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Abstract. The angle between past and future for stationary random fields on the lattice
points of the plane is defined and it is shown that in contrast with other problems related to the
past of random fields the positivity of the angle betweeen past and future is independent of different
pasts which have been considered in the literature. It is shown that the positivity of the angle for
random fields and processes is equivalent with that forming a Schauder basis. Besides this some
analytic characterizations are also provided.

1. Introduction. A problem which has been proved to be useful in the pre-
diction theory of stationary stochastic processes is the idea of the angle between
past and future. Several authors have worked on this area and revealed its con-
nection with the prediction theory of stationary stochastic processes, c.f. Helson
and Szegd (4], Hunt, Muckenhoupt and Wheeden [5], Pousson [11], Sarason [13],
Pourahmadi [10], and Miamee [8].

In this paper we introduce the definition of the angle for a stationary random
field and prove that the crucial properties of the angle in the case of stationary
processes have natural extensions to the case of stationary fields. In contrast to
other problems concerning the past of random fields, we show that the positivity
of the angle between past and future does not depend on the choice of different
kind of pasts considered by different authors in the literature.

After setting up the necessary notation in Section 2 we prove our analytic and
geometric characterization for positivity of the angle in Section 3.

The present paper is essentially based on the report [9]. In fact we reproduce
some of the main results obtained already in [9]. Related results, based on [9],
have been obtained also by Makagon and Salehi [7].

2. Preliminaries. In this section we introduce the notation and terminology
needed in the rest of the paper. Let Xmn, (m,n) € Z2, be a double sequence
of random variables on a probability space (2, %,P) such that EX,,, = 0 and
E|Xmn|?> < o0, for all (m,n) € Z2. The double sequence Xpn, (m,n) € 22,
is called a stationary random field if EX X, depends only on the differences
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m —r and n — s; i.e. EXpnXrs = o(m —r,n —s). In this case the covariance
function g(m,n) = EX,nnXrs is a positive definite function on the group Z?% of
lattice points of plane. It is known (cf. for example Salehi and Scheidt [13]) that
there exists a non-negative measure p, defined on the Borel sets of the torus

T={a:0<a<2r}x{B:0< 8 <2}
such that

(2.1) o(m,n) = /e—i(m“+"ﬂ)dp, for all (m,n) € Z2.

The measure p is called the spectral measure of the stationary random field Xp» .
If u is absolutely continuous with respect to the normalized Lebesgue measure

do — da dp
472

its Radon-Nikodym derivative w is called the spectral density of the field.

By Lf‘ we denote the Hilbert space of all functions on the torus which are
square summable with respect to the measure p. From (2.1) it is clear that the
operator

an N e—i(ma+nﬂ)

extends to an isomorphism from Hx = the closed linear subspace generated by
all X;p'’s, onto Lz. This is called the Kolmogorov isomorphism between the time
domain and spectral domain.

For any subset M of Z2 we define Hx(M) to be the closed linear subspace
of L?(,#,P) = H, spanned by all X,,,,’s with (m,n) € M. The vertical past-
present P} and the vertical future Fy of the field X, is the subspace Hx(S")
and Hx(S?), respectively; where S* = {(m,n): m < 0,n € Z}. (Here and in
what follows by S we denote the complement of a set S C Z2;ie. S =22\S.)

As a measure of the angle between the vertical past-present and future sub-
spaces of the field X,,, we take its vertical-cosine defined by

ok =sup {|(Y,2)|: Y € P}, Z € Fy,|IY]| = 2]l = 1);

and the subspaces Py and F} are said to be at positive angle if o% < 1.

The horizontal past-present subspace P | the horizontal future subspace F)’}
and the horizontal-cosine of the angle between these subspaces o% are defined
similarly. Finally we define

ox = max(o%, o).

For any nonnegative measure on the torus g}, -‘-’Z and g, can be defined in a
similar way. However, if u is the spectral measure of our stationary random field
Xmn , then by the Kolmogorov isomorphism it is evident that o% = o}, oh = gﬁ ,
and ox = gu.
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3. Characterizations for the positivity of the angle. In this section
we present some geometric and analytic properties of stationary random fields
Xmn with ox < 1. This will include the generalizations of some well known
geometric and analytic characterizations for the stationary random processes. Qur
Theorem 3.4 which shows that ox < 1 if and only if X,,, forms a Schauder basis
for its time domain seems to be new even in the case of random processes.

