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POINTWISE DIFFERENTIABILITY OF WEAK
soLUTroNS OF PARABOLTC EQUATIONS

WITH MEASURABLE COEFFICIENTS
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Abstract. We prove that weak solutions of a parabolic equation with measurable coefficients

u1-div[a(a,t).r,] = (b(r,t),u,) arc totally differentiable (in the classical sense) almost everywhere
with respect to the Lebesgue measure if u1 € ,L["

1. Introduction

In this note, we consider weak solutions of a parabolic equation

0u -3- a / ä"\_+^.,-rr.0u(1) ot - krffi(orr(r't)' a",) 
: 

Lb{t,t) a"

We assume that the equation (1,) is defined in an open domain Q : G x (0, ?) C
R'*1 , where G is an open domain in R" and 7 ) 0, and that the coefficients
qH: akl bt are bounded measurable functions of (r,t) fulfilling the following
conditions with some K ) 1:

(2) I{-r < Do*,(r, t)VkV S K
&,1

for all (r,t) e Q and all unit vectors V € R", and

k

for all (x,t) e Q. Let Wr'z(Q) denote the Sobolev space of square integrable
functions on Q with first order distributional partial derivatives in Lz(Q). Then
u e W1'2(Q) is called a weak solution of (1) if and only if the integral identity

(4) [ax.Ex""#,-\*,#)drdt:0a
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holds for every
t , has compact
boundary f of
solution to (1),
trace on l. In

(5)
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infinitely differentiable function ? - g@,t) which, for every fixed
support as a function of fryt...1fr77 and vanishes on the parabolic
thecylinder Q, f - (AC x [0,7]) u (G x {0}) . If u isaweak
then (4) holds also for every function g € 147r,'(Q) having zero

the sequel, we shall abbreviate (4) to

(p 
", 

au,) - ,p(b, u,)) d* dt - 0.

Known theorems of Moser [10], Ivanov [7], Aronson and Serrin [1], Trudinger
[14], DiBenedetto [5] and others ensure Hölder continuity of different classes of
solutions of linear and nonlinear parabolic equations with measurable coefficients.
For elliptic equations with measurable coefficients, apart from the fundamental de
Giorgi type theorems ascertaining Hölder continuity of weak solutions a number of
results are known about almost everywhere (abbreviated to a.e.) differentiability
of weak solutions, giving additional geometric information about the regularity of
such solutions. We shall mention here three examples: a theorem of Mori [8] stating
the a.e. differentiability of quasiconformal mappings (in fact, the same theorem
has been also proved by Bojarski in his paper [2] even without the assumption of
bijectivity; a concise proof of this stronger result may be found in the paper of
Gehring and Lehto [6])-the connection with elliptic equations is via the Beltrami
equation; a theorem of Bojarski [3] about the a.e. differentiability of weak solutions
of div (a(r)ur):0, and a result of Reshetnyak [11] concerning the more general
case of the quasilinear equation div.4(c, u,ur) : B(r,u,ur).

In this paper, we prove a similar result for solutions of the parabolic equation
(1), namely the following

Theorem. Each weak solution u eWr'2(Q) of the equation (7), such that

", e Lff;'(Q) , it differentiable almost everywhere with respect to the Lebesgue
measure i, Q.

We recall two definitions. A measurable function r/ is said to be of class
trn,o(e) if.

equal to *oo. We say
(*0, lo ) if there exists a

ll (p', +
a

with obvious modifications in the case when p or q are
that a function u is totally differentiable at a point Xs -
linear map L from R'+r to R such that

,(xo+h)- u(xo) - Lh- r(läl) for h €R'+r

The assumption that u1 € IfJt (which at first glance may
tificial) is used only in the last part of the proof, when we

ash 0.

seem somewhat ar-
apply the classical
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Rademacher-Stepanoff differentiability criterion (see [13]). The idea of the proof
comes from Bojarski's paper [3]. The main point of the reasoning is provided by
the Main Lemma (whose exact formulation is given in Section 2), which roughly
speaking states that aIl the weak solutions of (1) are in fact at almost every point
Lipschitz continuous in the space directions and Hölder continuous with exponent
equal to 112 ia the time direction. The essential difference between the parabolic
case and the elliptic one is that in the latter case the pointwise differentiability
a.e. is easily derived (and there is no need of any additional assumption) from the
fact that the solution is at almost every point not only Hölder continuous, but also
Lipschitz continuous in all directions.

