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LIPSCHITZ CLASSES OF SOLUTIONS
TO CERTAIN ELLIPTIC EQUATIONS

Craig A. Nolder

The Florida State University, Department of Mathematics B-154
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Abstract. We consider weak solutions u in the Sobolev space W2 (), & C R", to
elliptic equations of the form div A(z,Vu) = B(z, Vu). The Lipschitz continuity of u over Q is
characterized by the growth of the local L*-average of Vu. Previous results cover the case in
which the structure exponent o > n. We give here a proof valid for all 1 < o < 0.

1. Introduction and main results
Theorem 1.1 follows from results in [HL]. Throughout © will be a connected
open subset of R®. When f: - R™, 0 < k <1, we write

IF1¥ = sup |f(z1) = f(z2)|/lz1 — 22"

z1,22€
T1#T2

Theorem 1.1. Let u be harmonic in the unit disk D CR? and 0 < k < 1.
If there exists a constant Cy such that

(1.2) [Vu(z)| < Ci (1 —|2)*

for all z € D, then there exists a constant Cs, depending only on a and C1, such
that

(1.3) [ull* < C.
Conversely, (1.3) implies that (1.2) holds for all z € D with Cy depending

only on a and Cj.

An analogue of Theorem 1.1 is given in [N2] for solutions of certain elliptic
equations in divergence form. The main result of this paper, Theorem 1.11, extends
this analogue to a larger class of such equations and other domains in R"™.

More precisely, we consider weak solutions u to equations of the form

(1.4) div A(z,Vu) = B(z,Vu)
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in domains 2 C R™. Here we assume that there exists constants 1 < o < o0,
0 < a, b, such that the measurable functions A: R®*xR"” - R, B: R®"xR" - R
satisfy

|A(z,€)] < alg]*,

(1.5) |B(z,6)] <b¢|*!,  and
£ Az, €) > [¢|°

for almost all z € Q and all £ € R®. By a weak solution to (1.4) we mean a
function u locally in the Sobolev class W2 (Q) so that

(1.6) /Q(W.A+B¢) de =0

for all ¢ € C§°(§2). We remark that any such solution is continuous when, if nec-
essary, it is redefined on a set of measure zero [S]. As such, we assume throughout
that u is continuous in Q.

Theorem 1.11 is given in [N2] for the case n < o. We show here that in fact
Theorem 1.11 holds for all 1 < a < co. The proof is the same as previously given
for the case n < a once we have established Lemma, 2.7.

We write B(z,R) = {y € R" | |[z—y| < R} and |E| for the Lebesgue measure
of ECR". If U: E— R™ is measurable, then we write, for 0 < p < o0,

01,z = ([ v@las) "

If u is a weak solution to (1.4), then we write
Dy(z) = |B|™"/* || Vull, 5

where B = B(:v,d(:v,aQ)/Q), d(z,00!) = distance between z and the boundary
of Q, 00.

We need to discuss functions “Lipschitz at the boundary” and write, for

ffQ->R™ 0<k<1,

1715 = sup _[7(z) = f(@2)l/(lex = 2al* +d(a1,0)"
I;:;Ziz

We also need the following local definitions.

1 lle = sup {| £(21) = f(z)| /22 = 2" |
T1,Zy € Q71 # 29, |71 — 72| < d(ml,GQ)/2},
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k
1£1le.6 = sup { | F(21) = f(z2)]/(J21 — 22| + d(z1,09))" |
T1,T9 € Q1 # T2, |71 — 22| < d(:cl,OQ)/Q}.
Clearly,

. k k k k
1flhoc,o < min (1115, 1 flhoe ) < max (15 1 flloe ) < A1
The following definition is given in [L] and with k£ = k', in [GM].
Definition 1.7. For 0 < k' <k <1, Q is a Lip;  -extension domain if

there is a constant N such that every pair of points z,z, € { can be joined by
a continuous curve v C ) for which

/d(q/(s),aﬂ)k_lds < N|I1 — $2|kl.
.

The class of Lipy ;/ -extension domains is wide, including uniform domains
and quasiballs, see [GM] and [L]. When k' < k a Lip; ; -extension domain is
necessarily bounded [L] while a Lip; ;s -extension domain may be unbounded. See
Section 4 for an example.

We use the following facts about these domains.

Lemma 1.8. Suppose that ) is a Lipy ; -extension domain with constant
N . There exists a constant M , independent of f: Q@ — R™, such that

(1.9) LAY < MFIL
and
(1.10) A1 < MR, 5

Moreover, M < 5(N + (2diam Q)k_k’) and when k=k', M <5N.

For the proof of (1.9) see [GM] and [L]. The proof of (1.10) is similar to the
proof given in [N1] for the case k = k'. We remark that (1.9) actually characterizes
Lipy p -extension domains. See [GM] and [L]. We now state the main results.

