Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 17, 1992, 211–219

LIPSCHITZ CLASSES OF SOLUTIONS TO CERTAIN ELLIPTIC EQUATIONS

Craig A. Nolder

The Florida State University, Department of Mathematics B-154 Tallahassee, FL 32306-3027, U.S.A.

Abstract. We consider weak solutions u in the Sobolev space $W^1_{\alpha,\text{loc}}(\Omega)$, $\Omega \subset \mathbb{R}^n$, to elliptic equations of the form div $A(x, \nabla u) = B(x, \nabla u)$. The Lipschitz continuity of u over Ω is characterized by the growth of the local L^{α} -average of ∇u . Previous results cover the case in which the structure exponent $\alpha \geq n$. We give here a proof valid for all $1 < \alpha < \infty$.

1. Introduction and main results

Theorem 1.1 follows from results in [HL]. Throughout Ω will be a connected open subset of \mathbf{R}^n . When $f: \Omega \to \mathbf{R}^m$, $0 < k \leq 1$, we write

$$||f||^{k} = \sup_{\substack{x_{1}, x_{2} \in \Omega \\ x_{1} \neq x_{2}}} |f(x_{1}) - f(x_{2})| / |x_{1} - x_{2}|^{k}.$$

Theorem 1.1. Let u be harmonic in the unit disk $D \subset \mathbb{R}^2$ and $0 < k \leq 1$. If there exists a constant C_1 such that

(1.2)
$$\left|\nabla u(z)\right| \le C_1 \left(1 - |z|\right)^{k-1}$$

for all $z \in D$, then there exists a constant C_2 , depending only on α and C_1 , such that

$$(1.3) ||u||^k \le C_2.$$

Conversely, (1.3) implies that (1.2) holds for all $z \in D$ with C_1 depending only on α and C_2 .

An analogue of Theorem 1.1 is given in [N2] for solutions of certain elliptic equations in divergence form. The main result of this paper, Theorem 1.11, extends this analogue to a larger class of such equations and other domains in \mathbb{R}^{n} .

More precisely, we consider weak solutions u to equations of the form

(1.4)
$$\operatorname{div} A(x, \nabla u) = B(x, \nabla u)$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 35J65; Secondary 30C65.

in domains $\Omega \subset \mathbf{R}^n$. Here we assume that there exists constants $1 < \alpha < \infty$, 0 < a, b, such that the measurable functions $A: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n$, $B: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}$ satisfy $|A(x, \xi)| < a|\xi|^{\alpha-1}.$

(1.5)
$$|B(x,\xi)| \le b|\xi|^{\alpha-1}$$
, and
 $\xi \cdot A(x,\xi) \ge |\xi|^{\alpha}$

for almost all $x \in \Omega$ and all $\xi \in \mathbf{R}^n$. By a weak solution to (1.4) we mean a function u locally in the Sobolev class $W^1_{\alpha}(\Omega)$ so that

(1.6)
$$\int_{\Omega} (\nabla \varphi \cdot A + B\varphi) \, dx = 0$$

for all $\varphi \in C_0^{\infty}(\Omega)$. We remark that any such solution is continuous when, if necessary, it is redefined on a set of measure zero [S]. As such, we assume throughout that u is continuous in Ω .

Theorem 1.11 is given in [N2] for the case $n \leq \alpha$. We show here that in fact Theorem 1.11 holds for all $1 < \alpha < \infty$. The proof is the same as previously given for the case $n < \alpha$ once we have established Lemma 2.7.

We write $B(x, R) = \{y \in \mathbb{R}^n \mid |x-y| < R\}$ and |E| for the Lebesgue measure of $E \subset \mathbb{R}^n$. If $U: E \to \mathbb{R}^m$ is measurable, then we write, for 0 ,

$$||U||_{p,E} = \left(\int_{E} |U(x)|^{p} dx\right)^{1/p}.$$

If u is a weak solution to (1.4), then we write

$$D_u(x) = |B|^{-1/\alpha} \left\| \nabla u \right\|_{\alpha, B}$$

where $B = B(x, d(x, \partial \Omega)/2)$, $d(x, \partial \Omega) = \text{distance between } x$ and the boundary of Ω , $\partial \Omega$.

