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REPR,ESENTATION OF A P.HARMONIC FUNCTION
NEAR AN ISOLATED SINGULARITY IN THE PLANE
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Linköping University, Department of Mathematics,
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Abstract. A representation theorem is proved for a p-harmonic function ( 1 < p < oo ) near

an isolated singularity in the plane. The proof uses stream functions and the hodograph method.
The singularities can be classified as removable, poles and essential as is the case for analytic
functions. Via the representation we obtain a complete classification of isolated singularities,
analogous to the classical one for harmonic functions, in terms of the growth of the function near
the singularity. In the case p = 2 this reduces to the classical one. Further, we derive some

properties ofthe stream function and singular expansions ofboth the p-harmonic function and its
stream function in the case of a pole.

1. Introduction

Lel g be a p-harmonic function in the domain A : {, € C : 0 < lrl < 1},
i.e. a weak solution of the equation

div (lvcp[-'Vo) : 0

in the domain O C C. The purpose of this paper is to derive a representation
formula for g ,, valid in a punctured neighbourhood of z:0, where g is assumed
to have a non-removable singularity of the type pole, defined below.

The proof is based on the hodograph method and the fact that g has a
p'-harmoni, ((tld + Glp'): 1) stream function, denoted ry', in every simply
connected subdomain of O. Some consequences of the representation theorem are
derived:

1. Necessary and sufficient conditions for ry' to be defined and C- in O.
2. A representation formula for ry' of the same type as that for g.
3. Classification of all possible types of singularities.
4. Singular expansions for rp and ry' near z : 0.

The representation has the form of linear superposition
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»
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n
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)-1 . When considered alone, each pair

lYPl'-'Y9 'Yqdt - o

(1:[;] ) locally

generates a quasi-radial p-harmonic function fot w f 0.
In [M], J. Manfredi treats the same problem using a different variant of the

hodograph method. There the main attention is focused on analyzing the prop-

erties of the mapping ,@) from which the information about rp is extracted. A
representation of z(to) identical to the one given here, is obtained in Theorem 3

and a singular expansion of the same form as here is given in Theorem 2. The
results regarding the singular expansion are the same in the cases N ) 3 and

N : 1 , p ) 2. In the remaining cases the results here go farther.

2. The setup

2.L. Background. Put A : {, e C : 0 < lrl <1}, and let 1 < p < oo.

Suppose g is p-harmonic in O, i.e. 9 ewl"'!@) and

(1) l.
for all rl e Co1(0).

Then it is well known that p € Cå': (see [L1]) and g is real analytic in every

subdomainof O where VV* 0 (see [Lt] p.208 and [H]). Let D cC beanopen
and connected set.

Deffnition L, A function f : D --+ C is said to be K-quasi-regular if
1. 7 ewl"l!1o1,
2. lfzlS6 -t)lf"ll@ +7) a.e in D for some K 21.

From [B-I] we have that the complex gradient g, - igv is K-quasi-regular,
K > t. It is a well known fact that K-quasi-regular mappings are continuous.

Further, the complex gradient has a representation

g'-igu-hox

where X is K-quasi-conformal and ä is analytic (see [R] Theorem 2-17,p.45).
Let y: O --+ Q' and ä: O' -t C be such that g,-igy -- äoX. From a theorem

on removable sets for quasi-conformal mappings (see [V], p. 52) we conclude that
isolated singularities are removable, i.". X is quasi-conformal in O U {0}. By
composing X with a conformal mapping we can assume that 1(0) : 0. The
representation of g, - igv is not unique, but all relevant properties, such as

the order of poles and zeros (see [R], p. 66) are independent of the choice of
representation. This leads to the following definition.

Deflnition 2. suppose h has a pole of order N at y(zs). Then g is said to

have a pole of order N - I at zs.
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A pole of order zero for g will sometimes be called a singularity of fundamental
solution type, since the asymptotic behaviour will resemble that of the fundamental
solution ,b-z)l(J,-t) .

In this paper we will treat the case where ä has a pole of order N > 1.

Lemma l. Thereexists r : 0 ( r ( 1 sucå tåat

W# :l*u. xl l!*o "xl' . o ror o < t,t < ,.

Proof. Since ä has a pole at ( - 0 there exists a punctured neighbourhood
U of (:0 such that

p| (lt t€)l' la'(e)l) , o.

Thus there exists a punctured neighbourhood of z :0 in which Vp is non-zero.

