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BROWNIAN MOTION IN A CLOSED CONVEX
POLYGON WITH NORMAL REFLECTION

L.L. Flelms
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273 Altgeld Hall, 1409 West Green Street, Urban a, \L 61801, U.S.A.

Abstract. Brownian motion on a closed convex polygon in the plane with normal reflection

at boundary points, with the exception ofthe vertices, is constructed. This is done by constructing

a Feller semigroup whose generator is a closed extension of the Laplacian with domain consisting

offunctions for which the normal derivative vanishes at the non-vertex boundary points.

1. Introduction

Recent papers have dealt with the construction of Brownian motion on a
convex subset of R" which undergoes normal reflection upon reaching the bound-
ary or, more generally, undergoes oblique reflection upon reaching the boundary.

Tanaka [7] has constructed a pathwise solution of a stochastic differential equation
with normal reflection at the boundary by modifying the paths of n-dimensional
Brownian motion on R'. Varadhan and Williams [9] have investigated Brownian
motion on a wedge in R2 with oblique reflection at the boundary. Williams [10] has

also constructed a Brownian motion on a convex polyhedron in R" from which the
vertices, among other boundary points, have been removed with oblique reflection
at the remaining boundary points. This result precludes starting the Brownian
motion at one of the vertices. In this paper we will construct a Brownian mo-

tion on a compact convex polygon in R2 with normal reflection at the non-vertex
boundary points. The results of this paper are not immediately applicable to a
three-dimensional polyhedron due to some unresolved problems associated with a

smoothing operation on the boundary of the polyhedron and a description of the
resulting boundary using a local coordinate system.

If ,S is any open subset of R2 and lc is a nonnegative integer or oo, Cå(S) witt
denote the set of functions (: real-valued functions) on ,9 all of whose derivatives

of order less than or equal to å are continuous on .S and C*(S) will denote the
set of functions in Ck(.9) all of whose derivatives of order less than or equal to
& have continuous extensions to §. Cf(S) and Cf(§) will denote subspaces of
Co(S) and C&(§), respectively, consisting of functions with compact supp_ort in
.S. As usual, C(S) will denote the set of bounded continuous functions on ,9 with
the supremum norm | ' l.
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Consider a bounded open convex subset O of R2 whose boundary is a poly-
gon. Let E denote the set of vertices of the polygon. Consider a fixed p € (0,1)
and the Laplacian operator A acting on u € C'(A) with domain

e(L)c {, e co,r(A)n c'?(o) : L,u eCo,r(O) ^^d #: 0 on ao \ E}

where 0ul0u, u ttre outer unit normal, denotes the normal derivative of. u at
points of 0Q \.8 and Co'r(A) is the Banach space of Hölder continuous functions
of exponent pr. The precise definition of. 9(L) is given in Section 3. We will
show that there is a Feller semigroup {71 : t > 0} on C(O) whose infinitesimal
generator is an extension of the operator A. If we can show that

( 1.1)

(i) 9(L) is dense in C(CI)

(ii) A is dissipative

(iii) the range of A - Å is dense in C(O) for some ) ) 0,

then it follows that A is closable and its minimal closed extension L generates a
Fellersemigroup {7;:t >0} on C(O) (c.f. [1],p. 16). Condition(ii)meansthat
lÅu - Aul > )l"l for all .\ > 0 and u e 9(L).

2. Prelimrnarles

The space Cu(S) introduced above is a Banach space with ,ror* l.lr,s (see [2],
p. 52 for definition of this norm). We will also need the spaces Co,'(S), 0 < a < 1 ,

& > 0, consisting of functions on .9 all of whose derivatives of order less than or
equal to & are Hölder continuous on S with exponent o. The Hölder spaces
Co''(S), 0 ( * 17, k ) 0, consist of functions on ,S all of whose derivatives of
order less than or equal to fr are Hölder continuous on S with exponent a and
have continuous extensions to ,S. The Cr,'(.S) are Banach spaces with norms

| . lr,*,s as defined in [2]. We can allow o : 0 if we put Co,o(,S) : Ck(,S) and
Cr''(S) : Ck(S). For p ) 1 and k a nonnegative integer, Wk,t1S1will denote
the Sobolev space of functions whose weak derivatives of order less than or equal
to k are p-integrable with norm ll . llo,r,r as defined in [2]. For functions u on S
we will let D;u:1ul)rt, Dtju:02ul0x;0ri, etc. If. B : @r,g) where each

B; is a nonnegative integer and lBl : 0r * §2, D§u: 8l9lu16*Ur'arf' .

