MARTINGALE-DIFFERENCE GIBBS RANDOM FIELDS AND CENTRAL LIMIT THEOREM

B.S. Nahapetian and A.N. Petrosian

Armenian Academy of Sciences, Institute of Mathematics Marshal Bagramian Ave. 24-B, 375019 Yerevan, Armenia

Abstract. The notion of a martingale difference random field is introduced, and sufficient conditions for a Gibbs random field to possess the martingale difference property are studied. Various central limit theorems for such random fields are given.

Let \mathbf{Z}^{ν} be a lattice $(\nu \geq 1)$ and W be the family of all its finite subsets.

Definition 1. We say that a random field ξ_t , $t \in \mathbb{Z}^{\nu}$, is a martingaledifference random field with respect to a given sequence of increasing finite subsets (s.i.f.s.) $V_i \in W$, i = 1, 2..., if $\mathbb{E}|\xi_t| < \infty$, $t \in \mathbb{Z}^{\nu}$, and

(1)
$$\mathbf{E}(\xi_t \mid \xi_s, s \in V_{i-1}) = 0, \quad \text{a.s.}$$

for all $t \in V_i \setminus V_{i-1}$ and $i = 2, 3, \ldots$

If (1) holds for all s.i.f.s. then the random field is called simply a martingaledifference random field.

Definition 2. We say that a random process S_V , $V \in W$, forms a martingale with respect to a s.i.f.s. V_i , i = 1, 2, ..., if $\mathbf{E}|S_V| < \infty$, $V \in W$, and the relation

(2)
$$\mathbf{E}(S_{V_i} \mid S_{V_1}, S_{V_2}, \dots, S_{V_{i-1}}) = S_{V_{i-1}}, \quad \text{a.s.}$$

is valid for all $i = 2, 3, \ldots$

It is easy to see that if a random field ξ_t , $t \in \mathbb{Z}^{\nu}$, is a martingale-difference with respect to a s.i.f.s. V_i , i = 1, 2, ..., then the random process $S_V = \sum_{t \in V} \xi_t$, $V \in W$, is a martingale with respect to V_i , i = 1, 2, ... Conversely, if a random process $S_V = \sum_{t \in V} \xi_t$, $V \in W$, is a martingale with respect to any s.i.f.s. then the random field ξ_t , $t \in \mathbb{Z}^{\nu}$, is a martingale-difference random field.

There is a wide spectrum of examples of random fields and processes satisfying the conditions in these definitions.

Example 1. Let V_i , i = 1, 2, ..., be a s.i.f.s. and $\Delta_j = V_j \setminus V_{j-1}$, j = 2, 3, ...Suppose a random field ξ_i , $t \in \mathbb{Z}^{\nu}$ has the properties: $\mathbb{E}\xi_t = 0$, $t \in \mathbb{Z}^{\nu}$, and ξ_t , ξ_s are independent for $t \in \Delta_j$, $s \in \Delta_k$, $j \neq k$. Then it is a martingale-difference with respect to V_i , i = 1, 2, ... **Example 2.** Let $\xi_t, t \in \mathbb{Z}^{\nu}$, be a random field taking values in a separable complete metric space X with a σ -finite measure μ , $\mu(X) > c$, defined on its Borel subsets. Suppose the finite dimensional distributions of this random field are absolutely continuous with respect to the product measures $\mu_v = \mu^{|v|}, v \in W$ $(|\cdot| \text{ stands for the number of points in a finite set) and suppose the densities <math>p_V(x_t, t \in V), V \in W$, are strictly positive. Moreover, suppose $q_V(x_t, t \in V), V \in W$, is another system of consistent densities. Then the process

$$S_V = \frac{q_V(\xi_t, t \in V)}{p_V(\xi_t, t \in V)}, \qquad V \in W,$$

is a martingale with respect to any s.i.f.s.