The proof of the following lemma is similar to the corresponding result in the
case of stationary processes (cf. Helson and Szegd [4]) and is therefore omitted.

3.1. Lemma. Let X,,, be a stationary random field, then
(a) o% <1 if and only if there exists a constant N such that

H Z AmnXmn " < 1V|| Z AmnXmn

(m,n)€S (m,n)ez?

)

where {amn} is any double sequence of scalars with finitely many non-zero
elements.

(b) o% < 1 if and only if there exists a constant M such that

| X amnXea|, <M Y amaXonn

(m,n)€SH (m,n)€Z?

)

where {amn} is as in (a).
Now we can prove the following:

3.2. Lemma. Let X, be a stationary random field. Then px < 1 if
and only if there exists a constant K such that for any double sequence as in
Lemma 3.1(a) and any integers mg, my, ng, and n, we have

(3.3) ” 5 3"t X <KH G Xonn|

m=mgy n=ng (m,n)€Z2

Proof. Using Lemma 3.1(a) and considering the fact that our field is stationary
we have

[ 5 5w, <¥] 35 5 aman

m=mg n=-—00 m=—00 N=-—00

< N2“ amnan H
(m,n)€2?

Applying Lemma 3.1(b) in a similar fashion, we get

m n
” Zl 21: AmnXmn H_<_N2M2” Z amnXmn H

m=mgo n=nyg (m,n)€Z2
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To prove the converse take any double sequence {amn} with finitely many
nonzero elements. We know (3.3) is valid for this sequence {amn}. Now taking
my; = 0 and mg, no, n1 large enough one can write (3.3) as

“ Z AmnXmn H < K” Z AmnXmn

(m,n)€S" (m,n)ez?

k]

which by Lemma 3.1 implies p% < 1. Similarly one can get o% < 1 and hence
ox <1.

Next we show the following useful theorem which states that for a stationary
random field X, the property ox < 1 is equivalent to the fact that X, isa
Schauder basis for Hx . Recall that a double sequence ¢, is called a Schauder
basis for a Hilbert space H if for any element Z in H there exists a uniquely
determined set of coefficients ¢mn(Z) such that

Z= Y Y can(Z)cmn

m=—00 N=—00

We should mention here that by the convergence of a double series

m=—0o0 N=—00

to a limit we mean that the double sequence of its partial sums converges to that
limit and by the partial sums we mean the rectangular partial sums, defined by

my ny
miny _
Sone = E E Amn-

m=mgo n=ng

Having Lemma 3.2 proved the proof of the following theorem is a standard
Schauder basis argument and, in particular, can be given similar to the proof given
on pages 102 and 103 of [6], and hence it is omitted.

3.4. Theorem. A stationary random field X,,, is a Schauder basis for Hx
if and only if px < 1.

The following lemma shows that the notion of the positivity of angle is stronger
than some other measures of independence. The lemma is also useful in our proof
of the analytic characterization given in Theorem 3.6.
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3.5. Lemma. Let X,,, be a stationary random field. If px < 1, then

(a) Xmn is horizontally nondeterministic, i.e. NpezHx ({(m,n): m < p,
n€ Z}) = {0},

(b) Xmn is vertically nondeterministic, i.e. NgezHx ({(m,n) : m € Z,n < ¢})
= {0},

(¢) Xmn is strongly nondeterministic, i.e. NpqezHx ({(m,n): m < p,n < ¢})
= {0},

(d) for any two subsets A and B of Z* we have Hx(ANB) = Hx(A)N Hx(B).
Proof. Since proof of (b) and (c) is similar to (a) we just prove (a) and (d).

For the proof of (a) suppose that

Y e ﬂ Hx({(m,n) :m<pneE Z})
pEZ

Then Y € Hx({(m,n) : m < p,n € Z}) for all p € Z. It follows from The-
orem 3.4 that X,,, is a Schauder basis for Hx. Hence {Xmn,m < p,n € Z}
is Schauder basis for Hx ({(m,n): m < p,n € Z}) for each p (cf. the charac-
terization in [6; p. 103]). Thus for each p € Z we have a representation of the

form , -
Y=Y > 8, Xmn

But since these representations for Y must be unique, we conclude that b2, = b2
for all p, ¢, m and n, yielding b%,, = 0. Thus, ¥ = 0, which completes the proof
of (a).

