

67

-Lj(00,t),te(J,
use the notation T

k

Tr(o)- » ajqj(r),
,:1J-

a € Rk.

As usually, 7-1 will stand for the inverse operator which exists and is continuous
and linear provided the matrix /(0) is nonsingular, i.e., under the assumption just
made.

We also define €,@,t1 : L.O) - L(0,t), and introduce the a.s. continuous
Gaussiarr field W(.) with the following properties: W(0) :0, EsW(t) : Q,,

EeW(t)W(") : L(0,,1 A s). Here f A s is defined as the coordinate-wise minimum
ofthe vectors I and s.

Theorem L. If the conditions I and D are fulfiLfted, then
1) ("(P;) - ("(00) 1 r oW , i.e., the weak convergence in L2(p,) takes place;
2) ,fr.(Oi - 0o) + -T-r o r oW , i.e., the weak convergence in Rk takes place.

Our proof consists of verifying the conditions (3.2), (3.4) and (3.5) of Theo-
rem 3.6 in Millar [7], which we shall carry out below.

The differetce (n(0,t) - €"(00,t) : L(00,t) - L(0,t) is a deterministic func-
tion, so the condition (3.2) follows immediately from our condition I. The same
argument shows that the condition (3.5) coincides with our condition D.
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We denote by I the Skorohod space of real functions on f/, which are left
continuous and possess right-hand limits at every point. The notions "left" and

"right" used here are defined through the semiordering of the points in the unit
cube. Let 9a denote the o-algebra of Borel sets in 9. The ra,ndom process

,=,ne.1l,o,ty= hi tor(f0,4) -r(oo,r)l , te rr,

converges weakly in (9,9a) to the Gaussian process W(t) , t e U . The proof of
this fact is contained, for example, in the proof of Theorem 3 in [3].

From the definition of the operators 7-r a^nd zr it follows that the estimator
0l is asymptotically normal, i.e.,

where

-?eo{'fr,O; - 0o)} + rf (o,o(00)) ,

o(0o) - J(00)-1 AQL)J(oo)

and

A(00) : 
Iulrrrrr,»L@o,t)' 

L(00,t A s) p(d,t) p(d").

To prove the LAM property of the MDE 0; we first introduce a minimax-type
lower bound on the risk function of a^n arbitrary estimator and then show that it
is attained by the risk of the MDE.

We first introduce some additional notation:

A,( h,B)- A oo(B) + +" lroU)Aao @,t),, B € 9a,,

0, B € g!d\,

rh(t): t ä(r)Aao (dr).
J1o,tl

In the definition of äo it is also possible to suppose that the inequality
Ln(h,B) > 0 holds for sufficiently large n.

Define Ln(h,t): A,(t,[0,4). We are interested in the risk of an arbitrary
estimator when the true distribution is not necesarily contained in the original
family Ute,O e O) but in a larger class {4,(h;,t e N"}.

Let us also introduce the following notation: t et f{") be the measure corre-
sponding to the sequence ötr. . . ,ön of Poisson processes of intensity Ä"(h) and
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let Q6 be the measure of the process W(t), t eU, in the space (€(U),$(U))
of continuous functions on U. Introduce the family of measures {Qr,, h e Ho}
through Qn@): Qo(B - rh) for any B e 9a.

The Radon-Nikodym derivatives of this family are given by

ffior: eXP {rut') - + lrh2(t)tts"(d')},

where In(a): [uh(t)c(dt) is a stochastic integral (see, for example, [3]).
In [3] (Theorem 2) we have proved that the finite dimensional distributions of

the process 1ael") 1ae[") , h e ä6 ] converge to the finite dimensional distributions
of the process {dQnldQo,Iz € ffo}.

This implies the convergence of the experimentr {PI"), h e Ho} to the ex-
periment {Qn,h € II0}, as defined by LeCam [4].

We denote by B the closure in L2(p) of the set {rä, h e Ho} and note that
the triplet (r,L2(trs"),B) defines an abstract Wiener space. We introduce the
sequence 0"n by the rule

p[ llr"(n) - L(o)ll: lll"(h) - L(o"n)ll,

i.e., L(0n6,.) is the closest member, in the Lz(p) norm, to the true .L,(ä) in the
family {LQ,.),0 e O}.

Let g(.) be a nonnegative increasingfunction on [0,oo). Suppose the mean
risk of the estimator d, is defined by the formula

Her"Pj") stands for the true distribution of the observations.
Our proof of the following theorem practically coincides with the proof of

Theorem 5.12 in [7].

Theorern 2. Suppose that

I t6fr,lr,, - r-nol) ap[").

ctoo nToo An ngrv. -/

(1)

(2)

g(*) S C exp{-ror}

where g {e} - .,,f/ (0, "p, )) .
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This inequality allows us to define local asymptotic minimax estimators 6,
as the estimators for which one has an equality in (2) for all do e O.

It remains only to prove the following

Theorem 3. The MDE A; is LAM.

Proof. Following [7] we introduce two processes

(f)(0, t): lL^(h,t) - L(oo,t))fr,

€f)e,q: lL"U) - L(oo,t)16.

The conditions I and D are fulfilled for each (li) . Mot"over, both of the processes

l6jl)l and 16[2)l "r" 
bounded in probability. Hence, according to Theorem 3.6 in

[7] the representations

tfr,(o; - f,o)- -T-r o 7r , eY) + ,(1),

,'fr,(onr, - f,o) - -T-L o r " ([') + r(1)

are valid, implying

tfr,(0; - 0*n)- -T-L o 7r " GY) - ([')) + ,(1).

It is proved in [3, Theorem 3] that the difference

€f)@o,r) - (f )(Br, t1 : 1/n(L"$) - L^(h,t)), t € u,

convergesweakly in (9,97) to the process W(t), t e U, uniformly on h € N".
Hence for any sequence hn e N"

,fr.(o;, - o,n) + -T-L o r ow.

Thus, the same statement is true also for the sequence hl defined through the
equality

;å#. / s\f"Pi - e*nl) d,rf,d : | il'frV; - lnhil) d'P[:) .

This gives the LAM property for the MDE 0; for all the bounded uniformly
continuous functions g(.). For functions g(.) with bounded growth rate (cf.(l))
the equality in (2) also holds because the sequence of random variables {g(tfrlei-
0"nll)) is uniformly integrable (see [3, Theorem 3]).
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