Example 3. Suppose ξ_t , $t \in \mathbb{Z}^{\nu}$, is a random field satisfying $\mathbb{E}|\xi_t| < \infty$, $t \in \mathbb{Z}^{\nu}$, and

$$\mathbf{E}(\xi_t \mid \xi_s, s \in \mathbf{Z}^{\nu} \setminus \{t\}) = 0 \qquad \text{a.s.}$$

Then $\xi_t, t \in \mathbf{Z}^{\nu}$, is a martingale-difference random field.

Example 4. Suppose $\mathbf{Z}^{\nu} = \bigcup_{j} T_{j}$, $T_{j} \cap T_{k} = \emptyset$, $j \neq k$; and suppose ξ_{t} , $t \in \mathbf{Z}^{\nu}$, is a random field having the property: $S_{V} = \sum_{t \in V} \xi_{t}$, $V \subset T_{j}$, is a martingale with respect to any s.i.f.s. V_{i} , $i = 1, 2, \ldots, V_{i} \subset T_{j}$ for any fixed $j = 1, 2, \ldots$ If S_{V} and $S_{\tilde{V}}$ are, in addition, independent for $V \subset T_{j}$ and $\tilde{V} \subset T_{k}$, $j \neq k$, then the random field ξ_{t} , $t \in \mathbf{Z}^{\nu}$, is a martingale-difference.

The following example is a special case of Example 4.

Example 5. Suppose a random field ξ_t , $t \in \mathbb{Z}^2$, $\mathbb{E}|\xi_t| < \infty$, $t \in \mathbb{Z}^2$ has the property: for any $p, k \in \mathbb{Z}^1$

$$\mathbf{E}\big(\xi_{(p,k)} \mid \ldots \xi_{(p-1,k)}, \xi_{(p+1,k)} \dots\big) = 0 \qquad \text{a.s.}$$

and $\xi_{(p,k)}$, $\xi_{(q,j)}$ are independent for $k \neq j$. Then the random field ξ_t , $t \in \mathbb{Z}^2$, is a martingale-difference.

Note that each of the examples considered here has an analogy in the theory of martingales.

We introduce next a new construction of martingale-difference random fields which is useful also in the theory of Gibbs random fields.

Suppose $Y, Y \subset \mathbb{R}^1$, is a symmetric set with respect to the origin (i.e., if $y \in Y$ then $-y \in Y$) and $\mathscr{B}(Y)$ is the σ -algebra of its Borel subsets. Consider a symmetric measure μ on $\mathscr{B}(Y)$ (i.e., $\mu(B) = \mu(-B), B \in \mathscr{B}(Y)$) satisfying

$$\int_{Y} |y| \, \mu(dy) < \infty.$$

Lemma 1. Let $\xi_t, t \in \mathbb{Z}^{\nu}$, be a random field taking values in Y. Suppose its finite-dimensional distributions are absolutely continuous with respect to the

product-measures $\mu^{|v|}$, $V \in W$, with densities $p_V(y_{t_1}, y_{t_2}, \ldots, y_{t_{|V|}})$, $V \in W$, satisfying

$$p_V(\theta_1 y_{t_1}, \theta_2 y_{t_2}, \dots, \theta_{t_{|V|}} y_{t_{|V|}}) = p_V(y_{t_1}, y_{t_2}, \dots, y_{t_{|V|}}), \qquad V \in W,$$

for any $\theta_i \in \{-1,1\}, i = 1,2,\ldots,|V|$ (the superparity property). Then the random field $\xi_t, t \in \mathbf{Z}^{\nu}$, is a martingale-difference.

