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Abstract. For o < 1 and 8 > 0, let & 3 denote the set of functions f analytic in
D = {z € C:|z| < 1} such that f(0) =0, f’(0) =1 and

2f'(2)

e7s(z)

Sﬂ-% for z in D,

‘ arg

for some s in St(a), the starlike functions of order a(St(1) = {z}) and some real number y. For
¢ >0 and |p| < ¢, let ¥ , denote the usual subfamilies of functions having bounded boundary
rotation. It is shown that a coefficient domination for "V,fq , In the range p > 0 and ¢ > max{p, 2},
extends to .!2/’/3 in a corresponding range for a and B. (The family £’ denotes the set of
derivatives of the functions in the family #.) Examples are constructed to show that the range of
parameters in both cases is sharp for the second coefficient. As a consequence we obtain following

the proper inclusions: If € = 2(1 — &) and B+ %e < 1, then

T Ay D Y, 2pte 3 Fps pte
where, for positive numbers a and b and with U = {z € C : |z]| = 1},

(1—-z2)° . .
Fap = ~———du(z,y) : p is a probability measure on U x U ;.
uxu (1—yz)

We also extend and organize a variety of results in the literature for the families @, 5, % 4
and £,; and identify the form of the support points of &/ s and % ,
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1. Introduction

Let o/ denote the set of all functions analytic in D = {z € C : |z| < 1}.
Then & is a locally convex linear topological space under the topology of uniform

convergence on compact subsets of D.
For o <1 and 8> 0, let &%, g denote the set of functions f in & such that
£(0) =0, f'(0) =1 and

zf'(2) m
,argei‘fs(z)’Sﬁ.E for z € D,
for some s in St(a), the starlike functions of order a(St(1) = {z}) and for some
real number 7. These families were introduced in [15]. Note that f € @, if and
only if f(0) =0, f'(0) =1 and zf'(z) € St(a). Alternatively, &, o = #(a), the
family of convex functions of order a. Note also that 2% 5 = €(3), the family of
close-to-convex functions of order § introduced in [16]. (See also [10].)

For ¢ > 0 and |p| < ¢, let %, , denote the set of functions f in & such that
f(0) =0, f(0)=1 and

£y = exp { = [ log(1 - a2) du(o)}.

where U = {z € C:|z| =1} and p is a real measure on U satisfying Jydu=p
and [ |du| < q. These families were introduced in [3]. ¥ is the same as ¥,
the family of functions having boundary rotation at most k7. Also, if p = ¢ then
p = p- A where X is a probability measure on U. Hence f € ¥, if and only
if f(0) =0, f'(0) =1 and zf'(z) € St(a), where ¢ = 2(1 — «). We thus have
Y44 = a0, where ¢ =2(1 — a).

For a >0 and b > 0, let

_ (1-zz)" o o
Fap = {/UXU 1= y2) du(z,y) : p is a probability measure on U x U}.

Let & be a compact subset of &. A function f in & is a support point of
Z if there is a continuous linear functional J on & such that

Re J(f) =max{ReJ(g):g €7}

and ReJ is nonconstant on #. If the function f uniquely maximizes Re J over
&, then f is called an exposed point of % . The set of support points of % is
denoted by ¥.%, the closed convex hull of # is denoted by ©6.%# and the set of
extreme points of ¢6.# is denoted by £c6.%#. We use #' to denote the set of
derivatives of functions in %, ie. &' ={f: fe Z}.
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In many places in the literature ([3], [5], [1], [10], [13], [15]) properties of the
families @, g, ¥p,q and ZF,; have been studied. Questions concerning their closed
convex hulls, extreme points, support points, as well as inclusion relations, have
been addressed. For example, using our terminology, in [5] it was shown that, for
k>4,

WYy, =y 14y = Flko1, bkt

In [1], [11], [14] and [15] it was shown that, for a <1,

1 -2z
E"Q/o’z,l =8F13-20 = {W

el =yl =1, 2 # ).

Additional results exist throughout the literature.

