
Annales Academire Scientiarum Fennica
Series A. I. Mathematica
Volumen 17, 1992, 151-169

ON COEFFICIENT DOMINATION FOR SOME
CLASSES OF ANALYTIC FUNCTIONS

S. Perera and D.R. Wilken
Union College, Department of Mathematics, Bailey Hall

Schenectady, NY 12308-2311, U.S.A.

University at Albany, State University of New York, Department of Mathematics and Statistics

Earth Science 110, Albany, NY 12222, U.S.A.

Äbstract. For o ( I ar.d B ) 0, Iet do,B denote the set of functions / analytic in
D = {z e C :lzl< 1} such that /(0) = 0, .f'(0) = 1 and

l*r##ltu; rorz inD'

for some s in St(a) , the starlike functions of order o(St(l) = {r}) and some real number 7. For
g ) 0 and lpl S C,let /o,o denote the usual subfamilies of functions having bounded boundary
rotation. It is shown that a coefficient dominationfor $,0, in the range p ) 0 and q ) rnax{p,2} ,

extends to .d!,U in a corresponding range for a and B . (The family 9t denotes the set of
derivatives ofthe functions in the farnily 9.) Examples are constructed to show that the range of
parameters in both cases is sharp for the second coefficient. As a consequence we obtain following
the proper inclusions: lf e = 2(l - a) and 0 + le ( 1, then

co dl,B ur*/!,rB+, 
? 

%p,B+,

where, forpositivenumbers o, and b and with U - {, € C'lcl - 1},

zo,b = { lrrrffi dp@,a): p is a probability measure o' u x u}.

We also extend and organize a variety of results in the literature for the families do,B , /p,c
a;nd 9o,6 and identify the form of the support points of d",B and /r,0.
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1. Introduction

Let .d denote the set of all functions analytic in D : {z e C :

Ther .d is a locally convex linear topological space under the topology
convergence on compact subsets of D.

For o ( 1 and B > 0,let .do,p denote the set of functions f in d
/(0):0,"f'(0):1and

of uniform

such that

for z€D,

for some s in St(o), the starlike functions of order o(Sr(i): {r}) and for some
real number 7. These families were introduced in [15]. Note that / € dop if and
only if /(0):0, "f'(0): 1 and "f'(r) e Sf(o). Alternatively, dop:,tr(a),the
family of convex functions of order a. Note also that do,B:€@), the family of
close-to-convex functions of order B introduced in [16]. (See also [10].)

For q ) 0 and lpl1C,\et /n,, denote the set of functions f in .d such that
/(0):0,"f'(0):1and

no,b: { lr,rffi dp@,v): p is a probability measure on [/ x

-t 2

rz) d,p(r)),

where U : {" € C:lzl:1} and pr is a real measure on U satisfying [udp: p
aled luldpl a g. These families were introduced in [3]. /2,1, is the samä as Yp,
thefamilyof functionshavingboundaryrotationat most,tzr. Also, if. p: g then
p:p.) where ) is aprobabilitymeasure on U. Hence f e/c,q if and only
if /(0) :0, /'(0):1 and "f'(r) e Sf(a), where c:2(7 -o). We thus have
Tc,q : do,s, where q : 2(7 - a).

For a > 0 and å > 0, let

Let I beacompactsubset of. d. Afunction f in I isasupport
9 if. there is a continuous linear functional J on d such that

U\

point of

Re/(/) : max { ne"t1e; : s e 9}
and Re .I is nonconstant on .q . If the function / uniquely maximizes Re "I over
.?, then / is called an exposed point of. I . The set of support points of ,9 is
denoted by 89, the closed convex hull of I is denoted by co,9 and the set of
extreme points of a9 is denoted by Ecog. We use ,9' to denote the set of
derivatives of functions in I , i.e. 9' : {f' , f e g} .
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In many places in the literature ([3], [5], [1], [10], [13], [15]) properties of the
families do,p,/p,q ar.d 9o,6 have been studied. Questions concerning their closed

convex hulls, extreme points, support points, as well as inclusion relations, have

been addressed. For example, using our terminology, in [5] it was shown that, for
h) 4,

coT,!,0 : co.dj;r_r: gtr*-r,tr*+r.