Theorem 1.11. Suppose that u is a weak solution to (1.4) in Q and 0 <
k < 1. If there is a constant Cy such that

(1.12) Dy(z) < Cy d(z,00)* 7,

for all © € ), then there is a constant C5, depending only on n, o, a, b, k and
C,, such that

k
(1.13) l[ulhoc,0 < Co-

Conversely, if (1.13) holds, then (1.12) holds for all z € Q with C; depending
onlyonn, a, a, b, k and C,.
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We also have the following global result.

Theorem 1.14. Suppose that u is a weak solution to (1.4) in a Lipj j -
extension domain ), with constant N, 0 < k' < k < 1. If there is a constant C;
such that

(1.15) D,(z) < C, d(z,00)k1

for all ¢ € §2, then there is a constant Cy, depending only on n, «, a, b, k', k,
N and C1, such that

(1.16) lullf < C..

In which case, u extends continuously to the closure of 0, Q. Moreover there are
constants Cs, depending only on n, a, a, b, k', k and C,, and (3, depending
only on n, a, a and b, such that (1.16) (and hence (1.15)) is equivalent to

lull® < Cs
if k' < . Otherwise, (1.16) only implies that
llul|’ < Cs(diam Q)* ~7.
When k' = k and a > n, he above results appear in [N2]. The BMO case
when k =0 is also in [N2].
2. A preliminary lemma
We establish Lemma 2.7 for the proof of Theorem 1.11.

Lemma 2.1. If u is a solution to (1.4) in Q, 0 < s < oo, then there exists
a constant C, depending only on n, s, a, a, and b, such that

(2:2) |u(z)| < CIBI™* |Jull, 5
for all balls B = B(z,R) with R < d(z,00).

By now, Lemma 2.1 is well-known. It can be obtained by combining results
in [S] and [IN].

Lemma 2.3. Let u be a solution to (1.4) in Q and let 0 < s < oo and
1 < 0 < co. There exists an exponent o', depending only on n, a, a, and b,

with a < o' and a constant C, depending only on n, s, a, o, a, and b such
that

(24) [Vl p < CIBIC™ |V, 5
for all balls B with 0B < ). Here 0B is the ball with the same center as B and

with radius equal to o times that of B.
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Lemma 2.3 can be obtained from results in [ME], and [IN].

Lemma 2.5. Let A C Q with |A| >0 and let u € LP(Q) with 1 < p < oo.
Then for each c € R,

(2:6) Ju=vallq <2(5gr) " =l

Here u 4 is the average value, |A|™! [, u(z)dz.

Lemma 2.5 is obtained with elementary calculations. See [H].
We use the above lemmas to obtain the following result.

Lemma 2.7. Let u be a solutionto (1.4) in 2,0 < s < oo and 1 <o < 00.
There exists a constant C, depending only on n, a, s, o, a, and b, such that

(2.8) supu — infu < C|B|=™/m ||, 5
" :

for all balls B with ¢B C Q2.

Proof. Let z = center of B, r(B) =radius of B and y € B. Then letting
B, = B(y,(c — 1)r(B)) we have, using (2.2) with s = a, (2.6) with p = a,
A = B,, Q = 0B, the Poincaré inequality and (2.4),

|[u(2)—u(y)| < |u(z) — up, |+ [u(y) - up,|
< GBIV |u = uBylla op + CalBel ™V [lu — up,ll,, 5,
< Cs(0/(0 = 1)) BI7V® |u = wonlly p 5 + Cal Bal 77 |u = up, |, g,
< Co|B|@™™/™ | Vull, o5 + Cal B2 ™/ |Vl g,
< Cs| B/ || Vull, 5.

Hence, if y,2z € B, then
|u(y) — u(2)| < |u(y) —u(e)] + |u(z) — u(z)| < 2C5|B|C~/" | Vu|l, 5.

Remark 2.9. In the case that n < o and u € W}(Q2), Lemma 2.7 is valid
whether or not u is a solution to (1.4) even when o = 1. See [BI].
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3. Proof of Theorem 1.11 and Theorem 1.14
We need the following facts.

Lemma 3.1. Suppose that f: > R™, 0< k<1 and 0 <n < 1. There
exists a constant C, independent of f, such that

|f(z1) = f(z2)| < Ci]z1 — zo|F

for all 1, z2 € Q with |z — 22| < nd(z1,09) if and only if there is a constant
C-,, independent of f, such that

I£llfye < Co-

A similar statement holds for ||f||1k0cya.
A proof of Lemma 3.1 appears in [L].