We need to discuss functions "Lipschitz at the boundary" and write, for $f: \Omega \to \mathbf{R}^m, \ 0 < k \leq 1$,

$$||f||_{\partial}^{k} = \sup_{\substack{x_{1}, x_{2} \in \Omega \\ x_{1} \neq x_{2}}} |f(x_{1}) - f(x_{2})| / (|x_{1} - x_{2}|^{k} + d(x_{1}, \partial\Omega))^{k}.$$

We also need the following local definitions.

$$\|f\|_{\text{loc}}^{k} = \sup\left\{ \left| f(x_{1}) - f(x_{2}) \right| / |x_{1} - x_{2}|^{k} | \\ x_{1}, x_{2} \in \Omega, x_{1} \neq x_{2}, |x_{1} - x_{2}| < d(x_{1}, \partial\Omega)/2 \right\},\$$

212

Lipschitz classes of solutions to certain elliptic equations

$$||f||_{\text{loc},\partial}^{k} = \sup \left\{ \left| f(x_{1}) - f(x_{2}) \right| / \left(|x_{1} - x_{2}| + d(x_{1}, \partial \Omega) \right)^{k} | x_{1}, x_{2} \in \Omega, x_{1} \neq x_{2}, |x_{1} - x_{2}| < d(x_{1}, \partial \Omega) / 2 \right\}.$$

Clearly,

$$\|f\|_{\mathrm{loc},\partial}^{k} \leq \min\left(\|f\|_{\partial}^{k}, \|f\|_{\mathrm{loc}}^{k}\right) \leq \max\left(\|f\|_{\partial}^{k}, \|f\|_{\mathrm{loc}}^{k}\right) \leq \|f\|^{k}.$$

The following definition is given in [L] and with k = k', in [GM].

Definition 1.7. For $0 < k' \leq k \leq 1$, Ω is a $\operatorname{Lip}_{k,k'}$ -extension domain if there is a constant N such that every pair of points $x_1, x_2 \in \Omega$ can be joined by a continuous curve $\gamma \subset \Omega$ for which

$$\int_{\gamma} d(\gamma(s), \partial \Omega)^{k-1} ds \le N |x_1 - x_2|^{k'}.$$

The class of $\operatorname{Lip}_{k,k'}$ -extension domains is wide, including uniform domains and quasiballs, see [GM] and [L]. When k' < k a $\operatorname{Lip}_{k,k'}$ -extension domain is necessarily bounded [L] while a $\operatorname{Lip}_{k,k'}$ -extension domain may be unbounded. See Section 4 for an example.

We use the following facts about these domains.

Lemma 1.8. Suppose that Ω is a $\operatorname{Lip}_{k,k'}$ -extension domain with constant N. There exists a constant M, independent of $f: \Omega \to \mathbb{R}^m$, such that

(1.9)
$$||f||^{k'} \le M ||f||_{\text{loc}}^k$$

and

(1.10)
$$||f||_{\partial}^{k'} \le M ||f||_{\mathrm{loc},\partial}^{k}$$

Moreover, $M \leq 5(N + (2 \operatorname{diam} \Omega)^{k-k'})$ and when k = k', $M \leq 5N$.

For the proof of (1.9) see [GM] and [L]. The proof of (1.10) is similar to the proof given in [N1] for the case k = k'. We remark that (1.9) actually characterizes $\operatorname{Lip}_{k,k'}$ -extension domains. See [GM] and [L]. We now state the main results.