In this paper our goal is twofold. The first goal is to gather, extend and
organize somewhat these disparate results and identify the form of support points
of the families &/, 3 and 7, ,. The second goal is to show that a coefﬁcient
domination for ¥, , in the range p > 0 and ¢ > max{p,2}, extends to &, 4
a corresponding range for @ and 3, and to construct examples which show that
the range of parameters in both cases is sharp for the second coefficient. As a
consequence we obtain the following proper inclusions:

If e=2(1—a) and B+ 2c <1, then

A 2® Ve 2pte 2 Fp,p+e

2. Convex hulls and extreme points

Recall that a function f in & is subordinate to a function ¢ in &/, denoted
f < g, if there is a function ¢ in & with ¢(0) =0, |¢(z)| < 1 for z in D,
and such that f(z) = g(¢(2)) for z in D. The following reformulation of /s
follows easily from the definition.

Lemma 1. A function f in & with f(0) = 0 belongs to &/, s if and only
if f'(z) = p(2)s(z)/z, where p(z) < ((1 4 c2z)/(1 - z))ﬂ, for some |c| =1, and s
belongs to St(a).

For two families of functions & and ¢ in &, let
F - Y={f-g9g:feF, ge¥}.

We need the following useful lemma.

Lemma 2. Let # and ¢4 be compact subsets of &/. Then

i) & -9 is compact.

i) If h € &co(&F -¥) and h is not identically zero, then h = f - g where
f€EEWF and g € £To Y.
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Proof. i) The fact that & - ¥ is compact follows easily from the properties
of compact subsets of 7.

To establish i), let h € £co(F-¥). Then h = f-g where f € F and g € ¥.
I f = th+(1—t)fa, 0 <t <1, fo # far fi, 2 € OF, then h = tfi-g+(1—1)fa-g
where fi1g, fog € (0 F)- ¥ Cco(F -¥). Since h is an extreme point we must
have fig = fog. But f; # fi1 so ¢ = 0. Hence h = 0, a contradiction. Thus
f € &co Z. Similarly g € £T0¥, as desired.

For @ > 0, b > 0 let k(z;z,y) denote the function in & such that k(0) =0
and k'(z;z,y) = (1 — 22)*/(1 — yz)®, |z| = |y| = 1. Note that for each a and b
we obtain a family of functions, although for simplicity of notation we suppress
the a and b. It will usually be clear in the context of any argument what family,
i.e. what a and b, is being discussed. The following well-known result ([3], [1])
will also be useful.

Lemma 3. Let a >0, b> 0.
i) €Fup C{F(52,y) : o] = [yl = 1}.
i) f0<a<1, {k’(z;x,y) el =lyl=1, ¢ # y} CEZFup.
i) If0<a<b, then k'(z;z,y) ¢ &Fap when z =y.
iv) f0<a<1anda<b,then 8F,p = {k'(z;2,y) : |z| =yl =1,z #y}.
Throughout this paper let ¢ denote 2(1 — &). It is easy to verify that the
functions k(z;z,y) such that £(0) =0 and

(1—z2)8

are (important) examples of functions in & g.

k(z2,y) = where |z| = |y| =1,

Theorem 4.

i) Let f > 1. Then
CO Yo, 3 = {/ k(z;z,y)du(z,y) : u is a probability measure on U X U}.
UxU
Equivalently T &, 5 = Fg p+e -
ii) Let § > 1. Then
gada,ﬂ c {k(z;xay) : |$| = |y| =1,z 74 y}'
iii) Let B =1. Then
ooy = {k(z;z,y) : |z| =yl =1, = # y}.
iv) Let 0< B < 1. If f € £T0 %y 8, then f(0) =0 and

iy (1tep(z)\f 1
f(z)_(l—-cp(z)) (1 —y2)e’

where |y| = |c| =1, ¢# —1 and ¢ is an inner function with ¢(0) =0.
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Proof. i) Using standard methods we show 64/, ; = Fp,g+. as follows.
If f € &ap, by Lemma 1 we have that f'(z) = p(z)s(z)/z But # > 1 and
s € St(a) imply that

p(z) = / (ll-i-_cuz)ﬂd)\(u) and

uz

s(z) = / a—z—)dv(v), where A and v are probability measures on U.
—vz)*

It follows that

Sz — Tz B
p(2) (2) = (51_ yz);Jre du(z,y),

where p is a probability measure on U X U. Since Fp g+ is compact and convex
and each k'(z;z,y) = (1 — 22)P /(1 — y2)P*c € &, 4, we have O], s = Fp,5+c-
ii) and iii) Apply Lemma 3, respectively, to the cases 3 > 1 and § = 1.
iv) Let f € £T 5. Again by Lemma 1, f'(z) = p(z) - s(z)/z, where
p(z) < (1 +c2)/(1 - z))ﬁ for some |c| = 1 and where s belongs to St(a). Let

pom{resi < (R2)')

In [1] it was shown that, for 0 < f <1 and ¢ =1,

1 B

EP = {(_—}-_ga) : ¢ is an inner function with ¢(0) = 0}.
1—¢p

Since both 27, and ©6 %7, are compact, it is immediate that &co &, C &2 .