Proof. It is sufficient to show that $S_V = \sum_{t \in V} \xi_t, V \in W$, is a martingale with respect to an arbitrary s.i.f.s. That is, for any sequence $V_i \in W$, $V_i \subset V_{i+1}$, i = 1, 2, ..., one has

$$\sum_{t \in V_i \setminus V_{i-1}} \mathbf{E}\big(\xi_t \mid S_{V_1}, S_{V_2}, \dots, S_{V_{i-1}}\big) = 0 \qquad \text{a.s.}$$

or

$$\sum_{t \in V_i \setminus V_{i-1}} \int_A \xi_t \mathbf{P}(d\omega) = 0 \quad \text{for any } A \in \sigma(\xi_s, s \in V_{i-1}).$$

This relation can be rewritten in the following form: for any

$$B \in \mathscr{B}(Y_{V_{i-1}}), \qquad V_{i-1} \in W,$$
$$\sum_{t \in V_i \setminus V_{i-1}} \int_{B \times Y_t} x p_{V_{i-1} \cup \{t\}}(y, x) \mu_t(dx) \mu_{V_{i-1}}(dy) = 0$$

However, taking into account the superparity of the densities p_V and the symmetry of the measure μ_t we have

$$\int_{Y_t} x p_{V_{i-1} \cup \{t\}}(y, x) \mu_t(dx) = 0.$$

The lemma is proven.

Now we introduce the notion of a Gibbs random field. Note that the definition given below is not general.

Let $(Y_t, \mathscr{B}_t, \mu_t), t \in \mathbb{Z}^{\nu}$, be a copy of (Y, \mathscr{B}, μ) . A system of measurable functions $\Phi = \{\Phi_V, V \in W\}$, defined on $(Y_V, \mathscr{B}_V, \mu_V)$, is called a potential. Here

$$Y_V = \otimes_{t \in V} Y_t, \qquad \mathscr{B}_V = \otimes_{t \in V} \mathscr{B}_t, \qquad \mu_V = \otimes_{t \in V} \mu_t,$$

(\otimes is here also the symbol of the Cartesian product).

For any $v \in W$ and $\bar{y} \in Y_{\mathbf{Z}^{\nu} \setminus V}$ we define a function

$$U_V^{\bar{y}}(y) = \sum_{J \subset V} \sum_{\bar{J} \subset \mathbf{Z}^{\nu} \setminus V} \Phi_{J \cup \bar{J}}(y_J, \bar{y}_{\bar{J}}), \ y \in Y_V, \quad y_J = (y_s, s \in J), \ \bar{y}_{\bar{J}} = (\bar{y}_s, s \in \tilde{J}),$$

107

which is called the potential energy. This quantity is finite if for example the condition

$$\sup_{a\in\mathbf{Z}^{\nu}}\sum_{J:a\in J\in W}\sup_{y\in Y_J}\left|\Phi_J(y)\right|<\infty$$

is satisfied.

Define

$$\left(q_V^{\bar{y}} \right)_I(y) = \frac{\int_{Y_V \setminus I} \exp\left\{ - U_V^{\bar{y}}(y, z) \right\} \mu_{V \setminus I}(dz)}{\int_{Y_V} \exp\left\{ - U_V^{\bar{y}}(z) \right\} \mu_V(dz)}, \qquad y \in Y_I, \ \bar{y} \in Y_{\mathbf{Z}^{\nu} \setminus V},$$

Suppose that for any $I \in W$ there exist an increasing sequence $V_k \in W$, $k = 1, 2, \ldots$, satisfying $\bigcup_k V_k = \mathbb{Z}^{\nu}$, and boundary conditions $\bar{y}_k \in Y_{\mathbb{Z}^{\nu} \setminus V_k}$ such that the limes (uniform with respect to $y \in Y_I$)

$$\lim_{k \to \infty} \left(q_{V_k}^{\bar{y}_k} \right)_I(y) = p_I(y)$$

exists. Then the system of finite-dimensional densities $\{p_I, I \in W\}$ is consistent, and hence there exists a random field called a Gibbs random field.

Definition 3. We say that a potential Φ is a superparity potential if for any $y = (y_{t_1}, \ldots, y_{t_{|V|}}), y_{t_i} \in Y, V \in W$, the relation

$$\Phi_V(\theta_1 y_{t_1}, \dots, \theta_{|V|} y_{t_{|V|}}) = \Phi(y_{t_1}, \dots, y_{t_{|V|}}), \qquad \theta_i \in \{-1, 1\},$$

holds.