In [1], [11], [14] and [15] it was shown that, for o ( 1,

Edl,r: Eer,s-zo: {O=#= : lrl : lyl : 1, " * y\.

Additional results exist throughout the literature.
In this paper our goal is twofold. The first goal is to gather, extend and

organize somewhat these disparate results and identify the form of support points
of the families .do,B and /.p,q. The second goal is to show that a coefficient
domination for '$,0, in the range p > 0 and g ) max{p,2}, extends to d!,B in

a corresponding range for o and B, and to construct examples which show that
the range of parameters in both cases is sharp for the second coefficient. As a
consequence we obtain the followinE proper inclusions:

If e :2(L - a) and B + i, <L, then

- 

n17lco /r,z§+, 9 B,§*,

2. Convex hulls and extreme points

Recall that a function f in .d is subordinate to a function g in .d , denoted

f < g, if there is afunction cp in .d with p(0): O, IVQ)I ( 1 for z inD,
and such that f(z): S(pQ)) for z in D. Thefollowingreformulationof do,B
follows easily from the definition.

Lemma l. A function f in .d with /(0) : 0 belongs to .do,B if and only

it f'(z) : p(z)s(z)l z, where p(z) < ((t + cz)lQ - r»P, for some lcl : t, and s

belongs to .Sf (a).

For two families of functions ,9 and I in .d ,let

.q.g:{f.s:f€9,seg}.
We need the following useful lemma.

Lemma 2. Let .9 and I be compact subsets of d. Then

\ .q .9 is compact.
ii) If l, € E6(g . 9) a,nd h is not identicilly zero, then h : f . g where

f e E6.q andgeEcog.

co dl,p ?7
f*



154 S. Perera and D.R. Wilken

Proof. i) The fact that g .g is compact follows easily from the properties
of compact subsets of. .d .

Toestablishii),let heEa(9.9). Ther-h: f .g where I e I ar,d g e 9.
If. f : th+l-t)fz, 0 ( t < 1, å * fz, h, fz € co I , then lz : tfi'g*(L-t)fz'S
where hg, fzg € (6 g).9 g6(q .9). Since ä is an extreme point we must
have fig : fzg. But h * h so g = 0. Hence h : 0, a contradiction. Thus

f e Ea g. Similarly g e E cog ,, as desired.
For o ) 0, å > 0 let lc(z;x,y) denote the function in d such that k(0):0

and kt(z;x,A) : Q - az)" l(1 - yz)b, lrl : lyl : 1. Note that for each o and 6

we obtain a family of functions, although for simplicity of notation we suppress
the o and ä. It will usually be clear in the context of any argument what family,
i.e. what o and 6, is being discussed. The following well-known result ([3], [1])
will also be useful.

Lemma 3. Let a)0, å>0.
i) E.?o,6 c {k'(z;e,y) i lrl : lyl - 1}.
ii) If 0 1a 1t, {k'(z;n,y) : l"l : lvl :1, r * y} e Eg,,b.
iii) If 0 < o ( b, then lct(z;r,y) 4 E9"l when r : A.
iv) If 0<o( I and alb,then 8.9o,6: {k'(z;r,A): lrl : lyl :\,,r*y}.

Throughout this paper let e denote 2(L - a). It is easy to verify that the
functions k(z;r,y) such that k(0):0 and

tc'(z;r,o): f,ffi, where lrl : lvl : 1,

are (important) examples of functions in do,p.

Theorern 4.
i) Let B > 1. Then

75.do,p : { lu*ulc(z;r,y)dp(r,y) 
: 1-t is a probability measure on U x U\.

Equivalently co dl,B : 9B,B+".
ii) Let B > 7. Then

E6.d",p e {*12;r,u) : lrl : lyl : L, * * y}.

iii) Let 0 : t. Then

E6doJ: {k(zix,U)i l"l : lyl :7, **y}.
iv) Let 0< P < 1. If f e EaA.,p,then /(0):0 and

r,(,):(W)u 
rr_04L,

where lyl : l"l : L, c I -l and g is art inner function with p(0) : 0.
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Prcof. i) Using standard methods we show adl,p: 9B,B+" as follows.

