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Abstract. The angle between past and future for stationary random fields on the lattice
points of the plane is defined and it is shown that in contrast with other problems related to the
past of random fields the positivity of the angle betweeen past and future is independent of different
pasts which have been considered in the literature. It is shown that the positivity of the angle for
random fields and processes is equivalent with that forming a Schauder basis. Besides this some
analytic characterizations are also provided.

1. Introduction. A problem which has been proved to be useful in the pre-
diction theory of stationary stochastic processes is the idea of the angle between
past and future. Several authors have worked on this area and revealed its con-
nection with the prediction theory of stationary stochastic processes, c.f. Helson
and Szegö [4], Hunt, Muckenhoupt and Wheeden [5], Pousson [1L], Sarason [13],
Pourahmadi [t0], and Miamee [8].

In this paper we introduce the definition of the angle for a stationary random
field and prove that the crucial properties of the angle in the case of stationary
processes have natural extensions to the case of stationary fields. In contrast to
other problems concerning the past of random fields, we show that the positivity
of the a.ngle between past and future does not depend on the choice of different
kind of pasts considered by different authors in the literature.

After setting up the necessary notation in Section 2 we prove our analytic and
geometric characterization for positivity of the angle in Section 3.

The present paper is essentially based on the report [9]. In fact we reproduce
some of the main results obtained already in [9]. Related results, based on [9],
have been obtained also by Makagon and Salehi [7].

2. Preliminaries. In this section we introduce the notation and terminology
needed in the rest of the paper. Let X*n, (*,n) € 22, be a double sequence
of random variables on a probability space (Q,9,P) such that EX*, : 0 and
EIX^"\'( oo, for all (*,n) e 22. The double sequence X*n, (*,n) e 22,,
is called a stationary random field if. E,X*,.Xr" depends only on the differences
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rn-r and n-s; i.e. EX*,X,": p(m-r,fl- s). Inthis casethe covariance

function g(*rn) : F,X*,T." is a positive definite function on the group 22 of.

lattice points of plane. It is known (cf. for example Salehi and Scheidt [13]) that
there exists a non-negative measure p, defined on the Borel sets of the torus

such that

(2.1)

The
If Lt

-i(ma*"P) dp, for all (*,n) € 22 .

'pectral measure of the stationary random field X*n
with respect to the normalized Lebesgue measure

do: da dp

4r2

its Radon-Nikodym derivative to is called the spectral density of the field.
By L'u we denote the Hilbert space of all functions on the torus which are

square summable with respect to the measure p. From (2.1) it is clear that the
operator

Xrnn -) e-i(md+n1)

extends to an isomorphism from I/x : the closed linear subspace generated by
a,ll X*n's, onto I2r. This is called the Kolmogorov isomorpåism between the time
domain and spectral domain.

For any subset M of. 22 we define Hx(M) to be the closed linear subspace
of. L2(Q,grP) : trl, spanned by all X*,'s with (rn, n) e M . The verticil past-
presenf Pft and the vertical fufure Fft of the field X*n is the subspace Hy(S")
and ä;g(St), respectively; where S" : {(m,n): m ( 0,n. € Z}. (Here and in
what followsby 3 we denotethe complement of aset ,S c 22; i.e.5: 22\5.)

As a measure of the angle between the vertical past-present and future sub-
spaces of the field X-," we take its vertical-cosine defined by

ak - sup tlfr, 4liY €

and the subspaces P| and Fft are said to be at positive angle if p! < 1.
The horizontil past-present subspac" P*, the horizonta,l future subspace .(

and the horizontaJ-cosine of the angle between these subspaces p! are defined
similarly. Finally we define

px : mux(pk, ok).

For any nonnegative measure on the torus p[, O[ and Qp car- be defined in a
similar way. However, if p is the spectral measure of our stationary random field
X*r, then by the Kolmogorov isomorphism it is evident that p| : Qotr, ek: O!r,
*d px : Qp.

e(m,n)_ [ "J

measure p is called the s

is absolutely continuous

P*,2 € F*, llrll - llzll - t);
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3. Characterizations for the positivity of the angle. In this section
we present some geometric and analytic properties of stationary random fields
X-,, with gx < 1. This will include the generalizations of some well known
geometric and analytic characterizations for the stationary random processes. Our
Theorem 3.4 which shows that p;6 < 1 if a"nd only if x*n forms a Schauder basis
for its time domain seems to be new even in the case of random processes.