Lemma 2. Let Φ be a potential satisfying

$$\sup_{a\in \mathbf{Z}^{\nu}} \sum_{J:a\in J\in W} \sup_{y\in Y_J} \left| \Phi_J(y) \right| < \infty.$$

If the potential Φ has the superparity property, then the corresponding Gibbs random field is a martingale-difference.

This lemma follows from the superparity of the potential Φ combined with Lemma 1.

One can construct many examples of superparity potentials $\Phi = \{\Phi_V, V \in W\}$. For example, for $V \in W$ define

$$\Phi_{V}(y_{t}, t \in V) = \begin{cases} \prod_{t \in V} |y_{t}| (\operatorname{Diam} V)^{-\gamma}, & \gamma > 0, |V| \le 2, \\ 0, & |V| > 2; \end{cases}$$

or

$$\Phi_V(y_t, t \in V) = \exp\big\{-\sup_{t \in V} |y_t| |V|^\gamma\big\}, \qquad \gamma > 0.$$

There are several well-known articles dealing with the central limit theorem for martingale-difference random processes.

The next theorem is a direct consequence of the results of Brown [3] and Dvoretsky [5].

108

Theorem 1. Let S_V , $V \in W$, be a martingale associated with a s.i.f.s. V_i , $i = 1, 2, \ldots$ Suppose the following conditions hold:

- 1) $\mathbf{D}\eta_{\Delta_j} \geq \sigma^2 |\Delta_j|, \ \sigma^2 > 0, \ \mathbf{E}|\eta_{\Delta_j}|^{2+\delta} \leq C |\Delta_j|^{1+\delta/2}, \ 0 < C < \infty, \ \delta > 0;$ here **D** stands for the variance, and $\Delta_j = V_j \setminus V_{j-1}, \ \eta_{\Delta_j} = S_{V_j} - S_{V_{j-1}}, \ j = 2, 3, \ldots;$
- 2) $\lim_{n \to \infty} (\mathbf{D}S_{V_n})^{-1} \sum_{j=2}^{n} \operatorname{Cov}(\eta_{\Delta_j}^2, \operatorname{sgn} I_j) = 0, \text{ where } I_j = \mathbf{E}(\eta_{\Delta_j}^2 \mid \eta_{\Delta_1}, \dots, \eta_{\Delta_{j-1}}) \mathbf{E}\eta_{\Delta_j}^2, \ j = 2, 3, \dots$

Then for any $x \in \mathbb{R}^1$

$$\lim_{n \to \infty} \mathbf{P} \left((\mathbf{D} S_{V_n})^{-1/2} (S_{V_n} - \mathbf{E} S_{V_n}) < x \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} \, du,$$

i.e., the central limit theorem holds.

The conditions of this type can be checked for the martingales S_V , $V \in W$, which are sums of weakly dependent random variables (see [1], [6-8]). In this paper we restrict ourselves to the consideration of martingales which are sums of components of a weakly dependent random field. We use the following mixing coefficients

$$\begin{aligned} \alpha_{m,n}(p) &= \sup_{\substack{m,n \in \mathbf{N} \cup \{\infty\}\\ m,n \in \mathbf{N} \cup \{\infty\}}} \left\{ \alpha(M_I, M_V); I, V \in W, \varrho(I, V) \ge p, |I| \le m, |V| \le n \right\}, \\ \alpha(M_I, M_V) &= \sup_{\substack{A \in M_I, B \in M_V\\ A \in M_I, B \in M_V}} \left| P(AB) - P(A)P(B) \right|, \\ M_I &= \sigma(\xi_t, t \in I), \quad M_V = \sigma(\xi_t, t \in V), \\ \varrho(I, V) &= \inf_{s \in V, t \in I} \varrho(s, t), \quad \varrho(s, t) = \max_{1 \le i \le \nu} |s^{(i)} - t^{(i)}|, \quad s, t \in \mathbf{Z}^{\nu}. \end{aligned}$$