If / € do,g, by Lemma 1we have that f'(z): p(z)s(z)lz. But B ) 1 and

s € St(o) imply that

p(,): I (#)pa.r1,;.,,a
s(z): 

I C:r*d.u(u), 
where ) and z are probabilitv measures on U.

It follows that

e@9: lt#dr,(*,v),
where p is a probability measure on U x U. Since 9B,p*, is compact and convex

and each k'(z;t,y) : (1 - rz)91$ - az)p+e e dl,B, we have cod!,B: 98,8+".

ii) and iii) Apply Lemma 3, respectively, to the cases P > 1' and B - l.
iv) Let f e Ecod,,B. Again by Lemma 1, f'(r) : p(z)'s(z)lz, where

p(z) < ((t+cz)lQ- r»9 for some l"l : t and where s belongs to ,St(o)' Let

*":{fe.d:f.(y)'}
In [1] it was shown that, for 0 < B ( 1 and c:7,

( t7*rpr,§ )Egr : 
t (H) : p is an inner function with 9(0) : 0i'

Since both 91 arrd a 9t are compact, it is immediate that E a 91 9 E?r-
In fact the same proof yields the more general case for arbitrary unimodular

c, i.e.,

E co e"a {(i:#)u 
, r is an inner function with e(0) : 0}.

AIso

u-(ry) :{(+'tvt :1} (see[6])

An application of Lemma 2 now yields the stated form.

In [5] it was shown that, for k > 2,, lx egck- 1) and that, for k > 4,
d/* =6€(rk - 1). These results can be extended to similar results relating
/n,o to do,g.
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Theorem 5. For 0 < p ( e, Tp,c e d",B where a:7-ip *ra g: L(C-d.
Proof. Note that p: q implies Tp,q: /q,q : dop, where q:2(1 - a).

Thus, without loss of generality, suppose 0 < p ( g. We modify the argument
given for Y1, h 177, p. 241. Take any f € To,o. Then

f'(,) :.*p 
i - Ir^rr, - rz) d,p,@)], where lror- p and lu4rl = 

,

Since /r,o e /n,r, for g ( g', it is enough to consider the case t lapl- q. Let

1
p.L : 

@; illpl + p)

and

r,:{r1lpl-p).
Then pl1 artd p,2 are probability measures on [/. Let

s(z) :,"*n 
| - | nue! - w) dp1@)).

Then s e .9t(o), where a : I - *p.
Now

,l'Q) (-{»: I "*o l- lrog(1 - rz)(d1t1 - or,r)}' where p : ry.
By ([17], Theorem 2.5) this function is subordinate to ((t+cz)/(t- r»P for some
l"l : t. By LemmaT, f E.do,§.

Corollary 6. For 0<p( Q-2,

dTi,o-mdl,B-9§,§*e,,

.,-1 o=, p_q-P and, e_ 2(1 -o)--p.w+z'Yzr

Proof. Eachkernel (1 - rz)BlQ-az)9+e isin'Yl,o. Now p<q-2 yields
p > l. Hence, by Theorem 4,

9B,B+. - *dl,B cdY;,q.

By Theorem 5, coY;,q e * dl,B.

Remark. The family d/i,,, for this range of values, was obtained in [B].
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3. Support points

The following result for d,,p was obtained by the first author in [15]. For

completeness we include the proof.

Theorem 7. Let fo be a support point of do,§.

i) If B ) l, then

f[(r): 
(L-"1)8, 

wherelrl :lyl :1 withrly-- (1 - yz)9+') '

ii) If 0 < p < 1, tåen

f[(,) -

where N is a positive integer, 0 ( )6 < 1, »fl=r lt : 1, lrrl : ! for
k:!,2,...,N, lyol: l"l :L and c* -7.
Remark. As pointed out in [15], if 0 : 1 and o ( 1, then the argument

[14] can be modified to show that each kernel (L - rz) l$ - yr)r+", lrl : lyl :
r * y, is actually an exposed point of d[,r. Hence

Edl,r: {k'(z;n,y) i lrl : lyl :7,n *y}.