In order to approximate the region Q by a region with a smooth boundary,
we will employ a mollifier p: R --+ R defined by

p(*):{;exP(;-i) 
::

lrl
lrl
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where c is a constant chosen so that p is a probability density. For e ) 0 and a
locally integrable function /: R --+ R let

'I n(7\r@)dv:I p@)r(*-eildv.J"f('):irr,-rr.'' e ' Jrvr<r

Then (i) if / > 0, J,f > 0, (ii) J,f e C*(R), (iii) if / is linear on (r - e,r * e),
then J"f(a): /("), and (iv) if / is convex on R, then .I,/ is convex on R.

We will illustrate how the ,.I" operator can be used to smoothen the boundary
of O in such a way that most of the smooth part is left intact by smoothing the
boundary of the region 0' : {(r,y):y > lrl} C R2. Let f(r): lcl, z € R.
Note that J,/Jif is convex and a C'"(R) function. Letting Q! : {(r, y) : y >
1"14f@)\ c R2, it is easily seen that o', c o', o'\o! c .^r((0,0),e), and

that the symmetric difference AO'^ AO: C N((0,0),r) , the latter meaning that
the J"1rq smoothing operation does not affect the boundary of O' outside an

e-neighborhood of the vertex (0,0) of O'.
Returning to the region Q with polygonal boundary, a covering of O by a

collection of open seis {I/, : 1 ( r < M} can be constructed with the following
properties: (i) There is a subcollection {W":7 ( r ( Ms} which covers 0O such
thatforeach r there arenumbers a. ) 0, 0, ) 0, andamap (rr1 ,rr2): ArxR --+

R2 , where A, : (-or, ar), and continuous piecewise linear functions a": A, -+ R
such that each point *: (rr,rz) e 0O can be represented by *: (*r,ar(rr)),
rt € Lr, for some r : 7r... rMo, and in such a way that

and

(2.1) W, : {(t,t,r,z) eFcz : r,1€ A', ar(rrt) - P. I nr2 I a,(r,r) + P,}.

The remaining Wi1ro11 ,... ,WM can be constructed to have the form (2.1) with
each coordinate system (*,t,*,r) a translate of the coordinate functions on R2
and o, : 0 in such a way that

M

u W,co and
r- Mo*l

The construction of such coverings of 0 and associated
boundary of Cl is standard in the literature (..f. t4])

We will also need a partition of unity associated

0c
I\{

U w,.
r-1

local representation of the

with the Wr-covering. A
unity associated with the
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W,-covering if (i) 9, e Cf;(W,), (ii) p,. ) 0, and (iii) »[r pr:7 on O. The
construction of such partitions of unity is also standard in the literature (c.t. [+]).

In order to study boundary value problems associated with O it will be nec-
essary to approximate Q by a domain with smooth boundary. For this purpose,
for each m e N let O(-) be a convex open set with g(-) 6 O a.nd a C*
boundary such that 0 \ O(-) C lf(.E,Ll*), and äOAä9(-) 6 N(E,Llrn).
For large m, the local coordinate syste* (rrr,x,2) carr also be used to de-
scribe the boundaries of the approximating domains f)(-) as follows. For each

r : \,...,Mo there is a C* function oP), A,, --+ R such that each point
*: (*rr,rrz) e 69@) can be represented by c : (r,r,ol*)1r,r)), r,r € A,
for some r and 1"9)1",17 - a,(r,r)l a tl* for x,1€ 4.. The o!-) relate to
the O(*) in the same way that the o, relate to 0.