In fact the same proof yields the more general case for arbitrary unimodular
c,ie.,

1 B
1+ C‘P) :  is an inner function with ¢(0) = 0}'
—¢

&6 P, C {(

Also

é’€6(Stia)) = {(1 —lyz)f Dyl = 1} (see [6]).

An application of Lemma 2 now yields the stated form.
In [5] it was shown that, for k¥ > 2, % C ¥(3k — 1) and that, for k > 4,

@ ¥ = % (3k — 1). These results can be extended to similar results relating
%)q to davﬂ'
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Theorem 5. For 0 <p < gq, %, , C &, 3 where a = 1—%1) and 8 = %(q—p).

Proof. Note that p = ¢ implies ¥, 4 = ¥4 = %40, where ¢ = 2(1 — a).
Thus, without loss of generality, suppose 0 < p < g. We modify the argument
given for ¥ in [17, p. 24]. Take any f € ¥, 4. Then

fl(z) = exp {— /Ulog(l —zz) dp(x)], where /{;d,u = p and /U |[du| < q.

Since ¥, 4 C ¥, o for q < ¢', it is enough to consider the case [ |du|= g. Let
Py P.q q g Ml =9q

1
K1 = m(mf + 1)

and
1

= op

Then py and po are probability measures on U. Let

K2

s(z) = zexp [— /plog(l —zz) d,ul(x)}.

Then s € St(a), where a =1 — 1p.
Now

() _
s(z)

By ([17], Theorem 2.5) this function is subordinate to ((1+c¢z)/(1— z))ﬂ for some
lcl]=1. By Lemma 1, f € &, 5.

{exp [— /log(l — e2)(dpy — dpz)} }ﬂ where f = q—;—’l

Corollary 6. For 0 < p<gq—2,
a’1/Plvq = mﬂé)ﬁ = yﬂ;ﬂ‘i"s’

where

w1 P P

2, :—2_ and 5=2(1—a):p.

Proof. Each kernel (1 — z2)? /(1 — y2z)#*¢ is in ¥, .- Now p < g —2 yields
B > 1. Hence, by Theorem 4,
Fp,p+e =0, 5 STV, .

By Theorem 5, 6%, , C oA, -
Remark. The family co ¥/

».q» for this range of values, was obtained in [3].
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3. Support points
The following result for 2, 5 was obtained by the first author in [15]. For

completeness we include the proof.

Theorem 7. Let fy be a support point of &, g.
i) If 3> 1, then

(1—a2)

(_W where |z| =|y| =1 withz #y.

folz) =

i) f0< B <1, then

N 14 cxxz 1
fol2) = (Zk IZ) (1—yo2)s’

where N is a positive integer, 0 < Ax < 1, Zi\;l A =1, |zx| = 1 for
k=1,2,...,N, |lyo| =|c| =1 and c # —1.

Remark. As pointed out in [15], if # =1 and «a < 1, then the argument in
[14] can be modified to show that each kernel (1 —zz)/(1—yz)'*e, |z| = |y| =1,
z # vy, is actually an exposed point of &/, ;. Hence

Sy = {K(zz,y): el =yl =1,z £y}

We suspect the same is true for &, 3 when § > 1, but this has yet to be demon-
strated.

Proof of Theorem 7. i) Let J be a continuous linear functional on & such
that
Re J(fo) = max {ReJ(f) : f € Yup}

and ReJ is nonconstant on &/, 5. Define L by L(f') = J(f) for all f in &4 =
{f € & : f(0) =0}. Then L extends to a continuous linear functional on &,
Re L peaks over &7, 5 at fo and ReL is nonconstant on &7, g For fixed 3, let

2P, denote the set of functions subordinate to the function ((1+ cz)/(1 — z))
By Lemma 1, we have f}(z) = po(2) - so(z)/z, where sq € St(a) and py € Z,,
for some |co| = 1.