We suspect the same is true for .do,p when B > 1, but this has yet to be demon-

strated.

Proof of Theorem 7. i) Let J be a continuous linear functional on .q/ such

that
Re/(/s):max{Re/(/) : f e .d*,B}

arrd ReJ is nonconstant on do,g.Define L by L(f'): J(f) for all f in ds:
{f e 6 , /(0) - 0}. Then .L extends to a continuous linear functional on .d ,

Re.t peaks over.d!,U at /[ and Re.L isnonconstanton d!,r. Forfixed P,,l:f
9" derotethe set of functions subordinate to the function ((t+cz)lQ - 4)B'
By Lemma 1, we have f[(r): po(z)' ss(z)lz, where so €,St(s) and ps 6 9"o
for some l"ol :1.

We first show that 
"o * -7. If not, Po(z) :1 for all z in D and /l(z) :

ss(z)lz. Since !+erzn e 9t for sufficiently small e (> 0), for all lrl :1 and

n:1r2r3r,.., we must have

(å
. 1*crrrz\B 1
l-r-"r \-rkz ) (1 -uor)"

in
1,
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-0for n-7,2,3....
Since, for any f in do,p, zf'(4 Ito(z) - 1+ DL,

in [13, p.217),, L(f')- L(to(z)lr) and L is constant on
shows that cs * -1.

I.{ext we show that ss is a support point of ^9r(a) .

and hence L(rn-Lro( ,))

arfrn is analytic in D , as

,dl,p . This contradiction

To this end let

.?- 
{o, Q).9: s € st(a)}.

By Lemma 1 I is a subset of dl,p and .7 . Hence

,(r) t
;)

få is in

Re.L (orQ)

for all s in ^Sl(a). Define .t1 on do bv Lr(g): t(no(r).gQ)lr). Then .tr
extends to a continuous linear functional on .d and Re,t1 peaks over .St(o) at ss .

We claim that Re-L1 is nonconstant on .9t(o). If not, neL(n,Q).s(z)lz)
is constant for all s in .9f(a). Let s(z) : ,lG - rr)" (lol : 1). We have
F"eL(no(z)lQ, - u)") is constant for all lrl : t. Since L(esQ)lO - oz)') is an
analytic function on lc | ( 1 and the Taylor coefficients of. 1l(L- z)' are all nonzero,
L(r" 'po(r)) : 0 for n:1,2,3,.... Again as in [13, p.21,7), L(f') :.0(p6) for
all / in do,§, a contradiction. Hence ss is a support point of St(o). It is known
([9]) that D^9f(a) : {zlQ-*")' : lol : t}. th"s s6(z): ,lG-y6z)e for some

lyol : 1 and få(r) : po(z). (7 - yor)-' where p6 is in 9"o for some c0 # -7,
l"ol : 1.

Now we show that ps is a support point of 9., . Let V : {nQ).(7 - ysz)-" :

p € 9"o) . Again by Lemma l, I is a subset of. .d!,U and /[ is in I . Define .t2
on .d by

Lr(s): L(sQ).0 - yor)-").

Then .t2 is a continuous linear functional ot d and Re.L2 peaks over 9"o at po .

If. Re Lz is constant over 9.o, then Re L(p(z).(1- yor)-' ) is constant for all p in
9"o. Since ((7+csrz*)/(1-xz*))B irir, g"oforall lrl :1and rn:1,2,3,...,
it is easy to see that L(z*(t-yor)-"):0 for rn:1,2,3,.... Once again, as in

[13, p. 2L7], L(f'): r((1 -voz)-') for all f in .do,B, a contradiction. Hence p6

is a support point of. 9"o.