Lemma 3.2. Suppose f: @ > R™, 0 <k <1 and 0 <n < 1. There exists
a constant C, independent of f, such that

(3.3) |f(z1) = f(z2)] € Cilz1 — 22|*

for all z1, z2 € Q with |1 — z2| = nd(z1,0Q) if and only if there is a constant
C;, independent of f, such that

I£llfc.6 < Ca

Proof. Assume that Illekoc,a < C,. It follows from Lemma 3.1 that there is
a constant C such that

|£(21) = f(z2)| < C (|21 — 22| + d(z1,09))"

for all z,, zo € Q with |21 — 22| < nd(z1,00). Hence if |21 — z2| = nd(z1,00),
then

[£(21) = f(22)] < C(1+1/m)"|er = 2o
Conversely, suppose that
|f(z) = f(y)| < Chlz — yI*

for all z,y € Q with |z — y| = nd(z,09). Fix z,, z2 € Q with |z; — 22| <
nd(z,,00). Let Ry = nd(z1,00) and Ry = nd(z2,09). Then Ry, < R; +
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nlz1 — z2| < Ry + |z1 — 22| and Ry — |21 — 22| < Ry — n|z1 — 22| £ R,. Hence
0B(z1,R1)N0B(z2,R2) # 0. Let x3 € 0B(z1, R1) N 0B(z2, R;). We obtain

|[f(z1) = f(z2)| < |f(z1) — flzs)| + | f(z2) — f(z3)]

< Cy(|zy — z3|* + |22 — 23]")
< (nkd(ml,aﬂ)k + 0% (|21 — 22| + d(a:l,aQ))k)
< C(jz1 — 22| + d(z1,09))".

It then again follows from Lemma 3.1 that ||f||lli)Ca < oo.

We show that (1.12) implies (1.13). In view of Lemma 3.2, we only need to
verify (3.3) for some n < 1. Fix z; and z3 with |21 — 22| = 1 d(z1,09) and let
B = B(z1,2|z1 — x2]). Using (2.8) and (1.12) we obtain

[u(21) = u(z2)| < CLIBI ™" [Vull, g = C1IB[/"Du(e1) < Calan = aaf".

Conversely, we assume (1.13) and use the fact that if U is a solution to (1.4)
in 2, then there is a constant Cj3, depending only on n, «, a, and b, so that

(3:4) IVUlla5r < CalB17" [Ull 4,25
for all balls B' with 2B’ C Q. See [S]. Using (3.4) with U = u — u(z;) we obtain,

with B as above,
Du(z1) = |BI7V*||Vully 55 < Cal BT/ [lu — u(z1)| 4 4
< Cs d(z,,00)F 1.

This completes the proof of Theorem 1.11.

Next it follows from Theorem 1.11 with Lemma 1.8 that (1.15) implies (1.16)
in a Lipj ;. -extension domain. The last part of Theorem 1.14 follows by applying
Lemma 3.5. Its proof appears in [N2].

Lemma 3.5. Let u be a solution to (1.4) in Q, continuous in Q and 0 <
k < 1. There exists a constant 3, depending on n, «, a, and b, such that if
k < B and if there exists a constant C; such that

(3.6) [u(z1) — u(z2)| < Cilzy — z2|*
for all ; € Q and x4 € 0N, then
lullg < C:
where C; depends only on n, a, a, b, and C;. If § < k, (3.6) only implies that

lul|’ < Ca(diam )5,
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4. Examples

Example 4.1. We give an example to show that at least in the case that
a = n the term d(zo,0f?) cannot in general be omitted from (1.13). The ra-
dial stretching f(z) = (fi, f2,...,fn) = z|z|7"! where v = KY/(0-" is K-
quasiconformal in B” = {z € R" | |z| < 1}. As such each component f; of f
satisfies an equation of the form (1.4) with B =0 and

A(z,h) = {Jfo “H(DF ) R"THDF Y R, i Ty £ 0
’ |h|"2h, if J¢ = 0 or does not exist.

Here Df is the derivative of f and Jy is the Jacobian determinant. Also, a =n
in (1.5). See [GLM], [M]. It is easy to see that there is a constant C, depending
only on n and K, such that

Df(z) < C
for all z € B™ and all 1 <1 < n. However ||f;||' = oo since
£i(0,0,r,0,...,0) — fi(0,...,0) =r".
ith
In this case f = K/~ in Lemma 3.5 is sharp. See [N1].
We next give an example in a Lip; ;/-extension domain where k' < k.

Example 4.2. Let 0 < k' <k <1,u=r* cosk'§ and Q = {(z,y) | ly| <
with v = (1 - %')/(1 — k), 0 <z < 1}. Then  is a Lip, ; -extension domain,
see [L], and u is harmonic in Q. Notice that

k
[ullioe < oo,

and
D,(z) < Cd(z, 69)"‘1,

while we only have
ull* < co.

A similar situation holds for the function v = r*" in Q. When k' = (a—2)/(a—1),
v is a solution to the a-harmonic equation, a > 2,

div (|Vv|*7?Vo) = 0.
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