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Abstract. We study the convergence of moments of square-integrable martingales, when the
martingales converge to a (mixed) normal limit.

1. Introduction and basic facts
1.1. Let Mo, D ) L, be a sequence of square-integrable local martingales

defined on afiltered space (Q",F",F",P"), with Mt :0. Suppose that 
-G 

Cn"Ft is a o-algebra and ( is a random variable defined on (O, f, p) with

Ec exp{it(} : "*p{-t' q' /2},

where 17 is a finite G-measurable random variable. Consider the following two
conditions: for a fixed time 7 > 0

(rr) L7" : lrl211;,1>"y *uft L O,

where v" is the (F",P")-compensator of the jump measure p, of M". The
process Lo," is the Lindeberg-process.

It is well known that conditions (cs) and (ls) imply the stable convergence
of Mfi to ( (see for example Liptser and shiryaev [4; p. 816] for a more gÅ"rul
statement proving this fact).

Instead of condition (cs) we assume that the following condition (co) is sat-
isfied for an integer g ) 1:

("r)

We will also assume that

(")

(M"1, P , ,z

(M"lr Lo(\) 
,r.

(LM")b å o,
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Typewritten text
doi:10.5186/aasfm.1992.1717



140 E. VaJkeila

where AXt : Xt - Xt- for any cadlag process X and Xf : sup"<, lX"l' Condi-

tion (o) is equivalent to the following predictable condition:

(o.) ," (lo,?l " {lrl > e}) å o

(see Liptser and Shiryaev [a; p. 305]). Denote

random variables.
Our main result is the followittg

martingales satisfyins @) and ("0) for some q

by the stable convergence ofs

is a sequence of squ are integrable

are equivalent:

") Mfr 3 q *ra E-(ui1zt --+ E(zt ,

u; nl1u"1r - ry21' - o,
c) Eillzr * uft -'+ 0,

d) ((AM")i)" i" uniformly integrable.

Theorem 1 will be proved in the third section of this paper. It was proved for

discrete time martingales by Hall. He assumed condition (co) and instead of (o)

a somewhat stronger condition, and then showed the equivalence of .), b) and c)

under his conditions (see Hall and Heyde [2; pp. 70-71])'

L.2. We next introduce some notation and definitions. We assume that

(o, 4 F, P) is a given filtered space satisfying the usual assumptions. If x is

a process on (Q,4F,P), then X is adapted to the filtration F. Moreover, we

*rr*" that the process X has right-continuous paths with left limits' If X" is

a sequence of stochastic processes, then its properties are defined with respect to

. r"qr"rr"" (O",F",F",P"). Denote AV p! the jump measure of the process X
a.rdty ,x th. (P,F)-compensator of px. If X is a process, then X* is the

increasing process Xf : sup,<, lX"l. For terminology not explained here we refer

to Jacod and Shiryaev [3].
Recall that any local martinga\e M, defined on the space (Q, ]7, F, P), admits

a representation
tu[-M"+I*(pM -u*),

where I{x): c and M" is the continuous martingale part of M (which depends

on P ). Here * stands for the Lebesgue-Stieltjes integration with respect to dxxdt.
The quadratic variation lMl of M is defined by

lMlr: lM"l, + »(ax,)2.
s(t

If M is a square-integrable local martingale, then we can define the angle bracket

(M) of M as the compensator of [M]. Recall that E(M) t : ElMlt : EM? .
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1.3. Let M be a local martingale. Recall that according to the Burkholder-
Davis-Gundy inequalities: for a local martingale M given a stopping time 7 and
g)2onehas

(1.1) c,ElMlt/2 sf,(M+)o <CqElM)cl2.

Here and in what follows co and Co are constants with co decreasing and, re-
spectively, C, increasing as g increases. Following versions of (1.1) were proved
in [1]:

( 1.2)

( 1.3)

(2.L)

as n -> oo.

Proof. The Lindeberg
equality imply that

'gp llM"l, - (M"),1
slT'

condition together with

lM"''lr-lM"lrå0.

+ lrl

Vf is tight for a frxed time point
Then

D+0,

c,E(tul{' + (nu)ä)') ,
cqu(tul{' + (tu)ä)')

coE(<ul,/'cqu(trul'/'+ l/lo * "Y) * ry)

1.4. In the next section we present some auxiliary results. A proof of rhe-
orem 1 will be given in Section 3. In the last section we prove characterizations
for the functional convergence under the additional requirement that also the mo-
ments convergence.