Case (a): B > 1. In this case it was shown in [12, p. 535] that

2eco: {r,{:r;,)' :trt _,}
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Hence

r [ (,) : (+#)u 
G _ o, +---]-

for some lro I : 1. Let

o:{oed:h(,)<e-}-r_"*\
a"nd

-Y : {(t * csxsz)B h(z) : h € tr).
As in [17, p. 19], univalence and convexity of log(1 - z) yield

åp(z): ' '' 
1 t--l ':t - (1-xsz)e (1-vor)"' (1- z)9+"'

Hence f6 e tr. By now standard methods, it is easy to see that ,ff is a compact
subset of. a d!,r. Since fo € Edo,u implies that /s € l,co.do,B, Re.L peaks over

.Y at /6. By defining Ls ol d by Lr(g): r((1 + csr6z)Pg(z)),.tbeforeone
carr show that äo €D,*. But

E,ff: {d»*: lrl : r} [12,p.535]'

Hence hs(z): LIO - usz)9*e for some lt ol : 1 and

f'oQ) : (L * cnxnz)P lG - ror)9*".
This completes the proof of (i) when B > 7.

Case (b): 0 : l. In this case it was shown in [12] that
N

En"o: {»^-+#:0 ( )1 ( r. and lr*l:1for & :1,2,...,N,
lc:1

N
u.rd !.lr : 1 for N :7,2,3,... )'

Ic= 1

Hence f|Q) : Dil=, Åk(1 + csxez)f (1- qz). (tlO - yoz)')
The function g1 defined by

g'*(r) :7-* cox*z 
=-+--=, ge(o) : o,\ / 7-xpz (1-yoz)'

is clearly in d,,1for &: L,Z,...,If . Since fo(z): »il=, \xg*(r) and /s is a
support point of d6;, each 91 must be a support point of .do,1. An argument
similar to that in case (a) (with 0 :'J-.) implies that the denominator of each 91
must collapse to a single factor of the form (L - yxr)t*'. Hence xp : ys for
lc:tr2r...rN and

t,/-\ - 
ltcsYszro\.)_Gdn

This completes the proof of (i).
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(ii) In this case, O < P < 1, the function ((1+ csz)l$ - r))p is univalent
and convex in D. It follows from Theorem 6 in [12, p.531] that

En"o: { (',* *') P 
,9 i"a finite Blashke product with 9(0) : 0}.

[\ 1-9 / )
Hence

fr(,):(=#)'(+A
where go is a finite Blashke product with 96(0) : 0. A trivial modification of
the representation

!yr: S su!.*,o,7-po A 
*L-xpz

obtained in [9, p. 83] yields

1*copo S. 7!csxtcz
1-.po :2"k 

l-ukz'
The form stated in (ii) tor f[(z) follows.

Corollary 8. Fbr 0 (p( 9-2, if f isasupportpointof /n,o,then

r,/-\ - 
(7 - xsz)k-n)lz

r \')- 
O-Yoz1c+il\z'

where lrol: lyol: I and q *yo.
Proof. By Theorem 5, /p,ce do,p, where o:1-åp u,.ra §:i@-p)

(> 1).
By Corollary 6, co/,,, - co do,g. Hence each support point of Tp,q must be

a support point of do,§. The Corollary then follows from Theorem 7.

Next we obtain some information on support points of. Tr,, for values of p
and q which are not covered in Corollary 7.

Theorem 2 in [8] shows that the representing measure for a support point of
T|,0 must be discrete. That is, if / is a support point of /r,r, then

rt, \ f][r(r -xiz)aiI\z):i,TJt-vi")u"
where N and M are positiveintegers, ai)0, 0x)0,|*jl:lyxl :1, rj *y*,
for k:1,..., M and j:7,2,...,N with

Do, and D,B,:':'.i'--t " A' z

For p ) 0, we will show that the denominator must collapse to one factor.
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Theorem 9. For p> 0 if f is a support point of Yn,r, then

t,/-\ - 
tl[r(' - ri')o'

r \') (c ydT+ew '

where lyol - l, and lf , ri and aj are as above.

Proof. In t7] it was shown that if

so: { l";r*du(r):p is a probability measure on U},

thet 9o .9, e 9o1, whete p > 0 and g > 0. Hence

1
e 9tq*p) /z

r(,) < (++)" *,d g(,) < ('{::")',

thenthereis a c with lcl:1 sucå that f(z).sQ) < ((t+cz)/(t - r))"*u.

and

f'(,): I €;#*dr,tu), where G(z):II,t,(, - riz)di.

Note G(z)/(L - yzlk+p)lz is in \,, for all lyl: t. Using the fact that /'(z) is
a support point of /i,r,by standard arguments one can show that p is discrete.