We first show that ¢y # —1. If not, po(z) = 1 for all z in D and fi(z) =
s0(2)/z. Since 1+ezz™ € P for sufficiently small ¢ (> 0), for all |z| =1 and
n=1,2,3,..., we must have

ReL(#) > ReL((l +exz™)- S_oEf))
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This implies that RezL(2""'so(z)) < 0 for all |z| = 1 and hence L(z"1so(z))
=0forn=1,2,3....

Since, for any f in &, 3, 2f'(z)/s0(z) =1+ Y oo, anz™ is analytic in D, as
in [13, p. 217], L(f') = L(so(2)/2) and L is constant on &, 5. This contradiction
shows that ¢o # —1.

Next we show that so is a support point of St(a). To this end let

F = {po(z) : @ Ls€ St(a)}.

By Lemma 1 # is a subset of &/, 5 and f; is in #. Hence
: s(z)
ReL(f;) 2 Re L (po(z) - 522

for all s in St(a). Define Ly on &% by Li(g) = L(po(z) - g(z)/z). Then L,
extends to a continuous linear functional on & and Re L, peaks over St(a) at sg.

We claim that ReL; is nonconstant on St(a). If not, Re L(p,(z) - s(z)/z)
is constant for all s in St(a). Let s(z) = z/(1 — z2)® (|z|] = 1). We have
Re L(po(z)/(1 — z2)*) is constant for all |z| = 1. Since L(po(2)/(1 — z2)¢) is an
analytic function on |z| < 1 and the Taylor coefficients of 1/(1—z)° are all nonzero,
L(z™-po(z)) =0 for n =1,2,3,.... Again as in [13, p. 217], L(f") = L(po) for
all f in &, 3, a contradiction. Hence sy is a support point of St(«). It is known
([9]) that ©5t(a) = {z/(1 —z2)® : |z| = 1}. Thus so(z) = z/(1 — yo2z)¢ for some
lyo] = 1 and fy(2) = po(2) - (1 — yoz)~¢ where pg is in P, for some ¢y # —1,
'Col =1.

Now we show that po is a support point of Z,,. Let ¢ = {p(z)-(1—yoz)~* :
pE @Co}. Again by Lemma 1, ¢ is a subset of & 5 and f; is in 4. Define L,
on & by

La(g) = L(g(2) - (1 = yo2)™%).
Then L; is a continuous linear functional on & and Re L, peaks over &, at py.
If Re L, is constant over 2., , then Re L(p(z)-(1—yoz)™¢) is constant for all p in
P, . Since ((1+c0:czm)/(1—:czm))ﬂ isin &, forall |z =1and m=1,2,3,...,
it is easy to see that L(z"‘(l — yoz)_s) =0 for m=1,2,3,.... Once again, as in
(13, p. 217), L(f') = L((1 — yo2z)~¢) for all f in , g, a contradiction. Hence po
is a support point of &, .

Case (a): § > 1. In this case it was shown in [12, p. 535] that

Y2, = {(%)ﬁ x| = 1}.
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Hence

for some |zg| = 1. Let

,}f:{he.saf:h(z)<(1__%§ﬂ_+—s}

1—2z02

and
d={1+ cozoz)Ph(z) i h € H}.
As in [17, p. 19], univalence and convexity of log(1 — z) yield
1 1 1
ho(z) = : < .
N G A (e N (RS
Hence f) € ¢ . By now standard methods, it is easy to see that J£ is a compact
subset of T &7, 5. Since fo € £4,4 implies that fo € Xc0 a5, Re L peaks over
X at fi. By defining L3 on & by L3(g9) = L((1 + coz02)?g(2)), as before one
can show that hy € L7 . But

ot = {

1
1 —z)pte lz| = 1} [12,p. 535].