Consider now a denumerably comprehensive enlargement of a structure con-
taining the real numbers R (see [6] for terminology and notation). For one thing
this means that for each nr € *Iy' there is an internal convex domain Q(m) 6 *92

with an internally C- boundary äO(*) such that .O \ O(*) C N(E,,llrn) and
A*O^AO(-) c N(8, Lld. Fix rn € *N\N and let Ö: O(-), a,: o?),
\:7,...,M. Since {*p, , L ( r S M} is a partition of unity for *O and
O C*O, the standard partition of unity {*g, , 1 ( r ( M} is a partition of unity
for O associated with the *W,-covering of O. Note also that

(2.2) Ar(rrr) ^/ *or(*rr) for all frrt € * Lr,r- 1,. . . ,,M.

If ,9 is any internal subset of *R2, the set o,9 is defined by '^9 : {c € R2 :

there is ay e S and y - r) and is closed. In particular, oÖ: O. S,rppo.e now
that / is an internal function on the internal set S such that / is finite-valued
and s-continuous on ,S. Then the standard part of / is defined on '5 as follows.
For z € "5,'f(r):'lf{il) for y € S, U =c. Thefunction'/ is thenuniformly
continuous on ',5 (c.f. [5], p. 116). Lastly, if B is any internal Banach space then
fin B will denote the set of r € B such that llrll is near-standard in *R.

In what follows several inequalities concerning norm estimates of solutions of
partial differential equations will be applied to internal, but not standard, domains.
This is accomplished by applying the transfer principle with due care being taken to
reformulate the theorems so that the transfer principle is applicable in the context
used. These inequalities involve constants depending upon various parameters and
most of the work that follows involves keeping track of the constants to make sure
that they are near-standard.

3. Existence

Given a function / € C(O) and ,\ ) 0 we would like to prove that there is
a function u e Cz(Q) which satisfies the equation Au - )u : / on O and the
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boundary condition 0u I 0u : 0 on AO \ E. We will accomplish this by considering

a more restrictive class of / and the corresponding problem on O. Recall that p
is a fixed number in (0, 1).

Lemma 3.1. Given l > 0 and f _e co'r(o) , there is a unique internal

function u e C2,r(ö) with u e fin Co''(Ö) a,nd * Lu e fin Co'F(Ö) sucå tåat

(3.1)
( * Lu - ),u -- 

* f on 0

t *-o onoe;

in particular, u and * Lu are finite-valued and s-continuous on O'

Proof. Since / e Co''(f)), "f i, bounded and */ e Co''(Ö) (more precisely,

the restriction of *.f to Ö_i. in co'r(Ö)). It is known that there is a unique

internal function u e C2'r(§) which satisfies (3.1) (see [2], Theorem 6.31 and the

comments on p. 124). Since / is bounded,

(i. | * n)'''

by Theorem 3.1.2.3. of [3]. Letting p' :21(2- P), 7 < p' < 2' Bv Hölder's

inequality, there is a constant Cr € R depending only upon the measure of O and

p' such that
ll" llr,r,,o < C rll"llr,z,a

and therefore ollullr,r,,ö < oo. There is also a constant cz e R depending only

upon the standard numbers lp.lo,O , lDt?,lo,a, lD;DiV,lq6 srrch that

llu* g,llz,p,,0 < C rllullz,o,,A

and it follows that 'llu*g,llr,o,,a ( oo, r :7,2,.--,M. For r - 1,.. .,Ms,let

Vr: {(rt,r,2): a,1€ *A', dr(*,r) I *,, < ä,(rrt) + P,}.

since g, vanishes-outside a standard compact subset of the open set wr, *9,

varrishes on Vf O O. Therefore,

llu* P,llz,p, ,(t - llu* I ,llz,e' ,v.