2. Auxiliary results

2.1. Suppose Mn e ZrZ.wifh M{:0. Define ,n: rhtn andVn : I2*un
Recall that the sequence I/i is tight if

supP(Vf > ))--+ 0,

as ) --+ m. Define Mfi'": M#+11{1,1."}*prft. Note that, ingeneral, Mn," is
not a martingale.

Lemma 1. Suppo se that the the seg uence
T , and that the Lindeberg condition (/o ) holds.

the Lenglart-Rebolledo in-
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For the predictable bracket process (M"'"» one has

(Mn'")r : IzLs,1s"t *ufi- 
ä ( luo=rav'({s},0.))' 

.

Now,

t cz"({s}, a4: - [ av"({s},da)
J{lclSc} J{lzl>c}

yielding

(2.2) ä 
(1,,,= 

"r*'n({"}'04)',: ä 
(- 

/,',,", 
av',({s}'o*))'

using (2.2) combined with the conditio";,1, ,r:::",},.r::"" ,r",

(M")r - (M"'")r ', 0,

as n + @.
To prove (2.1) we have to show that

s1r llu"'"1" - (M"'"1"1 4 o.

Define Yn," : lM"*l- lltt",", and r,, : inf {t lV{ > Å}. Clearly, the process

ZlIlzL11113"1*za dominates the process Y''c. We have

(2.3) .(:ä lr""'"1 > 6) < 6-'?E(Yi^'i)' * P(r, < T)

with
E(Y!.'X)'<+e2(\+r').

The lemma now follows, since the right-hand side of (2.3) can be made arbitrary
small by using the tighness assumption of Vfi and by an appropriate choice of e.

The next lemma is obvious.

Lemma 2. Suppose that Xo and Y" are sequences of rartdom variables
with

x" -\ o and P(lY"l2l) -- o,

where I ) 0 is a finite random va'riable. Then

xnYn 4 o.
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Lemma 3. Suppose

(2.4) (M"lr L (',

where C is a finite random variable and suppo se the seg uence

L43

(2.5) ((tu")b)n

is uniformly integrable for some p > 2. Then the following conditions are equiva-
lent:

a) condition (ls) åolds,
b)foranyp)g>2onehas

lllq *uft å o,

c) for any q > 2 one has

lllr*pbå0.
Proof. Suppose the Lindeberg condition holds. We show that condition c)

holds. By Q.$ the sequence Vf is tight. Hence by Lemma L we have

lM")r L C

as n + oo. Thus, for any €,

The Lindeberg condition (/o ) implies the condition (r) ,

(LM")i å o,

and so for any g > 2
((LM")i)o å o.

The inequality

lrlo * p? < ((LM")i)r*' fi|, * p+

together with Lemma 2 imply c).
Assume next that c) holds with p ) g ) 2. The inequality ((LM\+)q s

lllq * t " can be used to show that we then have (o), and hence also

((tu")b)'å o,
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for arry p ) q > 2. Since the process lllq * lr" dominates the process lllq x u" *"
get, using the Lenglart-Rebolledo inequality

P(l/lo *ufr>"1 
= år(lrlo* p\n((aM")ä)'+ö) +P(lrlc *pb2b).

The last inequality combined with (2.5) and (a) gives b).
Assume finally that b) holds. Using the inequality

,r-, [' I plzun(its,,dr) < lllq * vfi
Jo J{lcl>c}

we see that b) implies a).

Remark 1. Note that in the previous lemma we have proved the following
three implications:
a) 2.\ & (,.) * 

"),b) c) & (2.5) + b),
c) b) + (ls).

Lemma 4. Let M" be a sequence of square-integrable local martingales and

let T be a stopping time. The following conditions are equivalent:

a) tåe sequence lM+l' is uniformly integrable for p > 2,
b) the sequence ((U")i)o is uniformly integrable for p > 2.

Proof. Assume b). Since lMfrl 3 (M")b it is clear that a) holds.
Assume a). We first note that the sequence E((M")i)' is bounded, since

E((M")i)o S celMfir.
For c ) 0 put A| : {(M.)h > c} . Recall that from Doob's inequality one gets

P(,4r) 3 Lsto^1ui1,

yielding

E(((M.)ä) 'ro:,,,) : l.:,,P(Ai,1,)do 
<ElM+l l"u*''r'' a-'\lpd"a

: f,r1*" l((M. )b)o t o:,,,.