Consequently g is real analytic there and we get

y e C({z, lzl <r}) n C*({ z ; 0 llrl <'})
for some r > 0. By [A-L, Theorem 3, p. 161], there is a set .E of isolated points
inOsuchthat O(!t,,p,y).g ino\8.o(r,il \ \

By the proof of that theorem we have that E : ^9 U 7 where

S: {, € O: äo1(z):0}, T: {, eQ:h' ox(z):0}.

By continuity of x there is an r ) 0 such that x(iO < lrl <")) C U n1(O) and

we get {o . lrl < r} n(Su 
") 

- 0, i.e.

u9"'*!) .o foro( lrl<r.ölx,Y)

Corollary. We have 
A

*xQ) * o

for0<lrl<r.
Proof. By the definition of quasi-conformal mappings

K -1.lxzl < 
6 *rlx,l

a.e. in OU{0} for some /( > 1. Since x turned out to be smooth for 0 ( lrl < r,
this can now be interpreted pointwise. We have

W :l*o.,1' -l*o'*l' :1h'(xQ))l' (lx'l'-lx'l') < 0' 0 < lzl < r'

Hence lx,Q)l + o.
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If we for a moment regard

I"@'Y):RexQ)
I r(r, v):ImxQ)

as an ordinary change of coordinates in R2, we get (z : r t iy)

o(u,u) : lx,(r,il|' - lxr@,il1' > o, o < lzl < r.
o(*,Y)

From the inverse function theorem we get x-r e Cl(x({O <lrl < r})). It then
follows from the chain rule that 1-r e C-(X({0 < lrl < r})).

2.2. Construction of the desired mappings. Take r as in Lemma 1 and
put Q, - {r,O <lrl < r}. Then Vs and (A(v,,p))l(0(",y)) areboth non-
zeroin dt,, xe C(a"u{0})nC-(o,) and 1-1 eC(x(a,u{0}))nC*(x(o.)).
The following construction is illustrated by Figure 1.

Put ( : x(z) , e' :9,*igy:EoxQ) and let N > 1 be the order of the
pole of h. Let 6 > 0 and put U6: {€:0 < l(l < 6}. If 6 is sufficiently small
there is a univalent analytic function g defined on U6, having a simple pole at

6 : 0 such that h(O : (s(€))' for all € e Ua.
Put (: r(O and put q(qo): {( : l(l , qo}. Choose 6 > 0 so small that

Put Qo : (X-r " (g)-')(r(qo)). Then we get Oo C O, and (9, + ig)Q)
: ((7o ilQ))* for z e0s. Hence, (': (ON and that mappingmaps ar(qs) onto
the set ,'(s:): {4': l('l > q6} where qå: (qo)N.

By the preceding discussion "(e): X-r "(g)-t (O becomes a smooth homeo-
morphism from cu(q6) to Oo and lim161**z«):0. The obvious converse holds
for the inverse, ((z). Hence, p(e) e C*(r(Co)), i.e. this change of coordinates
does not create any new singularities.

Later we will also use u : geie : (()-t instead of ( (see Figure 1).

2.3. The hodograph transformation. Since z(O is smooth it follows
that äOo is smooth. Take an arbitrary point on ä06. _l,et I be an 3rbitrary
simplecurve joining z:0 andthepointon äOo. Put O: Oo\f. Q is then
simply connected since its complegrent is connected with respect to the extended
plane. g is still p-harmonic in O and from Lemma 1 we know that Vg and
(A(p,,e)) l(A@,y)) are non-zero in O.

By [Ar2, Theorem 1, p.75], we obtain that g has a p'-harmonic stream
function r/ in Q such that

(2) ,h, - -lV plo-'? n ,h n _ lV plo-' ? x.
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The equations (2) are the so called p-Cauchy-Riemann equations. Put

,t"i|' - ('. Then (a@,rb))/(o(r,il): lVplp :(q')p > 0 in Ö.
From the preceding mapping constructions we infer that , : ,(e) and rp :

9(() are well defined and smooth in rr(q6).
Let I and O be as above. Let f' be the image of f in the (-plane. Now,

Ö and ,(Co) \ l' are in one-to-one correspondence by construction and / can be
defined in a.,(q6) \ f'. Let (o € t,,l(qr) \ f'. There is a neighbourhood I/ of (s and
a neighbourhood V' of (l such that the mapping ( r (()N - (' can be defined
uniquely as a smooth bijection of V onto V' .

z: z(C') then becomes well-defined and smooth near (l : ((o)N. We can
therefore use the hodograph method in the same way as in [Ar1, p. 90]. There it
is shown that g and r/ locally satisfy the following Chaplygin-type system

(3)

(4)

,h o,9e':ffi, (1 - P)the'fq':@

If we put tt - - log g we get q' - e-N,' and 0' : N0. This gives the following
modified version of the Chaplygin system (3):

gt,_ @ - 1)rN(P-2)Prhe, ?e- - eN(P-2)Prhtr.