The proof of the following lemma is similar to the corresponding result in the
case of stationary processes (cf. Helson and Szegö [a]) and is therefore omitted.

3.1. Lemma. Let X*n be a stationary random field, then
(u) S1 < 1 if and only if there exists a constant N such that

ll »
(*,n) €.S" (* ,n) e 22

where {or""} is any double seg uence of scalars
elements.

with finitely many non-zero

sucå that

amnXrrrll
IH

amnx* 
llo,

amnx**ll ,IH

nx*"11,

amnx*rll
IHatH

amnx*,*ll
IH

M

»ll » amnx*ll, sull
(*,n) € Sä

where {o*"} is as in (.).

I.[ow we can prove the following:

(*,n) e 22

3.2. Lemma. Let X*, be a stationary random field. Then py < L

and only if there exists a constant K such that for any double sequence as
Lemma 3.1(a) and any integers rrl,s , Tn1 , fts, ?"Dd nr we have

if
in

(3.3)
ll ;,å.

ll p_.,äamn**-llu

ll p^å,

="ll t i ona

< n2r ;":-,:,x*, ll,(*,n) e 22

vz *'ll

(*,n) e 22

Proof. Using Lemma 3.1(a) and considering the fact that our field is stationary
we have

Applyirrg Lemma 3.1(b) in a similar fashion, we get

(*,n) e22
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To prove the converse take any double sequence {o*"} with finitely many

nonzero elements. we know (3.3) is valid for this sequence {a-,.}. Now taking

mt :0 and rno , Tto s TtL large enough one can write (3.3) as

amn**"llrs 
"ll (*,n)e22(*,n)€,S"

Next we show the following useful theorem which states that for a stationary
rarrdom field x-, the property gx < 1 is equivalent to the fact that x-, is a
Schauder basis for äx. Recall that a double sequence c-o is called a Scåauder

basis for a Hilbert space ä if for any element Z in H there exists a uniquely
determined set of coeffi.cients c*"(Z) such that

z -,,ä,ä cmn(z)'*n'

We should mention here that by the convergence of a double series

,ä 
amn

to a limit \,\r'e mean that the double sequence of its partial sums converges to that
limit and by the partial sums we mean the rectangular partial sums, defined by

m! nl

sn:x:;" 
z"o*,.

Having Lemma 3.2 proved the proof of the following theorem is a standard
Schauder basis argument and, in particular, can be given similar to the proof given

on pages 102 and 103 of [6], and hence it is omitted.

3.4. Theorem. A stationary randomfield X*n js a Scåauder basis for Hy
if and only if Qx I L.

The following lemma shows that the notion of the positivity of angle is stronger
than some other measures of independence. The lemma is also useful in our proof
of the analytic characterization given in Theorem 3.6.

a*nx**ll ,,

ak

ä
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3.5. Lemma. Let X*n be a stationary random field. If Qx 1L, then
(u) X*, is horizontally nondeterministic, i.e. ioE2HTs({(-, n): m I p,

nez\)-{0},
(b) X*n is vertically nondeterministic, i,.e.

- t0),
(") X*n is stron gly nondeterministic, i,.e.

: {0},
(d) for any two subsets A and B of 22 we have H x(An B) : H x(A) n Ifx (B) .

Proof. Since proof of (b) and (c) is similar to (a) we just prove (a) and (d).
For the proof of (a) suppose that

f . 0 Hx({(*,n) :m I p,n € Z)).
pez

Then Y e Hx({(*,n): m 1p,, e Z}) for all p e Z. It follows from The-
orem 3.4 that X-, is a Schauder basis for Hy. Hence {X*n,m I p,n e Z}
is Schauder basis for n*({(*,n) : m I p,n e Z}) for each p (cf. the charac-
terization in [6; p. 103]). Thus for each p e Z we have a representation of the
form

poo

": -I-'åv*nx*n'
But since these representations for Y must be unique, we conclude that V^n : bln,
for all P, g, m and n, yielding P*n :0. Thus, Y : 0, which completes the proof
of (a).