Hence ho(z) = 1/(1 — uoz)?*¢ for some |ug| =1 and
fo(2) = (1 + cozoz)’ /(1 — uoz)’**.
This completes the proof of (i) when g > 1.
Case (b): B =1. In this case it was shown in [12] that

S, = {Z,\kH—COf’fﬁ;og,\k <land|zg|=1for k=1,2,...,N,
= 1—xxz
N
and ZAkzlforN=1,2,3,...}.
k=1

Hence fj(z) = Ei\;l Ak(1+ cozrz)/(1 — zx2z) - (1/(1 — yo2)%).
The function gx defined by
1+ coxrz 1
1—zrz  (1—yo2z)e’

is clearly in &, for k = 1,2,...,N. Since fo(z) = Zi\;l Akgr(z) and fp is a
support point of &, 1, each gx must be a support point of 2% ;. An argument
similar to that in case (a) (with 8 = 1) implies that the denominator of each gi
must collapse to a single factor of the form (1 — yx2)!*. Hence zx = yo for

k=1,2,...,N and

gi(z) = g9x(0) =0,

14 coyoz

fo(2) = T —goc)i "

This completes the proof of (i).
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(i1) In this case, 0 < 8 < 1, the function ((1 + ¢o2)/(1 — z))ﬂ is univalent
and convex in D. It follows from Theorem 6 in [12, p. 531] that

B
2Z., = {(lﬁ_ﬂ) : ¢ is a finite Blashke product with ¢(0) = 0}.
—

Hence

14 CoPo 8 1
0= (e
where ¢ is a finite Blashke product with ¢¢(0) = 0. A trivial modification of
the representation

obtained in [9, p. 83] yields

1+ copo _ g:/\klﬁ-cozkz

1 — o 1—zpz

k=1
The form stated in (ii) for f}(z) follows.
Corollary 8. For 0 < p <¢—2, if f is a support point of ¥ 4, then

() = (1 — zo2)a—P)/2
o (1 — yoz)(‘ﬁ'l’)/z ’

where |zo| = |yo| =1 and x¢ # yo .

Proof. By Theorem 5, ¥, , C o, 3, where a = 1 — %p and 8 = %(q - p)
(21).

By Corollary 6, €0 ¥, ; = €0 /4 5. Hence each support point of ¥, , must be
a support point of &7, 3. The Corollary then follows from Theorem 7.

Next we obtain some information on support points of ¥, , for values of p
and ¢ which are not covered in Corollary 7.

Theorem 2 in [8] shows that the representing measure for a support point of
¥, must be discrete. That is, if f is a support point of 5,9, then

N .
Hj:l(]‘ - mjz)aj

M L0
Hj:l(]' - sz)ﬂJ

where N and M are positive integers, a; > 0, Bk >0, |z;| = |lyx| = 1, z; # wx,
for k=1,...,M and j =1,2,...,N with

fi(z) =

= ¢—p - g+p
)IITIE LIV PRI £}
1=1 j=1

For p > 0, we will show that the denominator must collapse to one factor.



On coefficient domination for some classes of analytic functions 161

Theorem 9. For p > 0 if f is a support point of ¥} 4, then

) 12,1 = zjz)%
f (Z) = (lj_lyoz)(q+P)/2 )

where |yo| =1, and N, z; and «; are as above.

Proof. In [7] it was shown that if

4, = {/U mdu(x) : 4 is a probability measure on U},

then ¥, - ¥, C ¥,4, where p >0 and ¢ > 0. Hence

1
M ;
H]:](l - y]z)ﬁ)

€ g(q+p)/2
and
G .
fi(z) = / (1- yz()2+p)/z du(y),  where G(2) = [[;L,(1 — 2;2).

Note G(z)/(1 — yz)dtP)/? is in ¥, 4 for all |y| = 1. Using the fact that f'(z) is
a support point of ¥ | by standard arguments one can show that p is discrete.

P4’
Thus,

Z k(l_ kz)(q+p)/2’

where L is a positive integer, Ay > 0, |yx| =1 for k =1,2,...,L and Ele Ak
=1.
A comparison of the singularities of the two forms for f'(z) yields the result.

4. Coeflicient estimates

Lemma 10. Let a >0, b >0 and |c1| = |e2| = 1. If

1+c1z) 1+02z)b

7z = ( —

and g(z) < (

then there is a ¢ with |c| = 1 such that f(z)-g(z) < ((1+¢2)/(1 - z))a+b
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Proof. Let ¢; = e?% | j =1,2. Then

a(b, — 7/2) < arg f(z) < a(6; + 7/2)

and
b(62 — 7/2) < argg(z) < b(6; + 7/2).
Hence
(a61 + b92) 1/a+b ((191 + b02)
s m/2 < arg (f(2) - 9(2)) < Tt b + /2.