Thus,
L

f,(r) :» 
^- 

, 
*(')

Å=1 I - YPz)G+n)lz'

where .L is a positive integer, )* > 0, ly*l : 1 for k :1,2,...,.L and Df=, fo
- 1.

A comparison of the singularities of the two forms for f'(z) yields the result.

4. Coefficient estimates

Lemma LO. Let a)0, å > 0 and lcll : lc2l :1. If
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Proof. Let cj: 
"zioi , i - Lr2. Then

and

Hence

W - np< ars (re). ,(,))'t"*u .W * trl2.

That is, (f (")-r(r))'|"*u < (1+ cz)l$- z), where , - "2i((a0t*b0)l@-tb)). 
This

is the assertion in the Lemma.

A crucial ingredient in our proof of Theorem 13, which concerns the coefficient
domination of do,p, is the following:

Lemma 11. (See [2], [4] and [17]). Let a > 1. If / < ((1 +cz)/(L-z))' for
some lcl : L, then / < ((1 + z)lQ - 4)" .

Note: If f(r): DLo anzn ar..d sQ): DI:o bnzn we write / ( 9 to mean

lo"l < lb"l, r:1,2,3....
We will also use the following elementary fact.

Lemma L2. Let h K gt *d fz K gz. If both 9r and 92 have nonnegative
coefrcients in their power series expansions, tåen frfz K g$2.

Theorem 13. Let B * |e > 1. If f e .do,B with e :2(L- a), then
f'(") <(1 + z)P lG - z)§+' . '

Proof. The argument employs the same device introduced in [5]. By Lemma 1

we have, for any I Q do,B,

f'(r): lni))p! where p(z) <Y, l"l : t and s € st(a).

As noted earlier t
s(z) : JGWdp('),

where pr is a probability measure on U . It clearly suffices to prove the result when
p is a unit point mass. Thus, without loss of generality, suppose,
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By Lemma 10

lpQ))B (H)'/' < (U:1)P+€/2

with lc6l :1. Since g + le ) 1, by Lemma 11

lne))B (H)''' u (#)u*tz : s,e).

Also 11
C -4,ry7, 

u 
6 - rr1"t, 

: gzlz)'

But both g{z) and Oz(z) have nonnegative coefficients. Hence, by Lemma 12,

r,(,)<(-)*''6fu:ffi
As corollaries we easily obtain the following results which appear in [3].

Corollary L4. Let p)0 and q2max{p,2}.If f e/r,, then

f'(r)<H#
Proof. Sir:;,'ce Tn,o e do,g for the stated range of parameters, the proof is

immediate from the theorem.

Remark. In [3] the corollary above was obtained by introducing the family
S.,,g. A function f in .d belongs to S..,B if. f (z): hr(z)lhz(z) where är e ,Sr(o)

unå h, e St(B). It was shown there that So,g : /|,r, whete a : !- ä(q +p)
and B - 1 - iG - d Hence Corollary 14 above is equivalent to the following
result in [3].

Corollary L5. Let a< B <7 and o,* 0 <L.If f e S",B then

., \ -- (1 + )z(t-u,t\z)<@
We turn now to the case g + le < t.
Theorem L6' Let P> o, e)0 attd 9+le z-L' Thenthereis afunction

f € /p,o (hence aJso in do,g) such that the second coefficient in the power series

for f '(z) has modulus strictly greater than the second coefficient in the power
seriesfor (1 +z)B/(t-z)9+e. (That is,thecondition g+le ) 1is sharpin
Theorem 13.)
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Before we prove the theorem let us introduce some notation and present some
preliminary calculations. Using Lemma 1., it is an easy calculation to show that,
for any f € do,p,if. f'(z): 1 * DL, anzn,then loll <20 + e : bt, where

S*{.:r+fu.,'.
(L - z)9+e n=t

The proof of Theorem 16 arose as a result of the investigation of the second
coefficient.

Write
(1 + nz)P /' (t + y z)B /2

oo

1rf'r -1- L an(x 
' u)'n 

'n:L

where l"l - lyl- 1. Let
A-(0+€)(P*e+1),

B-2P(0+e1,

c - p - p'.