arrd 'llu*g'llr,o,,v, ( oo. Consider a fixed r - 1,...,Ms and let C :
R'r lyrl ( 1, i:L,2j. Wenowdefineaninternalmap 7 from *C

writing t:(r,r,rr2)for re V,U:(Ar,Uz) for y e *C, andletting

{(v, tuz) €
onto V, by

rrt - arytt nr2: f,r, * är(orl,lr) * P'
2
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We can also consider ? as an internal map from *C onto y,. Sinc" ä', is bounded
by the maximum of the absolute values of the slopes of adjacent edges of AO if
V" contains a vertex of äf) and is equal to the slope of an edge of äO if V, does
not, there is a constant Ct e R which depends only upon q, , 0,, and a standard
bound on ä', such that

(3.2 )
"c
Y,

We will use this fact to show that 'llu*p,llr,r,% < oo where 7lq: Glp')-(112).
Since ollu*g,llz,e,,v ( oo, 'llD'(u*p,)llr,r,,r,_( oo for lol < 1. Fix o with
l"l < 1 and let w,(y): D"(u*9,)(Ty), y e *C. Since ollD'(u*?,)llr,r,,% < *
and the Jacobian of the map 7 is arBrf2, oll..llr,r,,*6 ( oo. It is shown in
the proof of Theorem 3.4 of [ ], p. 69, that there is a constant Ca e R (in fact,
Ca: p'l(2 - p')) such that

ll* Ål r., <. q I C allw 
"ll 1,0,,. s

and so 'll*,llr,r<,e) < oo. IJsing Lemma 3.1 of [4], p. 65, in conjunction with the
transfer principle,

llD" (". p.)ll, 
o 
(v) < c tllw,ll r., e et

and it follows that "llu*9,llr,o,v, ( oo. Now let u.(y) : u*gr(Ty), A €*e . Again
using the fact that the Jacobian of the map 7 is the standard quantity a,0,12,
ollr,llr,o,', ( oo. By Theorem 3.5 of [4], p.72 (in particular, the inequality
(3.25)), there is a constant Co e R such that

lhlo, p,e < C6llhlft,q,c,

since pr - 2 - (2lp') ( 1, whenever ä e Wr,q(C). By the transfer principle,

lhlo,t",,e < Cullhllr,o,*6 whenever h e Wr,q(*C). Therefore, olu,l6,*,*ö < oo.
Since | 

.10,r,,. includes the term l. lo,.e , it follows that u., and therefore u*g,,
is finite-valued. Suppose i,/' €V,, U' :!-1 *t,ar,d y" -T-trtt. Then

lu* p r(n') - u* ?,(*" )l -
s

l"'(v') - u,(v" )l

c t lu,lo , rr,* elr'

In particular, n' - c" implies that u*g,(a') - u*g,(n") and consequently that
u*g, is finite-valued and s-continuous on O. The latter inequaljty also shows
lhat u*g, e fin Co'p(%). Usingthefact that u*g,_vanisheson fl\I/, andthe
convexityof Ö, it iseasilyseenthat u*g, € nn Co,r(Ö) for r:1,...,Ms. Clearly
the same arguments apply to the u*gr, r : Mo* 1, . . . , M. Since u_: DYru*g,
or, Ö, u is finite-valued and s-continuou, or, Ö and u g n" Co,u(Ö).
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It remains to show that the standard part oz of the internal function u of
the preceding lemma satisfies the resolvent equation \ou - Lou : / on O and
that O"uf 0z:0 on 60 \ E.

Consider an open interval -[ C R, x e I, and g e fin Cl'p(*f). Then g and
g' are both finite-valued and s-continuous on *-f so that 'g and o(g') are both
defined on f . We claim that '(o'@)) : (og)'(*). To see this, Iet h be a standard
positive number with [r -2h,r +zhl C.[. For any standard positive number e

os(*+h)-og(*)
-o(g'(,)) | s 

I

g(r+h)- g(*) _ s,(")l +,
*e

where d e *[0,1]. Since olglr,r,*r ( oo and e is arbitrary, ('s)'(*):'(g'(r)).
Suppose now that -I C R2 is an open rectangle, (*,y) € .I, and g €