(5) eee.å ?r,t -,^rfirr-o, ,hee. å,brr+nfirr- o.

Cross-differentiation and elimination yields:

Theorem 2. Suppose ? it p-harmonicin f) -
and that g has a pole of order .nf - 1 at z - 0 (.,Arr

Theorem 3 of [Ar1, p.92], yields that { is well defined i" {(s', 0'), q' > qå}.
To be able to define r/ in O6 and o(q6) we must in general make a cut in each one
of these domains in order to make them simply connected (see [Ar2, Theorem 1,

p. 75]). However, from the p-Cauchy-Riemann equations (2) we see that the
partial derivatives of. tfi can be continued smoothly across the cut. Since the
coordinate change frorn z : r * iy to ( : qeiq is smooth we then conclude that
the systems (4) and (5) hold in all of u(qo).

3. A representation theorem and some consequences

3.1. Analysis of ? and ,(*).

{r:0
Form#0put
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where the * sign is chosen if m 2l and the - sign if m 1 -1. 0* is positive
for aJI m. For -N + 7 1 m ( -1 , 0* is Iess than one a.nd strictly decreasing in
rn, and for m ) 1, 0* is strictly increasing.

Defrne Z*(p,O) by
(6)

z *(p, o)

Then there
as follows.'
a) ?åere exist real sequences {A-}ä=-ru+r, {0*}å:-7y*r and areal number

å6 such that A-1sar*0, A*) 0 for m#0, A^p{p^:O(m-k) fo, *ry
positive integer k, 0 ( 0^ < 2r a'nd 0s : 0. Tåe formulas

-: Q"io (p > o), z(p,o): » A*Z*(p,o)
m:-N*1

then define a homeomorphism from Wo : {u.' : lurl a po} onto a neighbout'
åood Qo of z :0 and z(p,0) € C'"((0, pol , R).

b) Let
(Aor - pN(p-2)+öo ifplzpo(p): { lr(p_z)
I .4'6log p * åo if P:2.

Fbr 0 < p ( po the value of g at , -- "(8,0) 
is given by

-1 , oo

(7) p: t #*sinrn(g -L*)+po(p)+t A^pNs^sinrn(d -e,,).
rn=-N*l s rn=l

?heseries for z and g2 convergeuniformly for0 ( 8180 and 0 4 83Q0,
respectively. Finally, ti,he value of g,ligo at z : ,(p,0) is (p-leid)N : tu-N.

Proof. In order to get a neighbourhood of z :0 inone-to-one correspondence

with a neighbourhood of 0 in the modified hodograph plane we put q : p-l. We

then have the following relations between the different coordinates:

- ( : qeio- 
I 
""- 

I
au'

p--logq-1ogp.
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O6 is now in one-to-one correspondence with the set Wo : {. : 0 < ltul < pe

: sä-l ) and z(w) e C(Wo) n C*(Wo).
Let .{a*(p)}=* Ue the Fourier coefficients of the function p(p,.). Since

9 e C-((0,00] x R) and p(p,.) is periodic with period 2tr we have that

7 f2no*(p): ; l, e(p,0)e-i^od0

is in C*((O,po]). To simplify the calculations we switch from p to p. We shall
also abuse notation slightly and write

a^gi: * lr'" eQ-r,o)e-i^odo.

Now, let m ) 7 and differentiate a*(p,) twice. From (5) we get

g pp : N(p - 2)v r - @ - 7)pee.

Thus,

fi,*ol: N(p -4* fo'" 
,r{r,01e-i*0d0 - (p - \* lr'" ,66(1t,0)e-i^0d0

(8) : N(p -r)*,*^tp)+m2(p-t)o*(p).