To see (d) take any Y in Hx(A)N Hx(B). Then Y € Hx(A) and Y €
Hx(B) so we have

Y = Z aﬁnan and Y = Z aﬁnan,
(m,n)€A (m,n)€B

since the elements X,,,, (m,n) € A, and Xpmn, (m,n) € B, form a Schauder
basis in the spaces Hx(A) and Hx(B), respectively (cf. [6; p. 102]). Since the
sequence Xmn, (m,n) € Z?, is a Schauder basis in Hx (cf. Theorem 3.4), it
follows from the uniqueness property of the Schauder basis that

at =adB for all (m,n) € Z*.

Especially
ar . =a2 =0 for all (m,n) ¢ AN B,

yielding

Y=Y af Xmn
(m,n)EANB
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Thus, Y € Hx(AN B). This shows that Hx(A)NHx(B) € Hx(AN B), and the
other inclusion is obviously always correct.

We now prove the following generalization of a well-known analytic charac-
terization for the positivity of the angle between past and future for stationary
random processes due to Helson and Szegd [4] and Hunt, Muckenhoupt and Whee-
den [5]. (For the matricial form of this result one can see Pousson [11], Pourahmadi

[10] and Miamee [8].)

3.6. Theorem. Let X,.. be a stationary random field with a spectral
measure p on the torus. Then, px <1 if and only if

(a) u is absolutely continuous with respect to the normalized Lebesgue measure
do = da df/4n?, with spectral density w,
(b) L% C L', where L2 = L2,,, = L2,

wdo
(c) the Fourier series of any f € L% converges to f in the norm of L.

Proof. By Lemma 3.5(c) Xm. is strongly nondeterministic in the sense of
Soltani [14] and hence by Theorem 3.4 in [14] p is absolutely continuous with
respect to the Lebesgue measure and its spectral density w has the log property,
i.e. logw € L'. This shows (a).

To see (b) let I be an operator defined on the polynomials

P= E ampeitmatnh)
(m,n)€Z?

by
I(P) = // agow(a, B) do.

The operator is bounded because
!I(P)l = ‘ //aoow(a,ﬁ)dal = ‘//aoo\/;\/’l;da"

< ([ lmotwio) " ( [[ war)™

Hence by Lemma 3.2 and the Kolmogorov isomorphism we get

1P| < KIPlsg | [[ o

Thus I can be extended to a bounded functional on L?. Hence there exists a
function ¢ in L% such that

I(f)=(f9)ry forall feI?.
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In particular we have I(e‘(m""’"ﬂ)) = (ei(m°+"ﬂ), g)L2 . On the other hand

t(ma+n _ 0, if (m’n) # (070)
I(eftmetn?) = {1, if (m,n) = (0,0).

Thus we have
// e'metnfy(a, B)g(a, B) do = {(1) ig Ezzg 7=é Egg%

which means wg = 1. Hence w™! =g € L2 ; implying L% C L! because for any

he L?,

J[ wide = [[tvaveTas < ( [[ wde)"( [[wao)".

To prove (c), by Lemma 3.2 the operators S,,, defined on the polynomials

Z(m,n)EZ’ am"ei(ma+nﬂ) by

m n
Smn( Z apqei(pa+qﬂ))= Z Z apge’ PP

(r,9)€22 p=—mg=-—n

are bounded, with common bound K. Hence each of the operators S,,, can be
extended to a bounded operator on L2, so that they have the same norm K.
It can be seen that these operators are just the symmetric Fourier partial sum
operators. Letting f € L2, to complete the proof of this part we just have to

show that
Smn(f) — f, in the L? sense.

Given € > 0, we take a polynomial P such that ||f — P||,. <e/(K+1), we then
have “
1Smn(F) = Fllz, < I(Smn = D(F = Pz + 1Sma(P) = Pl
S NSmn = I = PliLz, + 1Smn(P) = P2 -

Thus
€

K+1

Now if we take m and n large enough we get Syn(P) = P, and hence

1Sma(f) = fllzg, < (K +1) 2+ [Sma(P) - Pl -

|Smn(f) — f”L?u <e.
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Now, to prove the other half assume that the conditions (a) (b), and (c) in
the statement of the theorem hold. Then by (b) any function f in L2 belongs to
L! and, as such, has a Fourier series

f~ Z Gpq eilpatap)

(r,9)€Z?