That is, (f(2) -g(z))l/a+b < (14 ¢2)/(1 = 2), where ¢ = ¢2i((201+862)/(a+b)) - Thjs
is the assertion in the Lemma.

A crucial ingredient in our proof of Theorem 13, which concerns the coefficient
domination of @, g, is the following;:

Lemma 11. (See [2], [4] and [17]). Let a > 1. If f < ((1+cz)/(1—z))a for
some |c| =1, then f < ((1+2)/(1-2))".

Note: If f(z) =Y o7 panz" and g(z) = Y oo, bn2™ we write f < g to mean

lan| < |bn|, n=1,2,3....
We will also use the following elementary fact.

Lemma 12. Let f; < g; and f; < g2. If both g, and g, have nonnegative
coefficients in their power series expansions, then fif: < g192.

Theorem 13. Let (8 + %6 >1. If f € o, with ¢ = 2(1 — «), then
fl2) <« (1 +2)P /(1 = z)f*e.

Proof. The argument employs the same device introduced in [5]. By Lemma 1
we have, for any f € &, 3,

1+ cz
1—2’

fl(z) = [p(z)]ﬂ@ where  p(z) < le] =1 and s € St(a).

As noted earlier

s(z) :/tl———;;)_ed“(x)’

where p is a probability measure on U. It clearly suffices to prove the result when
4 is a unit point mass. Thus, without loss of generality, suppose,

, P 1 g(l+ zoz\/2 1
F'(z) = [p(2)] T aery = [p(2)] ( ) (

1— 202 1—z2z2)s/2”
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By Lemma 10

[p(z)]ﬂ(l +z02)s/2 - (1 +c0z)ﬂ+€/2

1—1xz9z2 1—=2

with |co| = 1. Since §+ 3¢ > 1, by Lemma 11

prol? (H22) " (HE27 <),

Also
1 1

(1 — z222)¢/? < (1 —22)e/2 = 92(2).

But both g;(z) and g2(z) have nonnegative coefficients. Hence, by Lemma 12,

(1 _ 22)5/2 - (1- z)ﬂ+e/2'

£(2) < <1+z>ﬂ+€/2 1 (1+2)#

11—z

As corollaries we easily obtain the following results which appear in [3].

Corollary 14. Let p > 0 and ¢ > max{p,2}. If f € ¥} 4 then

, (14 z)a=P)/2
fla) < (1—z)@+p/2°

Proof. Since ¥, C &a s for the stated range of parameters, the proof is
immediate from the theorem.

Remark. In [3] the corollary above was obtained by introducing the family
Sa- A function f in & belongs to Sa g if f(2) = h1(2)/h2(2) where hy € St(a)
and hy € St(B3). It was shown there that Sq 5 = ¥, , where a =1 — (g +p)
and 8 =1 — i—(q — p). Hence Corollary 14 above is equivalent to the following

result in [3].

Corollary 15. Let a <3< 1 and a+ < 1. If f € Sa,p then

14 2(1-8)
fr) < El—_gz_(l—_a)

We turn now to the case 8 + %5 <1.

Theorem 16. Let 3 >0, ¢ >0 and 8 + %6 < 1. Then there is a function
f € %4 (hence also in @ g ) such that the second coefficient in the power series
for f'(z) has modulus strictly greater than the second coefficient in the power
series for (1 4 z)?/(1 — z)P*¢. (That is, the condition B + 3¢ > 1 is sharp in
Theorem 13.)
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Before we prove the theorem let us introduce some notation and present some
preliminary calculations. Using Lemma 1, it is an easy calculation to show that,
for any f € @ap,if f'(z) =1+ > oo, anz™, then |a1| < 28+ & = by, where

The proof of Theorem 16 arose as a result of the investigation of the second
coeflicient.
Write
(L+ )21 4y2)2 & n
(1—Z)ﬂ+€ _1+;an(z’y)z I

where |z| = |y| = 1. Let
A=(B+e)(B+e+1),

B =268 +¢),
and
C=p-p.
Then 2 2
e -4+ 8(252) #(252) - a(5)
and

2ay(z,z) = A+ Bz — Cz?.