Hölder's inequality then gives

(2.6) E(((M-)ä)Pt.q:,t,) <c,r,11rw"lhlo).
Since supo lim"*oo P(A:) + 0 and since the sequence lMfil is uniformly inte-
grable, we have

':p "ULE(lM"l!rtn") 
: s.

It clearly follows from (2.6) that the same is true for ((Mfi).)p, yielding b).

In what follows we often make use of the following principle.
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Lemma 5. Suppose that X" is a sequence of random variables with

L45

x" ! ^r,

where 1 is a rand,om variable having aJt the moments *r4 -\ stands for conver-
gence in distribution; and suppose

E(X")' - D'y2.

If for q > 2 the sequence E(X")o is boun ded, then we have

E(X";r 'E1o'
Proof. Introduce the following two topologies r and o:
a sequence Y' converges with respect to r, if Y' converges in distribution
to a random variable rc and E(Y")' --, E,n2 ,

a sequence Y' converges with respect to o, if Y' converges in distribution
to a random variable rc and E(Y";c --+ Ercq

It is clear that convergence with respect to o is stronger than convergence with
respect to r.

After these definitions we continue with the proof. If the sequence E(X";l
is bounded, there is a subsequence with E(X". ), - ". Then, obviously c : B1rq .

This also shows that there are no other possible cluster points for the sequerlce
E(X";e , finishing the proof.

Remark 2. The above lemma is a modification of Zolotarev [5; pp. 100-101].

3. Main results and proofs

3.1. We start the proof of Theorem 1 with

Theorem 2. Suppose M" is a sequence of square-integrable local martin-
gales for which conditions (c1) and (a) hold. Then the following conditions are
equivalent:

a) El[M"lr - nzl -- o,
b) Lindeberg's condition (ls) åo/ds in Lr(P),
c) ((AU")rr)' is uniformly integrable,

d) Mfi -a 6 ""a EMfi-- E(2 .

Proof. Assume a). Then

lM"]r - lM",')- lll'1{l,l>,} * pb.
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(2.7)
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Moreover,

1.112111,12"1 * pb < (^M\b:llf tpp"1* rtft.

Thus, by a) a,nd condition (o) we get lfl2111,lr"") * ph L O. By.) the se-

quence lM"lr is uniformly integrable. Thus, the same is true also for the sequence

1.t12111,g2"1 * 1tft. Helcrce E1f12111,1 >c\ * uft -» 0, proving b).

Assume b). Since 1f12111,1>"1 * p+ L 0, the sequen-ce 1.11211p,1>r1 * 1tft is
uniformly integrable. Moreover, since (AM")' S e2 +lll2L11,l>") *p[ also the

sequence ((truil-)' is uniformly integrable, giving c).

Assume c). We have

1.112111,1>,1 * pf < «M")i)1111'r1;,1r" \ * p+.

Note that the random variable 1f12111,1>.) * 1tff is integrable by ("t) and by the
equality ElM"lr : ElM"lr. This together with (o) then implies that

Vl'l {l,t>'} * LLb å o.

By the Lenglart-Rebolledo inequality we get

This, together with (2.7), (a) and c) shows that the Lindeberg condition (16) is
satisfied. So by Lemma 1

lM"lr " , n'.

But by (2.7) IimElM"lr - E(' and so the sequnec" lM"lT is uniformly inte-
grable, giving a).

Assume b). We have then (ts) and (cs) implyiry Mfr -a a. By (c1) we
have E(M")? - E,€', giving d).

Assume d). Then the sequenc. (Mfr)2 is uniformly integrable. By Lemma 4

the same holdsfor the sequenc" ((M")i)'. Thus, also the sequence ((tU")rr)'
is uniformly integrable, giving c).

3.2. We prove norv Theorem 1. Thus, we assume that for some g > L the
conditions (co) and (a) hold. Note that (cr) implies (c1) and hence Theorem 2
is applicable.



Moment convergence in CLT L47

Assume a). By Theorem 2 we have El[M"\r - nzl -- O. The sequence

E((M")i)'o i. by a) bounded, and b) follows then by using similar arguments as

in the the proof of Lemma 5.

Assume b). Then the sequencu lM"lyr is uniformly integrable. The inequality

((AM")i)'o < lM"l+ then gives d).

Assume d). By Theorem 2 (ls) holds, and hence by Lemma 3

Vl'o * rfi

From d), (1.2), (1.3) and (cr) we get that the sequence ltl'o * zfi is bounded in
L'(P).Using similar arguments as in the proof of Lemma 5 we then see that c)
holds.