2az(*, v) - A + B (ry) + p' (ry)' - p (ry)
and

2a2(x,n): A* Br - C12.

Lemma L7, Let B>0, e)0 and g+le<t.
i) max {l"r(*,o)l : lcl - 1}: a2(7,L) if andonlyif A+e<20+e <2.
ii) If 2P * e < \/2+ r, fåen max {l"r(*,r)l : lzl : 1} ,t.rt" at r: rs, where

Reo6: B(A-C)14AC.

Proof. Since l2a2( r,*)l' : A2+E2*C2+2AB Rex-2BC Fteu-2AC Fter2 ,

if we let t : Re r, then the right-hand side of this equation equals

G(t) : (A + C)2 + 82 + 2B(A - C)t - 4ACt2.

If 0< P <L,then AC> 0. Thusmaxl,l<rg(t) occurs atts- B(A-C)|4AC >0
provided te ( 1, i.e. provided B(A - C) < 4AC . If to ) 1, then maxlrl<r 9(t)
occurs at t6 : 1. A simple calculation shows that the inequality B(A-C) < 4AC
is equivalent to 2B * e ( A + € and the lemma follows.

( 1 - z)§+"

and

Then
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Remark. For some special values of. B ar.d e this lemma appeared
For later use we wish to note that, in the case 2B*e < \/r+ €,the actual
of the maximum of. la2(a,r)12 ir given by

ffilT l"r(*, 
*)l' _ lor(*0, *il: -

(A + C), (4AC + Br)

Proof of the theorem. Our goal is to construct
that,if f'(z)- »L 0anzn and (1+ r)P l$-z)§+e-
To this end let f e To,o, where

(1 + rz)P /2 G * Tz)§ /z
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in [4] .

value

4AC

f € To,o with the property

f '(r) _

in our notation above.
Write h(t)- 2az(*,*)- A+ 0 + nt - (C + P)t, where t

that h(t) is real. An easy calculation shows that h(t) peaks at

calculation, we have

(1 - z)§+' -1+i an(r',i)'n
n:l

:
t1

Re r and note

- Bl2(C + 0)

77 and the above

ili!1n'(t; 
: h2(t) > h'(t): s(1):6210(t).

Consequently la2(r1,er)l > lor(t,1)1, where Reul: tr,lrrl : t.
Case (ii): 2§+e < Jr+€. In this case g(ts) - maxlrl<lg(t) (Lemma 17

(ii)).
We claim that

A simple computation shows that

h(tt)- A+ 0 +
gz

4(P + q'
We observed earlier that

(Å + C)'(B' + 4AC)
g (to) _

Hence to prove the claim, for

4AC

€),o< p
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we show that h2(t1) > g(ts), i.e.

(*) 4(A+c)'(B' +4AC)(B + C)' - ACI (A+ il@ +c) + a2)' <0.

In the following, equivalent forms of the inequalities are obtained after dividing
out by common factors. Since

A+C:(2p *e)(e*1),
82++AC:ag@*e)(e*1),

and
4(A+ P)(c + P)+ B' :4P12(2P +e)(e +7)- Bel,

the inequality ( * ) above is equivalent to

(zg +e)2(1 +6)'(2 - P)' - @ + r+ 1X1 - il12(28*e)(e + 1) - Br)' . 0.

To simplify this inequality, write u:20 *e and u:1*e. Since

(0 + e + 1X1 - 0): (e + 1) - 0G + 1) + P(L - P),

the inequality ( * ) above is equivalent to

u2u'(4 - ag + P') - l, - gu * BO - B)). l+u2r2 - 4Beuu + g'r') < 0,

which is the same as

4u2u3 - 4Bu2u3 * B2u2u3 - 4u2v3 * 4geuuz - 0' r', * 4Bu2us

- 4B2euu2 I 03e2u - 4BG - P)u'r' + 4P2$ - B)euu - B'O - B)r' . 0.

This is equivalent to

|u'r' I 4euu2 - §u', - 4Beuu2 * 02 ezv - 4(1 - P)u'r'
+ 4P(L - B)euv - P'(1- 9)r' <0.