Lemma 17. Let 3 >0,e>0 and5+%6<1.
i) max {|az(z,z)| : || =1} = az(1,1) if and only if V2+¢ <28 +¢ < 2.

ii) If 26+ ¢ < v/2+¢, then max {|az(z,z)| : |z| = 1} occurs at = = o, where
Rezo = B(A - C)/4AC.

Proof. Since |2az(a:,:v)l2 = A2+ B%+C?+2AB Rez—2BC Rex—2AC Rez?,
if we let ¢t = Rez, then the right-hand side of this equation equals

G(t) = (A+C)* + B® + 2B(A — C)t — 4ACt>.

If 0 < B <1,then AC > 0. Thus maxjy<; g(t) occurs at to = B(A—C)/4AC > 0
provided to < 1, i.e. provided B(A — C) < 4AC. If ¢t > 1, then max)<; g(t)
occurs at tg = 1. A simple calculation shows that the inequality B(A—C) < 4AC
is equivalent to 28 + ¢ < /2 + ¢ and the lemma follows.
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Remark. For some special values of # and ¢ this lemma appeared in [4].
For later use we wish to note that, in the case 28 + ¢ < v/2 + ¢, the actual value

of the maximum of lag(:v, x)‘2 is given by

(A + C)2(4AC + B?)
4AC

2 2
ﬁ§;§|a2(z,z)| = |as(z0,20)|" =

Proof of the theorem. Our goal is to construct f € ¥, , with the property
that, if f'(z) = 3277 janz™ and (142)P/(1—2)f*¢ = 3°°° b,2", then |as| > |by].
To this end let f € ¥}, ,, where

, 1 Bl2(1 4+ F2)8/2 b ~
fey =22 x(l) - Z()sz) =143 an(a "

in our notation above.

Write h(t) = 2ay(z,Z) = A+ 8+ Bt — (C + B)t? where t = Rez and note
that A(t) is real. An easy calculation shows that h(t) peaks at t; = B/2(C + j)
and t; < 1 is equivalent to 3 + %5 <1.

Case (i): V2+¢e < 28+ ¢ < 2. In this case, by Lemma 17 and the above

calculation, we have

RA(t) = h*(t1) > h2(1) = ¢(1) = :
max (t) = h*(t1) > R*(1) = g(1) lrﬂ?fg(t)
Consequently |a2(:c1,:17:1)| > lag(l,l)’, where Rez; =t;, |z;]| = 1.
Case (ii): 28+ ¢ < /2+¢. In this case g(ty) = max|s<; ¢(t) (Lemma 17
(i1)).
We claim that

2 _ 2 —
hi(ty) = :lfﬂzgh (t) > g(to) = ﬁgg(t).

A simple computation shows that
B2
h(t;)=A —_—
(t1) + B8+ W6+ 0)

We observed earlier that

_ (A+CP(B* +440C)

9(to) 4AC

Hence to prove the claim, for

0<B<;(Vet+2-¢),
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we show that h%(t1) > g(to), i.e.
(*)  4(A+C)Y(B* +4AC)(B+C)* —AC[4A+B)(B+C)+ B’* <o.

In the following, equivalent forms of the inequalities are obtained after dividing
out by common factors. Since

A+C=(28+¢€)(e+1),
B? + 4AC = 4B(B +¢)(e + 1),

and

4(A + B)(C + B) + B® = 4B[2(2B +€)(e + 1) — Be],
the inequality (*) above is equivalent to
(28 +e)?(1+e)P(2— B2 — (B+e+1)1—-B)[2(28+¢)(e+1) — Be]” < 0.
To simplify this inequality, write u = 28 + ¢ and v = 1 +¢. Since
B+e+1)(1-B8)=(e+1)—Ble+1)+B(1-8),
the inequality (*) above is equivalent to
u?v*(4 — 4B + %) — [v — Bv + B(1 — B)] - [4u®v? — 4Beuv + B%e%] <0,
which is the same as
4u?v® — 4Buv® + f2u?o® — 4uPv® + 4Beuv? — B2e%v + 4fuo’
— 48%uv? + B3e%v — 4B8(1 — Buv? + 4B8%(1 — Beuv — B*(1 — B)e? < 0.
This is equivalent to

Bu?v® + deuv? — Be?v — 4feuv? + F%e%v — 4(1 — f)uv?
+4p(1 — Beuv — B%(1 = B)e? < 0.