Notation. X : (r,t), Y : (y,s) denote points of Rn+l. By ,R(o) :
E(Xo, o) we denote a rectangle with center at X6 and edges parallel to the coor-
dinate axes in R"*1 such that those parallel to ry,...,nn are of length a, and
the edge parallel to that of length 42,

Rectangles of this type will sometimes be called parabolic. The barred integral

ll 
" 

f da dt denotes the average value /a of a function / on a measurable set -4.,

f .e, ,: lAl-' ll f dr dt. We also use the following notation: u. : (u,,,. . . ,u,n)
A

denotes the gradient of. u with respect to space variables only whereas Vu :
(u,,ut) stands for the full gradient.

A function u eWL,2(Q) is called a subsolution of (1) if

(6) ll (vu,

a

+ (pr)alt,) - ?(b,u,)) ar at S 0

ca2ll
R(2a)

for every g € C@(q, g > 0,, g - 0 on l.

2. The main lernrna

If u is aweak solution of (1) in Q and E(Xo,2a): R(2a) C Q,2a <7,
then

(7)
X,Y €E(a)

lV" (*,,t)l'

where C is a constant depending only on n and K .

dr dt,



Proof. Our proof uses the iteration technique of Moser and with some minor
modifications is based on his proof of local boundedness of weak solutions of the
equation ut - div la(x,t)u,]: 0 (cf. [10, Theore* 3]).

We start with two inequalities, which play the same role as the Cacciopoli es-

timates in the elliptic case. They are valid for arbitrary solutions and nonnegative
subsolutions of (1):

(8) esssup t ,2dr<c.(- 1 1' 
ffr2dxdt,sel J - \(p-pT+r-rt)'LL

B'n{s=t} R

(e) ll ,",'d,dt1, (6+.+) ll *dxdt,
RIR

where
R: P x I : {r : maxlro,r - *;l < pl?} x (t, - r,tz),

R' : P' x -f' : {r : maxlro,; - rrl < p' 12} x (t, - r'rtz),

0 < p' ( p, 0 < r' < r, and the integration on the left hand side of (8) is
performed over a cross section t : s and then the essential maximum is taken (of
course, .E' is a subrectangle of .R). To prove (8) and (9), we take g : u .rh2 as a
testing function (assume that r/ e C*(Q), ,h > O, th :0 on f ), so that
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(p,,au,) :2$v .A!,,au,) + rb' .(u,,av,),

and from (a) (or (6), if u is merely a nonnegative subsolution) we obtain:

We estimate the integrands on the right ha,nd side using the symmetry of the
matrix (op1), Schwarz inequality and the assumptions (2), (3):

ll (rrrrh' + ,b2 ' (r,ta1)r)) d,x dt

< 2 ll lt ,0b, , au r)l d* dt + ll ,h'l,(b, u,)l d,x d,t.
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(2), ,b' (1) r t au r) > K -t ,h'lr,l' ; suitable arrang

Pointwise differenti

On the left hand side, by
all the terms leads to

1 f f
; JJ @')"h'drdt +

and hence

ll@',h\,d*dt + * ll ,h'tu,tz d,rd,t

L75

ement of

* ll ,b'1,,12 d,r dt < 4K' ll ,'(,h' + l,h,l2) ar at

( 10)

In this inequality we integrate over the rectangle ft" : P x (t2 - T, s). The above
argument may be applied to E' since we allow the testing function g to take
nonzero values on the upper part of the boundary t - s. If we choose rb : L in
R' r rl, : 0 for t : tz- r and s such that the integral

t u2(r,s)dr
,,rJy="1

exceeds one halfofthe essential supremum ofthis quantity taken over f € /', then,
disregarding the second integral on the left hand side of (L0), we have

"rr?.rlo I ,'@,t) d'u <, I uz(x,s) d,x 12 ll {r'+'), o. o,

x€.Pt P'x {s} n'

< r.6.K3 ll * (,1,' + l,l,,l' + ht {)tl) dn dt.