To see (d) take any Y in fI76(.4) n Hx(B). Then Y e Hy(A) and I, e
Hx(B) so we have

Y- ofrrX*n and Y - oB**X*n,
(m,n)eA (m,n)€B

since the elements X^n,, (*,n) € A, and X*r, (*,n) € B, form a Schauder
basis in the spaces Hx(A) and ä76(8), respectivety (cf. [6; p. 102]). Since the
sequence X*r, (*rr) e 22, is a Schauder basis h Hx (cf. Theorem 8.4), it
follows from the uniqueness property of the Schauder basis that

o*rr: aB*n for all (*,n) € 22

97

ooe zHx({f m,n)

fro,qezHx( {t m,n)

q))

q))

Especially

yielding

o*r*: aTn - o for all (*,n) # An B,

Y_
(*,n)eAnB

o*rX*n'
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Thus, Y e Hy(AnB). This shows that Hy(A)nHx(B) e Hx(AflB), a.nd the
other inclusion is obviously always correct.

We now prove the following generalization of a well-known analytic charac-

terization for the positivity of the angle between past and future for stationary
random processes due to Helson and Szegö [a] and Hunt, Muckenhoupt and Whee-
den [5]. (For the matricial form of this result one can see Pousson [L1], Pourahmadi

[10] and Miamee [8].)

3.6. Theorem. Let X*n be a stationary random field with a specttal
measure p, on the torus. Then, px < 7 if and only if
@) t, is absolutely continuous with respect to the normalized Lebesgue measure

do : d'a dB l4rz , with spectral density w ,
(b) L'* C Lr , where L'- : L'*a, : L2r,,

(c) tåe Fourierseries of any f € L2- convergesto f inthenormof L2-.

Proof. By Lemma 3.5(c) X*n is strongly nondeterministic in the sense of
Soltani [14] and hence by Theorem 3.4 in lt+l t, is absolutely continuous with
respect to the Lebesgue measure and its spectral density to has the log property
i.e. log w €. Lr. This shows (a).

To see (b) let .[ be an operator defined on the polynomials

t)_
I amnei(*a*n9)

(*,n) eZ2

by

\P) -
The operator is bounded because

lr«pll

Hence by Lemma 3.2 and the Kolmogorov isomorphism we get

Thus f can be extended to a bounded function al ot L2-. Hence there exists a

funötion g in L2. such that

I I aoow(a, P) do.

:U 
l0oo 

w(a,p)d,l_ U looo 
,r*,,fr d"l

s Ultooo t'*d")''' Ul udo)L/2

^mV JJ

I(f) - (f , ilr,,- for all / € L2*.
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In particular we have I(ei(*o+"9)) : leit,"o+"9)rg)u_. On the other hand

r(ei(^o+ne,) : {l ilfx:;l 1 [3:3]

Thus we have

ll ",,*"*"il*(o,ilgailao: {1, iff?;Xl 1[B;B],

which means wj:1. Hence u)-r :g e L?"; implying L2* C tr because for any
h e L2*,

ll wto": Il wua,F o, 
= 
(ll ror.o,)"'Ul --'oo)'''.

To prove ("), by Lemma 3.2 the operators ,S-,. defined on the polynomials
D1*,n)ez2 a^ne;(^o*nq) 6t

t_,( » aooei(ooi$))_ » \aorei(no+cr)(P,ilez' P:-m q=-n

are bounded, with common bound K. Hence each of the operators ,5-r, can be
extended to a bounded operator on L2-, so that they have the same norm .K.
It can be seen that these operators are just the symmetric Fourier partial sum
operators. Letting f e L'-, to complete the proof of this part we just have to
show that

S*"(f) -+ /, in fhe L2- sense.

Given € ) 0,wetakeapolynomial P suchthat ll/ - Pllq"<€lQ( *1), wethen
have

lls-"(/) - fllt,_ < ll(s-" - I)(f - p)llr,,_+ lls-"(p) - pllr.,_

< lls*" - /llll/ - Pllu_ + ll,t-"(p) - pllr,_.

Thus

lls-,(/) - fllu_ < (l( + ,)n {L + ll,s-,(.P) - pllu_.

Now if we take rn and n large enough we get S*"(P): P, and hence

llS- "(f) - fllr,_ I €.
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Now, to prove the other half assume that the conditions ("), (b), and (c)

the statement of the theorem hold. Then bV (b) any function / in .02- belongs

.Lr and, as such, has a Fourier series

f - » anoei(na*t?).

@,d€22

We consider the partial sum operator ^9#åf.1 : L2- '-.0| defined by

sx:::(f): i t apqei(Po*q§).