Now we put u = 283 + ¢ back in and obtain the equivalent inequality

(4v® + 1607 — 8ev + £2)B% + (4ev® + 8cv? + €%v — 16v° + 8ev)B
+e2v® — 8ev? + 3% < 0.

If we put v = ¢ + 1 back in, the inequality has the form

RBA?2+SB+T >0
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where

R = —4e® — 21e% — 36c — 20 = —(¢ + 2)*(4¢ + 5),
S = —4et —17® —16e% + 126 + 16 = —(¢ + 2)*(4e? + £ — 4)
and
T=—(c+1)(e* + 2% —4e® —8) = —e(e +1)(e — 2)(e + 2)2.

This inequality is clearly equivalent to
F.(8)=(4c+5)8% +(4e® —e—4)B—e(2—¢e)(e+1) <0.

To verify () for 0 < 8 < %(\/6 +2—¢), it is sufficient to check the last inequality
at the end points o = 0 and p = %(\/6 +2—¢). Since € < 2, clearly F,(0) < 0.

A straightforward calculation gives
F.(f1) =31 +¢e) (1043 —8V2+¢).

So F.(B1) <0« (104 3¢)® —64(2+¢) < 0.
This is the same as (¢ —2)(9¢ + 14) < 0. Since € < 2, we have F,(8) < 0 for
all 0 < B < %(\/e + 2 —¢). Hence we have completed the proof of our claim.

5. Closed convex hulls when § + %6 <1
From the proof of Theorem 15 it follows that, for g + %6 < 1, there is an z¢
with |zo| = 1 such that, if

(1 + 202)P/2(1 + To2)P/? = _
LIRSz
n=1

fo(2) =

then Iag(mo,io)l > max|z|=1 ‘(12(.’1?, x)| We claim this also shows that

AP 2 Fp,p+es where ¢ = p and 8 = 1(¢ - p).

Since k(z;z,y) € ¥, for |z| = |y| =1, we know Fg g4c S0 ¥, ,. However,
it follows from Lemmas 11 and 12 that k'(z;z,y) < (1 + 2)?/(1 — 2)#*¢ for all
|z| = |y| = 1. Since Fp,p4c = @ {k'(z;7,y) : |z = |y| = 1}, we also have

(1+2)°
9g,ﬂ+€<<( )ﬂ+e 1+sz

The lack of domination of ¥, , by bz, however, shows that €6 ¥, , is strictly
larger than %3 34.. We can say even more.
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Theorem 18. For 8+ ;e <1,

T, 4 2 Y 2p4e 2 Fp.ptes

where, as always, ¢ = 2(1 — a).

Proof. It remains to show that €07 ,5,. # © & 4 (equivalently €67, 254
# Coa,p). If OV, 254 = TOHy g, then each support point of ¥ 244, is also a
support point of 7, g. This follows from the general fact that, if % and ¢ are
compact subsets of & such that # C ¢4 and ©6.% = c0¥, then each support
point of F is also a support point of 4. Take any f € L%, 254+ C ©, 3. Then
Theorem 9 implies that

N .
Hj:l(]' - Ijz)aj
(1 —yoz)fte

f'(z) =

and, since 8 < 1, Theorem 7 implies that

N

7z = (

k=1

14 cziz\~P 1

Ak ) .
1—zxz (1 —zo2)®

Comparison of the singularities of the two forms for f'(z) yields zx = z¢ = yo for

all k =1,2,...,N. Hence

by (1 —z02)P
f (Z) - (1 _ yoz)ﬁ+e'
Now we have
(1 —z2)?

! Cq—-—r: = =
zv@,zﬂs_{(l_yzwe o = Iyl =1}

from which we deduce €6 7,5, = Fp,p+e. This contradiction when §+ Je < 1
completes the proof.

Thus, for f > 1, we have &6 7,5, = @&, 3 = Fp p4e. For f+ 36 < 1
they are all distinct. The most intriguing and seemingly difficult open question
involves the range 0 < f# < 1 and B + %6 > 1. In this range there is coefficient
domination, i.e.

(14 2)8

! !
Veopre K o p K< Fppre < =

but the question of equality of the closed convex hulls remains open. In particular,
the longstanding question of identifying £c6 €(8) = &¢co 5, 0 < f < 1, still
remains inaccessible.
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