Solving this equation and replacing ep with p yields

(9) o*(p): a*QN?* * a-*p-N?-*

where

g*:i(@*@-2)),
with * if m> L and - if. m < -1. Since cp is real it follows that

(10) o-*(p) :;;@ - a*pN?^ + a;Q-NP-^.

The remaining term c,o(t) : * I:" gpt d0 is obtained in the same way by differ-
entiating twice. Using (5) we get

#"*r, : * l,'" o*udg :N(p - D*,,,Oi - @ - \* lo'" r* o,

: ff(p - z)h,*"fu).
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Solving this equation yields

( 11)

Before writing
conclude that

Define

*o(p) -?o(p)- {#PN(P-z) 
+bo

1 ,4's log 0 * bo

the series for g we derive the series for z
some of the coeffi.cients o,tn are zeto.

F*(p) - * Ir'n 
,(a,o)e-i(N+ o')odo,

ifp*2,,
ifp-2.

since this will lead us to

0

in a neighbourhood of any point

i.e. 1f-te))i"" are the Fourier coefficients of the function "-'*'r(8,') which

belongs to C-(R) for 0 < I4 po. Since

o(*, v)
we see that ? and ,b are valid as new coordinates
in f)s. From [Ar1, p. 90] we have, locally, that

0z _eio' and y:4_
Ap - S, 7tl: - 1qt1n-r'

Since g' : gN and 0' : N0 we get

0z eiN e 0z ;"iN 0

aP: q* and w: FG:D
The fact that these equations are only valid locally causes no problems since we

can split the interval of integration in as many and as small parts as we need.

We proceed in the same ma.nner as above and differentiate to obtain

h' ̂  * r' :i' j,'''" ?7Y,. rT Ii "'.::".n,)Jj,,,, "- 
i m o 66

From the Chaplygin system (4) we see that lbp: -e-N(p-z)t'9e, and thus for
m)Lweget

!*r*rr, : * Ir'" "*r(e, - ise)"-i*' d0 : "*- (ft**@) + ma*(p1)

- o,m(* * IV P*)r'(\*§'-)' + a-rn(m - II P--)eN(t-P-',")F,

*,r-*rr, 
: 

"N 
r (*,"-*rr) - *o-*(r)) : ". r (ft"*-l - *"År-»

(13) : a*(N §* - m)eN(t+9^)r" - q-*(N B-* * m)eN(r-9-^)u,

p,n) 
ftrr1t") 

: Ao"N(P-\r".

( 12)
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lf. m: N then §_w:1 and §x:p -1. Hence, if weintegrate (12), (13) and
(14) and replace ep with p we obtain for rn ) 1

( 15)

(16)

( 17)

F*(p)

F-*(p) -

:{

m * IV p.*. 
oN(r+§_) aa,- y11 a B)P" 

\^ ' /

*a-* T,- * €--*rpN( L- §-'-) * c* if. m'rtr(l - p_*)=
aNpNP * car if m

*WpN(r+§,-)-
-GY: 

Iv q--.pN( t-p-,.) * c-rn'ttr(1 - p_-) =

-/ 

a\

o,nr(P - 2)

T 
pNP - 2l{ a-N log a +c-1,r

ro (p) - ==,^o -pN(r-1) * co.Ir(p - 1)

*r{
- ..'ntl

if m l..Atr

if rn - .Af

It is clear that B* ar,d B-* are increasing as functions of nz. Since g_N:
followsthat 1- §-^ < 0 for m) N *1. This togetherwith limr*oz(p,O)
implies

1,11 lr-rell < U]^ * l,'" l,(p,o)ldo : o

for every rn. Hence cm:0 forevery m and dm:0 for m < -N.
We can now write the series for g in the following form.

1it
-0

oo

V(s,O): » orrn(d"imo
rn'--f 

r oo

= § Ä* ^:--
.,-k*rffisin 

*(o - o*) + Po(o) + »
m:l

where Ao, - 2lo*l for m + 1 and |rn depends on a,fft.
Define Z*(p,0) as in (6). For any p I Qo we thus

z(s,o)- 
_ä 

F*(p)ed(N+ *)o - i
-N+r

A*QN §* sin *(0 - 0*)

This proves (7).
have

A*Z *(p,0).
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To finish the proof we need only show that ä-7ya1 I 0. Put

( lr(r - p^\ if -N+1 < m 4 -1,(18) t*: I ni, - ij"' if rn : 0,

I lr(t + p*) if m) t.
Looking at the formula for 0* we easily see that

(1e) :** : ,6-, *l*N0* - m1/e - 1: N(e;z) 
.