P- -TrtO q:-ft'g

we can write

ru P--fraoq:-fi,9 P:-rnoq:-flg

Hence

i t bo,l
P--mo Q:-Tt's

1 (2msm1 * 2nonr . ,)fi-l . *ll/llr, .

Now since Lr_ C tr|, Lemma 3.1 of Miamee [8] implies that there exists a con-

stant K such that ll/llr, < K llfllq. This means that all operators Sfr;i; are

bounded. On the other hand, by (") for each f e L'- we have

sx:::(f) "+ f , in L2-.

Hence by the uniform boundedness principle there exists a constant M such that

lltflf; ll = 
,, for all Tfts,t .1,ns,n1) Q.

This means that for any f € -L2. we have

lltflf;fnll L,_< 
M llfllu-, for all nz6, rr,1,r7.s,nr ) 0.

In particular for any polynomial P we have

in
to

Forany f e L'z*

llsr;::(/)ll

ll'r;;å(r)ll,r: W

for

But this, up to the Kolmogorov isomorphism, isr just (3.3). Hence by Lemma 3.2
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3.7. Remark. The proof of Theorem 3.6 shows that tp-r e .t1 and this in
turn means that (cf. for example Salehi and Scheidt [12]) the random field X-,
with spectral measure dp:. do is minimal, i.e.

X^n ( H*({(p,q) : (p,il * @,")}).

This in particular implies that Xr* is purely nondeterministic in the Helson-
Lowdenslager sense [2]. Hence we have -[/ I"s u do ) -m. This also shows that
the positivity of angle is stronger than some other measures of independence for
a random field.

The following lemma shows that in sharp contrast to other prediction prob-
lems for random fields the positivity of the angle is independent of the kind of
past one may take, whether it is taken to be the usual half plane [1], the Helson-
Lowdenslager's half plane [2], [3], or the quarter plane.

3.8. Lemma. If X*n is a stationaryr random freld, then gx < I if and only
if the angle between Hx(tl') a,nd Hy(An) as well as the a.ngle between H7;(Uh)
and H21(d;) are positive, where

U" : {(*,n) : m. -L, n e Z}U {(O,n) : n < _1}

a,nd

Uh : {(*,n) : m € Z,n< -1} U {(*,0) : rn S -1}.
rf this is the case then the angle between Hx(Q) and Hy(Q) is aJso positive,
wherc Q is the third quadrant, namely

Q:{(*,n):m<o,n<o}.
Proof. We break the proof of our lemma into the following steps:

Step 1. The angle between Hx(U') and, Hy(An) is positive if and only if
there exists a constant N such that

(*,n)eu" (*,n)e22

where {o*o} is any double sequence of scalars with finitely many non-vanishing
elements. This statement can be proved similar to Lemma 8.1.

Step2. The a^ngle between Hx(tl') ard Hy(w) as well as the angle between
Hx(Uh) ar,d Hy('F;) is positive if and only if there exists a constant .t such that

amnx*,ilr,

(3.9) amnx**ll
ilH(m,n)eR (*,n)e22

amnx*"llr,



102 A.G. Miamee and H. lViemi

where {o**} is any double sequence of scalars with finitely many non-vanishing

elements, and the first summation ranges over any generalized rectangle of the

form

(3.10)

where

and

t1l

12)

t3l

t4l

t5l

arnnxrrr ll
ilH

arrtnX rr.,ll
nH

R - Ulnono )Aorrrr, ) Ulooo )Ul,,rr,

1,s € Z\ U t(-,r): s 3n - 1),

rrhum,n -{(",") : r € Z,s ( n- t} u {(r, n) : r 1-- 1}.

The proof of this step is similar to that of Lemma 3.2 and hence it is again

omitted.

Step 3. We note that the generalized rectangles contain all the usual rectan-
gles. Thus to complete the proof of the lemma it suffices to show that p76 ( 1

implies (3.9). To see this we observe that any region B in (3.9), that is any region
J? of the form (3.10), can be represented as a disjoint union of at most 5 usual
rectarrgles, say B; , i:7,2,3,4,5. Thus we can take the .t in Step 2 to be simply
5M . ln fact, for any rB of the form in (3.9) or (3.10) we can write

Uln,n_ {(",r) :r 1m-

(m,n)e R

arnnX rrrll
nH

D

i:1
b

i:1

(*,n) e R;

,ll
(*,n) e22

(*,n) e 22
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