R

,b' + lrb,l' + lrhrbrl < C n . (# . *)

On the other hand, if we set s : t2 in (10), drop the first integral on the
replace the domain of integration in the second one by E', we obtain:

II ,,r' dr dt I ,o^ Il ,'(,h' + l,l,,l2 + lrttgtl) dx dt.

R'R

left and

The last two inequalities are just (8) and (9): if only ry' is chosen to be identically 1

in .R', i: : 0 on the parabolic boundary of .R and piecewise linear in the remaining
parts of Q, then one finds:
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for p, Q' , T, r' < 1,.

If u is a solution of (1), and g a nonnegative convex function of class C1 (or
piecewise C1), then u: g(u) is a nonnegative subsolution of (1). The argument
is essentially the same as in Moser's paper [10, p. 117]. This allows us to write
the inequalities (8) and (9) for functions u : lu - uol', where r 2 1 and u6 :
uR@) : ,H o,,,lu(r,t) dr dt.

The inequalities (8) and (9) will now be combined with a general inequality
(which is a consequence the Sobolev embedding theorem) in order to obtain the
so-called weak inverse Hölder inequality. For a rectangle R: P x I (r e P,
t € I) with edges of length p in the space directions and of length r in the time
direction we define:

Ha,r@) g lf *'
R

dr dt,

D n,r(u)) I p' dr dt,

M a,r(u)) 
g 

ess sup
teI

As a consequence of the Sobolev inequality, written for the c variables and
then integrated with respect to the time t, one obtains the following

Lemma. (Moser [10]). .F'or every function w for which the integrals H , D,
a,nd M exist we have

where K - 1+ 2ln for n - 3,4, ... and K - 513 for n_ 7,,2.

Expressing (8) and (9) in terms of H ,, D and M we obtain for

lf tu.r
R

f -'@,t) d"r.

P

( 11)

( 12)

(13)

These inequalities together with the above lemma imply:

A . (H n,,(u)) ^,
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where

A: ct(,,K) (C+. *)^-' (, . fly. *)
We shall .pply (13) to the succesive powers of solution and to the sequence

of nested rectangles with common upper boundary. For rn : 0, 1, 2, . . . let u* :
lu - un@)l** (.o that u*".1 : ,k) and define rectangles .R*,

R*: {r: maxlro,, - ,;l < p*12} , (to -r**2a2,ts*2a2),

where
Q^:(7*2-^).a,
r* : (Zr/2 + (z - Br/2) .2-^)z . a2.

It is clear that B(2o) : Ro J Er f ... ) n;:oB* ) R(a). Then, letting
'u: um, Q: Q*t T: T*, Q' : Qm*1, and r' : Tm*r in (13), we find after a
simple calculation the following inequality for H^:: Hn^,r*(u*):

Hm*r 1 Ct(n,I(). 2O*-r. 6. (g^;-+t . (H*)* < Ctr*, . (H*)*.

Hence, by induction,

(14)

If we now define, for m € N,

11 
/f lu@,t) - u*(o) l' a* at-r\-' 3 

R(2 a)

e*trr ( /f f/ lu(*,t) - u(y,,)I2 n* 
d,r d,t dy d,)''** ,

R(a) R(a)

then we can use the Minkowski inequality to find that:

ö- ( -Ul 
lu@,t) - uR(o)l''*^ o* or)''*^

R(")

12n+t(ff t"a,t) - ua(,)l''*^ d*or)''*^ :2n+a(H^)'/*^ 
,

R^
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and thanks to (1a):

( 15)
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R(2a)

Finally, we shall .pply Poincard's inequality to estimate the right hand side
of (15). Assume with no Ioss of generality that X6 :0, then change integration
nariables from (c, t) e R(2a) to (y, s): (rf a,tl2az), estimate the integral (over
cube!) with the help of Poincar6's inequality in its standard form, and change
variables back to (r, t) to obtain:

o- ( cs.a2. {l t""tx,,t)12 drdt.
R(2a)