The sequence {7-}?7y*, is positive and strictly increasing. This together with
(19) then implies that there exist positive linear functions fr(*) and /2(rn) such
that

(20) fr(*) 1'y* < fz(*) for every rn ) -trf * 1.

Thus there exist positive constants c and d, independent of m and 0 such that

(21) cQ'Y^ <lZ*(p,il|< ae'^ for every rn ) -trf f 1.

Let M >-N*l bethesmallestintegersuchthat Au* 0. Since z(p,')e
C""(R,) for 0 ( Ql po weget that A*p{^:O(*-k) forany & > 1. This
together with (20) and (21) implies

6@

D o*lz^(p,o)l < c ) t*nl^(å) "
M+r M+r

(22)

Thus, we immediately get

(28) lrk,o) - Auzu(p,a)l S ll.t MzM1s,e1l
if p > 0 is sufficiently small. Take such a p and let 0 increase from 0y to 0ru*2r.
By the above reasoning and inspection of the formula for Zy(p,0) we see that
the change in argument is

argz(g,Oy t2n) - argz(p,?tr): argZTa(p,2") - argZy(p,0) : 2z'(if + M).

Since we know that the difference should be * or -Ztr we get M : -N * 1.

Since ,4,-iy-r : 0 we get
A_x+, # o.

This completes the proof. o

Remark. In [M], J. Manfredi obtained the same series for z(p,O) using a
different variant of the hodograph method. The series in [M] is obtained in the
same way as here, i.e. by studying an ordinary differential equation for the Fourier
coefficients.
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3.2. Analysis_of the stream function r!. Let O and Oo be as in The-
orem 2 and define O as above. From the previous sections we know that cp has
a p'-harmonic stream function r/ in Ö. F\rrther, g and ry' satisfy the p-Cauchy-
Riemann equations (2) in O. Hence Vrl is smooth in O.

Let Å be a positively oriented simple closed curve around z:0 such that Å
is contained in Oo. It is clear that r/ is single-valued in Qo if and only if

th,dx*rhydy-0

for every such Å.

Theorem 3. Let g satisfy the conditions jn Theorem 2 and let r! be a
stream function of g in Q. Let A be as above. Then

I d'rt :2oAoJr P-l
i.e. $ is single-valued in O0 if and only if N > 2 and As : Q.

Proof. Let 0 < p* ( po and put L : {, : lvgQ)l: l/(p.)N} with positive
orientation. Then A satisfies the above conditions and

,br(p*,0) d,o : 
fo'" f 

r{n.,r) or.
a:a

From the Chaplygin system (4) we get

,he -
Qr-N(p-z)

p-L ?s.

Hence,

l^or: l^

t,0
hb
ws.

w(
;iat

=(

A1

dlb
rWS

)w
tia
rit

^"Ior
no''

)nt

?

V-

[n'
rllor
. no'
rent
rQ

dlh

s):fl
fol
ill
[err
for

d
\

(s
if
tf(
vil
ffe

l^,
vo(r

vif
:nt :

)wi
diff,
esf

otg

ly
en
'er

di
ies

dl,
rnd
tat

:an

he

(d
an
sti

cal

thr

p. )1-N(p -2) 2"(p. )1-N 
(P-z)

p-7 p-1
QN(p-z)-L yields fndrb: (2rAs)l@ - 1). ,b is single-valued if
:" O, that is if and only if Ao - 0. Since As + 0 if .Af - 1 the

ted term by term as many times as we please. Thus, if we insert
n (4) and solve the system fon h we obtain

lr'n ,,s(o* , o) do: #(p.)
ds)
on

em
W derive an expression fonhk,0). It is clear that the series for ?
be
ser

-1
,hk,o) - *Ä*,

mA*
I{ p-*QN 9-* cos *(o - o*) + 4ep-1

(24)

i #pNp-- cos *(o - o*).
. /l lJ-m

m:I

We can now make the followirrg additions to part b) of Theorem 2:
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Theorem 4. Assumptions and part a) as in Theorem 2.
b) If we cut O6 ilong the curve {z : z : z(p,0),0 < p < p0} then, in the

resulting domain {1, t[ can be represented by a series of the form (24). The
series Q$ is uniformly convergent for 0 < I I po. Further, the vaJue of
,lr, + i',1.,, at z : ,(p,0) is i(pt-n";e1N .