Theorem 2. Let ξ_t , $t \in \mathbb{Z}^{\nu}$, be a martingale-difference field satisfying $\mathbf{E}\xi_t = 0$, $\inf_{t \in \mathbb{Z}^{\nu}} \mathbf{E}\xi_t^2 = \sigma_0^2 > 0$, and

$$|\xi_t| < C, \qquad t \in \mathbf{Z}^{\nu}, \quad \text{a.s.}$$

Suppose

$$\alpha_{m,n}(p) \le f(m)\alpha(p)$$

where f(m) is some function and $\alpha(p) \to 0$ as $p \to \infty$. Then for any increasing sequence of cubes $V_n \subset \mathbb{Z}^{\nu}$, n = 1, 2, ...

$$\lim_{n \to \infty} \mathbf{P}\left(\left(\mathbf{D} \sum_{t \in V_n} \xi_t \right)^{-1/2} \sum_{t \in V_n} \xi_t < x \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} \, du.$$

Note that in contrast to the well-known central limit theorems for weakly dependent random fields (see for example [2], [4], [9–11]) the mixing coefficients in Theorem 2 do not depend on the dimension of the lattice \mathbf{Z}^{ν} .

Theorem 3. Let Φ be a translation invariant potential having the superparity property. Suppose Φ has a sufficiently small norm

$$\|\Phi\| = \sum_{J:0\in J\in W} |J| \sup_{y\in Y_J} |\Phi_J(y)|.$$

Then the central limit theorem holds for the corresponding Gibbs random field for any increasing sequence of cubes $V_n \subset \mathbb{Z}^{\nu}$, $n = 1, 2, \ldots$

This theorem is a consequence of Theorem 2 and Theorem 9.1.1 of [10].

References

- BILLINGSLEY, P.: The Lindeberg-Levy theorem for martingales. Proc. Amer. Math. Soc. 12, 1961, 788-792.
- BOLTHAUSEN, E.: On the central limit theorem for stationary mixing random fields. -Ann. Probab. 10, 1982, 1049-1052.
- [3] BROWN, B.M.: Martingale central limit theorems. Ann. Math. Statist. 42, 1971, 59-66.
- BULINSKI, A.V.: The central limit theorem and invariance principle for mixing random fields. - The First World Congress of the Bernoulli Society, Abstracts, Vol. 2, Tashkent, 1986, 640.
- [5] DVORETSKY, A.: Asymptotic normality for sums of dependent random variables. Proceedings of the Sixth Berkeley Symposium of Mathematical Statistics. University of California Press, Berkeley, 1972, 513-535.
- [6] GORDIN, M.I.: The central limit theorem for the stationary processes. Soviet Math. Dokl. 10, 1969, 1174-1176 (English translation of Dokl. Akad. Nauk SSSR 188, 1969, 739-741).
- [7] IBRAGIMOV, I.A.: A central limit theorem for a class of dependent random variables. -Theory Probab. Appl. 8, 1963, 83-84 (English translation of Teor. Veroyatnost. i Primenen. 8, 1963, 89-94).
- [8] LIPTSER, P.S., and A.N. SHIRYAYEV: Theory of martingales. Nauka, Moscow, 1986 (Russian).
- [9] NAHAPETIAN, B.S.: An approach to proving limit theorems for dependent random variables. Theory Probab. Appl. 32, 1987, 535-539 (English translation of Teor. Veroyatnost. i Primenen. 32, 1987, 589-594).
- [10] NAHAPETIAN, B.S.: Limit theorems and some applications in statistical physics. -Teubner-Texte zur Mathematik, Leipzig, 1990.
- [11] TAKAHATA, H.: On the central limit theorem for weakly dependent random fields. Yokohama Math. J. 31, 1983, 67-77.