Now we put u -- 20 + e back in and obtain the equivalent inequality

(4u3 * 76u2 -8eu * e\P' + (4eu3 * 8eu2 + ezu - L6u2 * 8eu)B

*e2us -8eu2 *Zezu <0.

If we put u : e * 1 back in, the inequality has the form

R§'+sg+r>o
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where

R: -4e3 - 2Le2 - 36e - 20 : -(e * z)2(+e + 5),

S : -4ea - L7e3 - 16e2 I LZe *16 : -(e +2)2(4e2 * e - 4)

and
T -- -("* 1)(ea +2e3 -4e2 -8e): -e(€ + 1)(e -2)(, +2)'.

This inequality is clearly equivalent to

F"(p) : (4e * b)0' + (4r' - € - 4)P - e(2 -e)(e + 1) < 0.

To verify (* ) for O < P < Lr(,,,8T2- e), it is sufficient to check the last inequality

at the end points §o : 0 and B1 : Lr(tGTZ-e). Since e l2,clearly I7"(0) < 0.

A straightforward calculation gives

F,(gr): å(r + e)(10 * 3e - 8\/, + e).

so r"(9r) < 0e (10+36)2 -64(2 +e) < 0.
This is the same as (e-2)(9e+14) < 0. Since e ( 2, we h""e F.(0) ( 0 for

all 0 < P < +6GT2 - e). Hence we have completed the proof of our claim.

5. Closed convex hulls when g + le < t

Flom the proof of Theorem 15 it follows that, for B * i" < L, there is an zo

with lcsl : 1 such that, if

f[(r) : 
(t + ,"z)pt2(!lroz)Pt2 : 1 * i r,,ro,ro)rn,(1- z)9+e n=t

then la2(o6,zo)l , maxl,l-l laz(t,a)1. We claim this also shows that

- 

il/l6Ti,o) gg,g*", wheres :p and 0 :ik-d.

Since &(z; x,y) €'Yo,o for l"l : lyl : L, we krrow ?p,B+" e 6/i,q. However,

it follows from Lemmas 11 and 12 that k'(z;u,y) < (1 + z)01$ - z)9+" for all

l"l : lyl : 1. Since 9p**":a {tc'(z;n,y) | lrl : lvl : 1}, we also have

(1+z'B 6
ep,B+" * ö:#i:1* 2u",".

The lack of domination of /i,o bV å2, however, shows lhat 6\,0 is strictly
larger lhan ,Fg,pa". We can say even more.
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,o dl,p )7

Now we have

S. Perera and D.R. Wilken

'coT! 

2§+e '7 B,g*e',

where, as always, e : 2(7 - a).

Proof. It remains to show that co/!,rp+€+Adl,p (equivalently d/.,28+,
* cod.,B). If coyrp§+,: codo,g, then each support point of /,,2g+" is also a
support point of do,F. This follows from the general fact that, if. ,9 and I are
compact subsets of d suchthat I e I ard69:69,then each support
point of 9 is also a support point of 9. Take arry f €ET,,zB+, e Ed,,p. Then
Theorem 9 implies that

f'(r)- II[,(r - rir)oi

f
+

(1 - Uoz)§+' 
)

f'(r) -

Comparison of the singularities of the twoforms for f'(z) yields nk::Do - y6 for
all å:1,2,...,N. Hence

. 1*crkz\P 1

^kcrkz) @

rt/-\- (1 -no4Bt\') 
Q-ao4P+''

»Y:,ze+,q {ffi:lzt - lyl-1}

N

(»
k-1

from which we deduce -/!,rU*": 9B,p+". This contradiction when 0 + le < t
completes the proof.

Thus, for B ) 1, we have 6/!,rp+,: rodl,p: 9B,p+.. For B + le < I
they are all distinct. The most intriguing and seemingly difficult open question
involvestherange 0 < 0 < 1 and g+le ) 1. In thisrangethereis coeffi.cient
domination, i.e.

/!,ru*, <.dl,B K npl+, U t#,
but the question of equality of the closed convex hulls remains open. In particular,
the longstanding question of identifying Eco€(0): Eco do,B, 0 < B ( 1, still
remains inaccessible.
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