Remark. In the case where r/ is single-valued it has a pole at z :0 of the
same order as the pole of r,r. This is seen by substitutitg p'f(pt- L) for p and
(pt)tl(P'-r) for p in (24).

We can also derive the following converse of the extended representation the-
orem.

Theorem5. Let N ) 1, 1<p< oo and {A*}å:-x+r CR besuch
that A-ya, * 0 and {A^pNB-}ä:-an+, is bounded for some p ) 0, Let

{r,"}ä=-r+r C [0,2tr) where 9o : 0.
Define Z*(Q,O) as in (6) and put

'(P', 
o) -

oo

»
^r

A* Z *(s, 0).

+1

Then there is a ps > 0 sucå that for 0 < p ( po, the mapping z : z(p,O) is a
homeomorphismftomWs: {w: peiq:0 ( p < po} onto aneighbourhood O6

of z:O and z(p,0)e C*(Wo\{o})
Put f : {z : ": "(p,0), 

p < Oo\ . Then the formulas (7) and (24) define 9
and th implicitly asfunctionsof z in Oo\{O} and O6\1, respectively. Further, g
isp-harmonicin O6\{0} witir apoleof order N-1 at z:0 andr[ isastream
function of 9. If /o :0 then tlt is single-valued, i.e. defined in Os \ {0}.

Proof. In [Ar2, p. 86-89] a similar mapping ,(p,0) is thoroughly analyzed
for the case that g has a critical point at z:0, i.e. Vg(O):0. There it is

shown that the mapping properties of. z(p,0) are determined by the leading term
in the series. The same proof also applies here (with obvious modifications). Thus
z : z(Q,0) is a homeomorphism with the desired properties.

If we put q' : p-N ar.d 0t : N0 then Theorem 3 of [Ar1] applies locally in
a neighbourhood of any point in ffi with p ) 0 and 0 < 0 < 2zr. Hence g and
r[ have the stated properties. o

3.3. Singular expansions of g and ry'. Suppose that g is p-harmonicin
Q: {r:0< lzl < 1}, 7<p<6, p+ 2 andthat r/ isastreamfunctionfor g
on O\ {z:9,Q))O,prQ) -0}. Further, suppose that g hasapoleof order
N - 1 at z:0 (ff > 1) and put z: reiö. It is then possible to derive singular
expansions of the following type:

p(r"'Ö) - ro,*/( ö) + o(r&r*"), ,h?eiÖ) : rtN s(ö) + O(rliv*" ).
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The functions r&,/(/) ar,d rt* g($) are p-and p'-harmonic respectively and gen-
erated implicitly by the leading terms in the series for g and ry', respectively,
together with the leading term in the series for z.

It can then be shown that

0-_x+,

( 0 if I'I - L,

1

1

k1,' : 
{

_ 0-w+,
1 - 0-N+,p-2

p-1

if .nr >2

if .,nf _ 1,

kru*6n_

and hr * lx

1 - 1-x+tp-2
- 0-t

0x-z
1 - 0-N+,

0
1

if.nr>3

if lrr -2
if I[ - 1,

if ..nr ) 3,

if .,nr - 2,

if t[ - 1.p-7
F\rrther, lr - 1 : (p - lXkN - 1).

The proof of this is analogous to the proof of Theorem 6 in [Ar2] and it can
be found in [J, p. 22-25).

Remark. J. Manfredi has in [M], under the same assumptions, obtained a
singular expansion for g. In the cases N ) 3 and N : 1, p ) 2, the result is
exactly thesameasours. Thecase N:2,11p < 2 isnot treatedin [M] andin
the remaining cases, the exponent k7y + 6r given here is larger.

4. Classiffcation of isolated singularities

The complex gradient g, -igy, of any p-harmonic function has a representa-
tion äoX where ä is analytic and 1 is quasi-conformal. Since isolated singularities
of quasiconformal mappings are removable (see [V, p. 5Z]) we see that g has an
isolated singularity at zo if. and only if h has an isolated singularity at y(zs).
This leads to a classification of the singularities as removable, poles and essential
singularities.

If h has a removable singularity at X(0) it is easy to show that

for all 4 € Ctr (cl u to)),t lv plo-'Y 9 . Y q d,r d,y- o
Jruz

i.e. g is p-harmonic in OU {0}. We further say that g has an essential singularity
at zo if. å has an essential singularity at y(zs).