fiiCz,P(* I). Then g, 0g f 0r, and 02g f 0r2 are all finite-valued and s-continuous
on *-f, and '9,'(0gl0x),'(02gf 0x2) are defined on 1. Repeating the above

argument for 0(" g) l0r it is easily seen that

) - g'@)l

)vnf +,
)tnf + u

h

0h

*1

*J

- lg'(n +

s (lg I L,P,

t"l[l]- ryp d,:*"lol"(41
r € s,l Pl--k

k

(3.3)

t"l[i],,

l" t[i],,

It[ote that

l"l[:]-»t"ll,l;
j:0

1,Iet

- sup dlT'*"
r ,U e S,l0l-*

- t"l[l] + ["][i],r.

. a, ( s)@,y)
Y) : a",

louu(*) - DB"(il|

'(#) r,,

with similar results holding for the other second partials.
Before applying the last result, we will need some additional notation. If ^9 is

a bounded open subset of R2 and o, y € S,let d,: dist(o,A^9) < diam(,S) and
let d,,o: min(d,,dr). For a € R, a nonnegative integer k, and u € Ck(O), let

lr - vl*

sup_ d',|"@)l
reS

t" t[1] : t"lS:] -



206
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lpll')-,s : t"l[i] + ["]5i],'

If, in addition, ? is a C&,o portion of the boundary of ,5, we prrt d, : dist(r, äS\
T), å,,n: min(d,,dr) and for u € 

"*''(S 
u ?) we define

["]i'a'^su, : 
x,aer:..H rsFndftr"

k

lDP"@) - DP"@)l

luli,srr: f ["Ji,rr,
j:o

luli,o,srr : luli,srr + [r]i,.,srr.

In order to avoid overuse of tt*", we have chosen to use * - " rather than the
"*" as in [2]. We also define 9(L) to be the set of u e C(O) n C2(O) for which
thereis a u €C''r(O)nfi.rCo,r(Ö) with *Au € n"Co'u(Ö) and,0uf 0u:0 on
äO such that u : ou and Lu: '(*A_r). It is easily seen that u e Co,p(Q) and
Lu e Co'p(0). the set of , e C2'r(fr) defining 9(L) is, of course, an external
set.

Lemma 3.2. Given Å > 0 and f e Co,u1A), there is a ue g(L) suchthat
Lu- \u- f on A and 0ul0u: 0 on A0\8.

Proof. Let u e C''r(ö) be the internal function of Lemma 8.1 with u €
nnCo,p(Ö) and. *Au e nrrC',r(Ö) and let ,Lt,:o.t) on 0. Let (c,y) be an interior
point of 0 and let O' be a disk centered at (r,y) such that d(Q',AQ):6 > 0.
Let 6: d(*O',aO) < 6 with 6 - 6. By the transfer principle and Corollary 6.8
of [2], there is a standard constant C(p), depending only upon p, such that

t1o"lo,* o, f 5'lo' ,lo,* e, + 52+ t'lDz d rr,* e,

By (3.a),

l./l['),ö < {(diamÖ)' + (diam (ty+'}1./10,/,,0

< {(diamO)' + (diamO)"+z} l/lo,r,n

and'1./l[2],,0 a oo. Since 5 > 612, ,lDulo,,o, ( oo, olD2uls,.s, ( oo, and
olD2ulu,.s, ( oo. Since oluls,*e, <'lrlo,ö ( oo, it follows that u € finC2,r(*O')

["]i ,sL)r : sup- dilD? "(r) Iu€S,l§l:k

lr - vl*
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since lulz,p,*o, is the sum of these four near-standard quantities. Therefore,

L,u(r,A) : L('u)(r,D : '(A,u)(t,y). Since *Au - )u : *f , A,u(r,y) -
\u(r,y) : f(r,y) and Au - \u: f on O. The latter fact implies that Au
has a continuous extension to O since / and u are continuous on O. Now con-

sider any x e 0Q\8. Let 8: d(x,E), » : B,,el2OO, and T: B,,el+nAO'

Since u e C''r(d),1) e Cz,t"(*»U.?) and *Au-)u: */ on *D. By the transfer
principle and Lemma 6.29 of.l2),

btli,t,,-»u. r < C (p,p)( lu lo,.» * l./lo,p,. »)

where C(p,p) is a standard constant depending only upon p and p. Since

lulo,-» < lrlr,ö and the latter is near-standard, olulo,-» ( m; likewise, ol*/lo,p,.»