Assume c). We then have E'L|' --+ 0 (cf. Remark 2.1. c)), and by Theorem 2

we get Mfi :- ( and D(M+)z -, E(2. Now use (1.3) together with c) and (co)
to check thaf E(MS)2, ir borrrrded. Hence a) follows from Lemma 2.5, finishing
the proof of Theorem 1.

For the discrete time we have the following

Corollary 1. Suppose Mi, i - 1,.. .,np, is asequence of square integrable
ma.rtingales with

fM,lnr:i{tun,
i=1

and
nk

lM"\.r: » Bri-,(LMi)2,
i=l

where AMi = Mi - Mi-t. Assurne that (c1) and (a) hold. Then Theorem 2 is
true. If (c) and (a) hold, Theorem I is true. Condition (a) can be replaced by
the corresponding condition (a*):

Då0.

iP(l ^Mil 
> elr,:,)

i:l

D'-! o.

Remark 3. Hall (see Hall and Heyde [2; pp. 70-71]) assumes instead of (o)
the following condition:

(3.1) mpxEF,lr(A Mn'
?

Dj+ 0.

It is easy to see that (3.1) implies (a). Hall also assumes that E(M:_)'= 1.



148 E. Valkeila

4. On the functional central limit theorem

4.1. Denoleby s, the weak convergence in the Skorohod space. In this
section we study the moment convergence under the functional central limit the-
orem. Assume that D is a dense subset of .81. It is well known that if we have

foreach TeD (c6(D)):

(M"lr 3. Cr

and for each 7 e D (ls(D)):

Ll" P, 
o,

then

(4.1) Mn e, M,

where M is a continuous Gaussian martingale with (M)r - Cr and C is an
increasing continuous function. Instead of (a.1) consider the following condition,
valid for each ? € D and some g ) L:

(so) Mn 3 ru and E(Ui1zt "+ BM!.

We have the following:

Theorem 3. The following conditions are equiva)ent:

") (9) holds for some q ) l;
b) for T e D one has Fllu"\, - CTlq - 0;

c) for T e D one has Dl(u"), - Crlo--+ 0 and E((LM")b)'o --, 0.

If q > L then c) is equivilent to

d) for T e D one has EllM")r - Crlo --+ 0 and F]llzt * ufi---+ 0.

Proof. Assume a) and g : 1. Then

(4.2) llu")r-crl åo
(see Liptser and Shiryaev [4; p. 417]). Condition b) then follows from E(M$)z --+

Cr. lf. g ) 1 we still have (a.2). The fact that (a.2) is valid also in Lq(P) follows
from Theorem L, giving b).

Assume b). Then, the continuity of C implies that

(4.3) (^M")b -å o.



Moment convergence in CLT 749

Because ((LM")+)' < lM"lr and lM")qr is uniformly integrable by b), we get
that (a.3) holds in Lzc(P). Since for any 6 > 0

x2lg,pey* ph <ffw\r,

we get by b), (4.3) and Lemma 2 that x2111,1>e1* p7 L O. The Lenglart-
Rebolledo inequality and the fact that (a.3) holds ia L2(P) then imply that the
Lindeberg condition (rrXD) holds. So, by Lemma 1, we have

(4.4) l(u")r - crl å o.

using b) it is easy to check that (a.a) holds in r(P) and as in the proof of
Theorem 1 we get that (4.a) holds in Lc(P), giving c).

Assume c). By Theorem 2 we have (lrXD), and hence M" 3. M. The rest
of a) follows then from Theorem 2 for g:1 and from Theorem l for g:2.

Assume d) and g > 1. It is obvious that also c) holds.

Assume c) and g > 1. Then d) follows as in the proof of Theorem 1.

Remark 4. Condition 9o is equivalent to

M" s, M and (Mfr)'o is uniformly integrable.

References

t1] Dzue.ra.RIozp, K., and E. V,c,LxBtLÄ,: On the llellinger-type distances forfiltered exper-
iments. - Probab. Theory Related Fields 8b, 1990, 105-112.

t2] HeLL, P., and c. Hpvnr: Martingale limit theory. - Academic press 1980, New york.

t3] JAcoD, J., and A.N. Srlnvepv: Limit theorems for stochastic processes. - Springer-
Verlag, Berlin-Heidelberg-New York, 1987.

t4] LIrrseR, R.S., and A.N. SHrny,c,nv: Theory of martingales. - Nauka, Moscow, 1gg6
(Russian).

15] ZolotAREv, V.M.: Modern theory of summing independent random variables. - Nauka,
Moscow, 1986 (Russian).