We consider the partial sum operator S™imt: L2 — L2 defined by

mong *

my ny
Sminmi(f) = Z E apge’ Pt

p=—mo g=—no

For any f € L2, we can write

my ny
| el X Y e
v p=—mo g=—no

Hence

mono

E Z ||aquL2'

p=—mg g=—ng

L?”= //wda i i lapg]

p=—mo g=—ng

< (moms +2noms + 1] [ [ wda 1715

Now since L2 C L', Lemma 3.1 of Miamee (8] implies that there exists a con-
stant K such that ||f||;: < K||f||z - This means that all operators S7171 are

mong
bounded. On the other hand, by (c) for each f € L? we have
Smini(£) — f, in L2

mono

Hence by the uniform boundedness principle there exists a constant M such that

mene|| S M, for all mg, my,np,n; > 0.

B2

This means that for any f € L we have

In particular for any polynomial P we have

mgno

Lo < M|fllzz for all mg, mq,n0,n1 2> 0.

“S’mlnl ||L2 < M”P”Lﬁ, , for all mg, my,n9,n; > 0.

mono

But this, up to the Kolmogorov isomorphism, is just (3.3). Hence by Lemma 3.2
we deduce pox < 1.
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3.7. Remark. The proof of Theorem 3.6 shows that w™! € L! and this in
turn means that (cf. for example Salehi and Scheidt [12]) the random field X,,,
with spectral measure dy = w do is minimal, i.e.

Xmn ¢ Hx({(p,q) : (p.q) # (m,n)}).

This in particular implies that X,,, is purely nondeterministic in the Helson—
Lowdenslager sense [2]. Hence we have [[logwdo > —oco. This also shows that
the positivity of angle is stronger than some other measures of independence for
a random field.

The following lemma shows that in sharp contrast to other prediction prob-
lems for random fields the positivity of the angle is independent of the kind of
past one may take, whether it is taken to be the usual half plane [1], the Helson-
Lowdenslager’s half plane [2], [3], or the quarter plane.

3.8. Lemma. If X,,,, isa stationﬂ random field, then px < 1 if and only
if the angle between Hx(U") and Hx(U") as well as the angle between Hx(U™")

and Hx(U") are positive, where
U® = {(m,n) :m<-1l,n¢ Z} u {(O,n) in < -1}

and
U* = {(m,n):me Z,n< -1} U {(m,0): m < —1}.
If this is the case then the angle between Hx(Q) and Hx(Q) is also positive,
where @ is the third quadrant, namely
Q= {(m,n):m < 0,n <0}.

Proof. We break the proof of our lemma into the following steps:

Step 1. The angle between Hx(U”) and Hx(U?) is positive if and only if
there exists a constant N such that

H Z amnXmn = < N|| Z amnXmn "
(m,n)eUv (m,n)€Z2

’

where {amn} is any double sequence of scalars with finitely many non-vanishing
elements. This statement can be proved similar to Lemma 3.1.

Step 2. The angle between Hx(U") and Hx(U?) as well as the angle between
Hx(U") and Hx(U") is positive if and only if there exists a constant L such that

(3.9) | ¥ amnXon| <Z| T amaXomn
(m,n)€R " (mm) €22 H

)
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where {amn} is any double sequence of scalars with finitely many non-vanishing
elements, and the first summation ranges over any generalized rectangle of the
form

—h
n UP1 (%

(3.10) R=U% n, NUp n NUL
where
Unn= {(r,s):rSm—l,se Z} U {(m,s):s <n-1},

and
U,','z’n= {(r,s):r€Z,s <n-1}U{(r,n):r <m-—1}.

The proof of this step is similar to that of Lemma 3.2 and hence it is again
omitted.

Step 3. We note that the generalized rectangles contain all the usual rectan-
gles. Thus to complete the proof of the lemma it suffices to show that ox <1
implies (3.9). To see this we observe that any region R in (3.9), that is any region
R of the form (3.10), can be represented as a disjoint union of at most 5 usual
rectangles, say R;, i = 1,2,3,4,5. Thus we can take the L in Step 2 to be simply
5M . In fact, for any R of the form in (3.9) or (3.10) we can write

-

z amnXmn H < H Z amnXmn H
(m,n)ER =1 (m,n)€ER;
5
< NIH AmnX
S| Y amXu,
=1 (m,n)€Z?
<sM| Y amnXmn
H
(m,n)€Z?
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