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1. We shall prove some generalizations of two well-known inequalities for
moments of sums of independent random variables obtained by Rosenthal [5], [6].
Instead of the classical power moments we consider moments belonging to a more
general class. Another generalization is connected with one-sided moments. We
prove some inequalities for generalized moments of this type for the maximum of
partial sums of independent random variables.

2. Let X;, X3, ..., X, be independent random variables, Sy = Zf:] Xi.
Let Go be the set of non-negative even functions g(z), z € R, non-decreasing on
the positive half-axis and satisfying ¢(0) = 0.

Theorem 1. Suppose

(1) EXy =0, k=1,...,n,
and
(2) 0< B, < oo,
where
®) B, = Xn:EX,f.
k=1
If
4) Eg(Xk) < oo, k=1,...,n,

for some g € Gy, then

(5) Eg( max sk) < Zn:Eg(rxk)uer /0 ” (1+ = )_rdg(:t)

1<k<
<k<n k=1 T‘Bn

for every v > 0.
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Remark. For ¢g(z) = |z|?, £ € R, p > 2, we obtain

(6) E R Sk’ < rPM, n + 2pe” rp/zB(— r— )Bﬂ/2

for every p > 2 and r > %p, where

(7) Mpn =y EIXil?
k=1

and B(z,y) is the Beta-function.

Let X be a random variable with the distribution function F(z), z € R. In
what follows we use the notation

B*9(X)= [ glx)dF(e).
Theorem 2. Suppose
(8) E*g(Xk) < o0, k=1,...,n,

for some g € Go. If the conditions (1) and (2) are satisfied, then

2

(9) E+g( max S’k) < iE"’g(er) +e" /:0 (1 + rzB )_rdg(z:)
k=1 n

1<k<n

for every r > 0.

Theorem 3. Suppose

(10) 0<Dp,< o

where

(11) D, =) E|Xil.
k=1

If the condition (4) is satisfied for some g € Gy, then

(12) Eg( max Sk> < Zn:Eg(er) + 2¢€" /oo (1 + Di)—rdg(z)
k=1 0 "

1<k<

for every r > 0.
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Remark. For g(z) = |z|P, z € R, p > 1, we get

(13) E| max Si|” < r?M, .+ 2pe"B(p,r — p)D},

for every r > p > 1, where B(z,y) is the Beta-function and M, . is defined by
(7).

Theorem 4. If the conditions (10) and (8) are satisfied for some g € Gy,
then

(14) E+g( max Sk) < zn:E+g(er) +e" /0‘°° (1 + Din) _rdg(a:)

1<k<n
- = k=1

for every r > 0.
3. Proof of Theorems 1 and 2.

Lemma 1. Let y;, ..., yn be positive numbers, y = max{y1,...,yn}. If
the condition (2) holds, then

P(lrsnl;aécnsk > a:) < k;P(Xk > yk)+exp{§ - ilog (1+ %)}

and

n

P(| lr?’?écnSk[ 2 z) < ZP(leI > yx) +2exp{§ - glog (1 + ;_y)}
== k=1 n

for every z > 0.

Lemma 1 follows from inequalities of Fuk and Nagaev [2] and a result of
Borovkov [1] (see also Lemma 13, inequality (5.5) and Supplement 16 (Section 6)
in Chapter 3 of [4]).

Lemma 2. If X is a random variable and E*¢(X) < oo for some g € Gy,
then

Etg¢(X) = /:o P(X > z)dg(z).
If Eg(X) < oo for some g € Gy, then
Bo(X) = [ P(X|22) do(e)

It is easy to prove this lemma by integrating by parts the expressions appear-
ing on the right-hand sides of the last two equalities. We take into account also
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the relations ¢(0) = 0 and lim; 4o g(z)P(X > ) = 0, which follows from the
inequality

oo

J(@)P(X > ) < / o) dF(y), >0,

z

where F(y), y € R, stands for the distribution function of X.
Let z > 0 and r > 0. To prove Theorem 2 we put in Lemma 1 yx =y = z/r,
k=1,...,n. We then have

P( max SkZz) < i P(rXx 2x)+exp{r—rlog(1+ z? )}

1<k<n ponet rB,
and o
> <
/0 P(l?]?%{n Sk > a:) dg(z) < L + I,
where

n oo o 2 —r
I = E/ P(rXy > 2)dg(z), I = er/ (1 n T’; ) dg(z).
k=1 0 0 n

Applying Lemma 2 we get

Bt ( gpx, 5t) < L Br KD + I

finishing the proof of Theorem 2.

Theorem 1 can be proved using the other inequalities in Lemma 1 and
Lemma 2.

4. The proofs of Theorems 3 and 4 are similar to the proofs of Theorems 1
and 2. Instead of Lemma 1 it is possible to apply the consequences of more general
probabilistic inequalities stated in [2], [3] and [1].

5. Lemma 1 remains true if we replace maxi<k<n Sk by Sn. Therefore under
the conditions of Theorem 1 the same upper bound for Eg(S,) holds as the one
given in (5). In particular, we have

(15) E|S.l" < C(p)(Myn + BE), P22
and, taking into account (6),

(16) E| max Si|’ < C(p)(Mpn+ BE?),  p>2.
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Here C(p) is a positive constant depending only on p.

Inequality (15) is due to Rosenthal [5], [6]. Of course Theorems 2, 3 and
4 remain true also if we replace maxj<i<n Sk by Sn. In particular, under the
conditions of Theorem 3 we have

(17) E[S.|P < C(p)(Mpn+D}), p>1,
and, as a consequence of (13),

(18) E| 1211?;1 Sk]p < C(p)(Mp,n + D?), p>1L

Inequality (17) was proved by Rosenthal 5], [6].
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