The type of singularity of. h at X(0) is independent of the choice of represen-
tation, g, - igy - ho X (see [R]). From Theorem 2 we can now derive criteria for
the different types of singularities stated directly in terms of g.
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Remark. The following results are well known in the case p : 2. In order
to avoid unnecessary technical and typographical complications we exclude that
case here. Although, if the calculations were to be carried out the result would be

the same as the classical.

Theorem 6. Suppose that g is p-harmonicin O, L <p ( oo and p+2.
Then z : 0 is either a remouable singula.rity, a pole of order N - 1 ) 0 or
an essential singularity. The type of singulailty is determined by the following
criteria:

7. z:0 is a removable singularity if and only if
a) there exists a constant A suchthat lirnr-op("): A, 11p 12,
b) lim,-o lzlQ-t)lb-r)l,eQ) - Al:0 for some constant A, p ) 2.

In both cases, chosing p(0) : A makes g regular.
2. z :0 is a pole of order 0 (singularity of fundamental solution type) if and

only if
a) lim,*s lzlQ-n)lb-rll9Q)l - C >0, 1 ( p I 2,
b) Iim,*o lzlQ-n)lb-t)lVQ) - Al : C > 0 for some constant A, p ) 2.

Choosing P(0): A makes g continuous.
3. z:0 is a pole of order N - 1 > 1, if and only if

Tåis can occur for at most one value of .A[.

4. z 0 is an essent ial singularity if and only if

lim sup lrl le@l_ oo for all a € 11.
z+0

To prove this we need the following lemma ([M], Lemma 5).

Lemma 7 (Manfredi). Suppose that g is p-harmonic (1 < p < *) i,
{r e R2 :0 < lol < t}. Further, suppose that the singularity at r:0 js not
removable and that

p-7

lim sup lrl'* le@l- C ,
z+A

Then there is a Co suclt that

lvp(,)l s colrl§-t

,Lt 1- 0-r'r+,

s+

Proof of Theorem 6; Case 1. Suppose lim,*o p(z) : A. Put g(0) : Ä.
Thenthereis aconstant B such that 9Q)+B > 0 for lzl < |. fut Q@):
eGd *.B. Then p'(to) is positive and p-harmonicfor 0 < l.l < 1. Classical
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results (see [S2, Theorem 1, p. 79]) say that in this case either the singularity is
removable or there exist positive constants C1,C2 such that

I crlulb-z)/(P-t)

t c, lul@-z)tt*-t)

Proof. By Lemma 6

C such that

- f(o)l S Czlu:lb-2)/(P-t) if p > 2.

\v@ls cl,l-^.

Since Cr > 0 the singularity is removable.

Suppose z _ 0 is a removable singularity. We have that ? €

above. Ag.in using [S2, Theorem 1, p. 79] we get that l/fu) - QQ
faster than lwl@-z) l(.r,-1) . Thus b) holds.

Cases 2 and 3. lf. z : 0 is a pole of order N - 1 ) 0 then we are in the case
treated in Theorem 2 which also provides the stated exponents of lzl.

Suppose one of the limits in question in 2 or 3 exists. Then Lemma 7 ap-
plies. Hence ? car, not have an essential singularity, because if ä has an essential
singularity, tfr"" lx(r)l"lhoy(z)l is unbounded for every o € R. Since K-quasi-
conformal mappings are Hölder continuous with exponent K-r (see [L-V, Satz
4.3, p. 73]) it follows that

lrl'lf, o xQ)l-

is unbounded for every o, which contradicts the lemma. From 1 we get that the
singularity is not removable. Thus the only possibility is a pole or singularity of
fundamental solution type. Since Z(lf) > Q - dl(p - 1) and strictly increasing
as a function of .lf it follows by Theorem 2 that the order of the pole is N - 1.

Case 4. Suppose z :0 is an essential singularity. Then by definition, å. in
the representation g. - igy - h o X has an essential singularity. By the preceding
argument this is equivalent to saying that

ci;i(cr u {o})
define Q@) as

) I tends to zero

lrl'lvp(41

lrl ln o xQ)l-

is unbounded for every o. This completes the proof. o

Corollary. If lnlYgl"dr I a for some a ) 0, then the singularity is not
essentiaJ.

lrl lve@l

Thus, by Theorem 6 the singularity is not essential. tr
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