This inequality obviously implies (7) upon letting rn --+ {oo. The proof of the
Main Lemma is complete. o

3. Proofofthe theorem

It is possible to show that for each function / e .L1

Let Xo :
replaced by
is sufficient

l"(xo +h)-"(xo)l

(10) l,* /-... . /(x) d,x :/(xo) for a.e. x6
) J R(xa,a)

(see [12, Chapter 1, Section 5.3 (d)], or [4, Chapter 1, Section 3]).
(rr,to) e Q : G x (0,7) be a point for which (16) holds (with /
lV"l'). In order to apply Stepanoff's criterion and finish the proof it
to show that, for almost all such points Xe,

,(Y,fo)

+lf,+ ll ,lu(y,to) - 
u(y,t))

- ,Sr * Sz * ,9s * ,S+.

lim sup
ä+0

We choose an additional point Y
and with spatial coordinates equal
inequality gives:

time coordinate equal to that of Xo
of X - Xs * h : (*,t) . The triangle

läl

with the
to those

!,
dol

dyll"(xo) - "(x)l
u(y,t) dy - u(x) 

I
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In view of the Main Lemma, ,91 on the right hand side of the above inequality is
bounded from above by a constant times lå.1. In order to estimate .S2 and ,Sa we
are going to make use of the local Hölder continuity of weak solutions of (1). Select
P to be an n-dimensional cube in the space R" of space variables, with center
at r and edge lälz, where ^t:|la is chosen to be equal to the reciprocal of the
Hölder exponent of the function u. Then, for y e P, one has lu(f) -u(y,to)l S
C . (lhl1)" : C .lhl, and in a similar manner l"(x) - u(y,t)l 3 C. lhl. Finalls
to estimate ,S3 we apply the assumption u1 € ,ff;t . Let I denote the interval
(to,t). Then l/l < läl and we see that

where
M(s) : essysup l"r(y, ") I

is a locally integrable function of one real variable s. The classical differentiation
theorem of Lebesgue implies now that for R"*1 ) h ---+ 0, i.e. for t ---+ lo we have

M (s ) ds M (to) for a.e. te .

Putting all these estimates together, we conclude that for sufficiently small

lå1,

l"(xo + ä) - u(xo)l < c 'lhl, a.e. xs,

where the constant C depends on rz , K , lVu(Xo)l' , U(to) and the local Hölder
norm of u. We may now apply Stepanoff's criterion and obtain the a.e. differen-
tiability of u in the classical sense. The proof is complete. o

4. Remarks

1) The Main Lemma is obtained before we even know that weak solutions of
(1) are Hölder continuous. In fact, the proof is simpler than Moser's original proof
of Hölder continuity of weak solutions of u1 -div [o(r, t)u,] :0 (we do not need
Moser's remarkable version of John and Nirenberg's lemma on BMO functions).

2) The method of proof used in [11] evidently fails in the parabolic case,
because the linear transformations X r-+ hX * Xo do not conserve the structure
of (1)-this is due to the asymmetry of derivatives with respect to time and space
variables.

3) There is one general problem connected
it true that for f € L2 (or generally for f € LP

/,u(s)ds'{ ,tut(u, 
s)l ds dv

with the last part of our proof: Is
, with p> 1)

f,

IiT,Ip { -{::Vfy,,)l d,sd,y <*oo ror a e. (*,t),
ä*o Jt
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where P may be an arbitrary n-dimensional cube with center s' not too far from
x,i.e. dist(r', *) < h, and edge of length h1 for some fixed 7 > L? A positive
answer to the above question could give the possibility to state our Theorem
without the assumption about the time derivative of solution.

4) The Main Lemma and the Theorem can be generalized to the case of
quasilinear parabolic equations. Further development of the topics considered
here, together with their possible applications to the regularity theory of parabolic
systems, are object of a forthcoming paper.
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