( of*/fo,p,o : l.flo,p,o < oo. Therefore, olull 
,1t,'Du"T ( oo. For any standard e ,

t)0,

o r(* - tu) - 'r(*) u(r-tu)-"(*)
-t -t

V "Q).u - [u(r)

where z is a point on the line segment from r to r -tu. For J ( pf 4, aftet
applying the mean value theorem again and noting that d, >- Al4 for any point z

on the line segment joining r - (pf 4)u to t,

or(r - tr) - o"(*)
64p-'lrli,r,* EU* Tt + €.

-t
Therefore,

0u, , ?ou, , _o (0r r_r\ _.,
*lx): ,lx): \*lr)):rt-

This completes the proof that u e 9(L).
We can now prove the main result.

Theorem 3.3. The Laplacian L, with domain 9(L) is closable and its
minimal closed extension A generates a Feller semigroup {71 : t > 0} on C(CI)

Proof. We need only verify (i), (ii), (iii) of (1,1). Since_Co''(O) contains the
polynomial functions restricted to O, which are dense in C(O), the range of A - )
is dense in C(O) for all ) > 0 by Lemma 3.2. We now show that A with domain
9(L) is dissipative. Consider the operator *A with domain

g(. 1)- {*: ?t) € Co(Ö;,*Au € Co(Ö;, 0w10" - 0 on aÖ}.

'(#(,)) 
ls ?,(,)l +'

.ul*e
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It is known that *A with this domain has a minimal closed extension which is the
infinitesimal generator of a Feller semigroup {f, , t ) 0} on C,(ö) (c.f. [8]). As a
consequen_c€, *A with domah 9(*A) is dissipative. Suppose u e 9(L) and let
u e C2,p(fi) be the internal function with u e fir, Co,r(Q) and *Au € fin Co'u(ö)
suchthat ,..t,:o?), Lu: '(.Ar),ar'.d 7uf 0u:0 on 0Ö. Then u e 0(L) and,
therefore

l*Ar-)rlo,ö > ll"lo,ö

from which it follows that lAu - )"1 2 )1"1. Thus a with domain 9(L) is
dissipative. To complete the proof we need only show that 9(L) is dense in C(0).
Let 9o be the set of functions u e C-(0) which are constant on a neighborhood
of each vertex of o and 0u l1u : 0 on ao \ .E . 9o is an algebra of functions
which contains the constant functions. By the Stone-Weierstrass Theorem we
need only show that 9s separates the points of O to show that 76 is dense in
C(0). Consider two distinct points of O. tf one of them is an interior point of O,
then there is a C-(O) function in 9s taking on the value 1 at the interior point
and vanishing outside a closed disc in the interior of O which does not contain the
other point. We need only consider the case that both points belong to äO. For
notational convenience we will assume that one of them is (0, 0). For 0 ( 0 ( 1 ,
let go: R -+ R be any C""(R) function which is equal to 1 on (-prl+,arl4),
equal to zero_outsid. (-Q2,p2f and 0 I ge< 1. If we put ue(*,y) : g Q(nz + y2)
for (o,y) € O, then u, e C-(O). Forsufficientlysmall p, thefunciion ur'belongs
to 9s and separates the two points under consideration, taking into account the
two cases in which (0,0) is a vertex and (0,0) is an interior point of an edge.

Consider any u e 90. The restriction of *u to Ö satisfies the conditions stated
just prior to Lemma 3.2 defining an element of 9(L). Since o(*u) : u, u e g(L).
Thrs 9o c 9(L) and since 7o is dense in C(O) , g(L) is dense in C(0).
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