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Convergence rates in two-sided law of large numbers for sums ,S, : Xr *. . .*
Xn of, independent identically distributed random variables {Xo,k ) 1} have
been studied in detail by Baum and Katz, Brillinger, Erdös, Hsu and Robbins,
Spitzer, Heyde and Rohatgi, Gafurov, Shirokova and others (see references in [9]).
Necessary and sufficient conditions were obtained for a wide class of normalizing
sequences and rates of decrease of probabilities.

Convergence rates in one-sided law of large numbers were investigated by
Petrov [10], Petrov and Shirokova [11], Chow and Lai [4], Gafurov and Slastnikov
[6] and Amosova [1-3]. But necessary and sufficient conditions are unknown with
two exceptions. Petrov and Shirokova [10] derived necessary and sufficient condi-
tions for the exponential rate of decrease of P(,S, ) ne). Another exception is
due to Erickson [5], it related to the series ![, P(S, > ne)/n.

AII the papers mentioned above deal with centering by zeros (or by nEX1,
in case the mean is finite). We shall study probabilities P(.t, - a,, ) ä,) with
an arbitrary centering sequence of constants {a"}. The only assumption made on
the sequence {r"} is that for every e ) 0

(unless otherwise stated all limits are taken as n -)
choose an:median(Sr). If SrlbnL0,then an-

oo ). In fact, it is possible to

o(b"). Thus, in this case we

can choose an : 0 . Furthermore, if EX1 is finite and (^9,, - nEX) lb", å 0, th"r,
we can choose an : nEXt. Either of these two situations is under investigation in
all the papers mentioned above (with the two exceptions indicated). This allows
us to obtain most of the results mentioned above as corollaries of our results. Part
of them (for the case ö,, : n) are presented in [8] and [7].

We begin from the simplest case å,. : n. Let Z stand for the class of positive
functions /, defined on the set of positive real numbers, satisfying the conditions:
f(r) - 0 as r --+ oo and if {X"} is a sequence of independent rand.om variables
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having a common symmetric distribution satisfying nP(X1> n) - ,(/(")) , then

P(,S, - an ) n): ,(/(")).
It iswellknownthat /(u):at e.t forevery t S0 and f("):iM(x)eL

for the same J and arbitrary non-decreasing, positive, slowly-varying (at infin-
ity) function M(r) (see [9, Chapter 9, Theorem 28 and supplements]). So, the
definition of the class .t includes some information about two-sided convergence

rates.

Theorem l. Let f e f'. Then

(1)

if and only if

P(^9, - an > €n) - o(ff ")) for every e ) 0,

r dF(r) - o(1);

here F(u): P(Xr < r).

Amosova [2] has already earlier derived necessary and sufficient conditions for
(1) under the additional condition ElXll < oo.

Corollary L. Let f e L. If the conditions (2) and

nP (x1 < -nltos(tlf @))) : ,(t)

hold, then (1) åolds.

Now we will study the exponential rate of decrease of the sequence of proba-
bilities P(S" - an ) n).

Theorem 2. The following conditions are equivalent:
(i) Fbr every e>0 thereexist p € (0,1) and C >0 suchthat

(3)

for every sufficiently large n;
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Earlier, Petrov and Shirokova [11] obtained an analogous criterion for P(,S,n >
en) < Cp". They showed that this inequality is true for some p € (0,1.), e > 0,
C > 0 and all n sufficiently large, if and only if Eetx, ( oo for some J > 0. It
is interesting to notice that the result of Petrov and Shirokova is purely one-sided
while Theorem 2 involves information about the left tail of the distribution of X1 .

Next we will study the case br: ntl", 0 ( s 12, s I 1. The situation is
very simple if s ( 1. A traditional although slightly improved technique may be
used in proving the next theorem (which may be known).

TheoremS. Let0 < s < L,t10; M(a), x)0,beanon-increasing,
positive, slowly-varying (at infinity) function and r ) s.

The relation

(4) P(,S, - q,n > €nLls): o("'M(")) for each e > O

holds if and only if
(5) nP(X1 < -nr/") .- O,

nP(X1 > n'/"): o("'U(")).
The relation

oo

I nt'/")-'p(,g, - an > enr/") < x for each e > 0
n=l

åolds if alnd only if the conditions (5) *rd Itr lal"dF(a) ( oo are satjsfied.

In our proof of the theorem we essentially use the fact that "the negative
part" of .9, (i.e., XrI(Xr < 0)+...+XJ(X, < 0)) is negligiblein thefull sum.
However, this is not true when s ) 1.

Theorem 4. Let 1< s < 2, f e L. Therelation

P(,s, - an > enr/"1: o(/(n)) for each e ) 0

holds, if and only if the conditions (5),

(6) nP(X1 , n'1"): o(/("))
and

ot
D@rl" 1bs(tlf@)) : o1r(t/,1-t;

are satisfred. Here D(a) : I!,yrar@) + /_; y d?(y).
Note that condition (5) implies D(*) < m. Thus, D(r) is finite in Theorem 4.
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