Theorem 1.11. Suppose that u is a weak solution to (1.4) in Ω and $0 < k \leq 1$. If there is a constant C_1 such that

(1.12)
$$D_u(x) \le C_1 d(x, \partial \Omega)^{k-1},$$

for all $x \in \Omega$, then there is a constant C_2 , depending only on n, α , a, b, k and C_1 , such that

$$\|u\|_{\operatorname{loc},\partial}^{k} \leq C_{2}.$$

Conversely, if (1.13) holds, then (1.12) holds for all $x \in \Omega$ with C_1 depending only on n, α , a, b, k and C_2 .

213

We also have the following global result.

Theorem 1.14. Suppose that u is a weak solution to (1.4) in a $\operatorname{Lip}_{k,k'}$ -extension domain Ω , with constant N, $0 < k' \leq k \leq 1$. If there is a constant C_1 such that

(1.15)
$$D_u(x) \le C_1 d(x, \partial \Omega)^{k-1}$$

for all $x \in \Omega$, then there is a constant C_2 , depending only on n, α , a, b, k', k, N and C_1 , such that

$$\|u\|_{\partial}^{k'} \le C_2.$$

In which case, u extends continuously to the closure of Ω , $\overline{\Omega}$. Moreover there are constants C_3 , depending only on n, α , a, b, k', k and C_2 , and β , depending only on n, α , a and b, such that (1.16) (and hence (1.15)) is equivalent to

$$\left\|u\right\|^{k'} \le C_3$$

if $k' \leq \beta$. Otherwise, (1.16) only implies that

$$||u||^{\beta} \leq C_3 (\operatorname{diam} \Omega)^{k'-\beta}.$$

When k' = k and $\alpha \ge n$, he above results appear in [N2]. The BMO case when k = 0 is also in [N2].

2. A preliminary lemma

We establish Lemma 2.7 for the proof of Theorem 1.11.

Lemma 2.1. If u is a solution to (1.4) in Ω , $0 < s < \infty$, then there exists a constant C, depending only on n, s, α , a, and b, such that

(2.2)
$$|u(x)| \le C|B|^{-1/s} ||u||_{s,B}$$

for all balls B = B(x, R) with $R < d(x, \partial \Omega)$.

By now, Lemma 2.1 is well-known. It can be obtained by combining results in [S] and [IN].

Lemma 2.3. Let u be a solution to (1.4) in Ω and let $0 < s < \infty$ and $1 < \sigma < \infty$. There exists an exponent α' , depending only on n, α , a, and b, with $\alpha < \alpha'$ and a constant C, depending only on n, s, α , σ , a, and b such that

(2.4)
$$\|\nabla u\|_{\alpha',B} \le C|B|^{(s-\alpha')/s\alpha'} \|\nabla u\|_{s,\sigma E}$$

for all balls B with $\sigma B < \Omega$. Here σB is the ball with the same center as B and with radius equal to σ times that of B.

Lemma 2.3 can be obtained from results in [ME], and [IN].

Lemma 2.5. Let $A \subset \Omega$ with |A| > 0 and let $u \in L^p(\Omega)$ with $1 \leq p < \infty$. Then for each $c \in \mathbf{R}$,

(2.6)
$$\|u - u_A\|_{p,\Omega} \le 2\left(\frac{|\Omega|}{|A|}\right)^{1/p} \|u - c\|_{p,\Omega} .$$

Here u_A is the average value, $|A|^{-1} \int_A u(x) dx$.

Lemma 2.5 is obtained with elementary calculations. See [H].

We use the above lemmas to obtain the following result.

Lemma 2.7. Let u be a solution to (1.4) in Ω , $0 < s < \infty$ and $1 < \sigma < \infty$. There exists a constant C, depending only on n, α , s, σ , a, and b, such that

(2.8)
$$\sup_{B} u - \inf_{B} u \le C|B|^{(s-n)/sn} \|\nabla u\|_{s,\sigma B}$$

for all balls B with $\sigma B \subset \Omega$.

Proof. Let x = center of B, r(B) = radius of B and $y \in B$. Then letting $B_2 = B(y, (\sigma - 1)r(B))$ we have, using (2.2) with $s = \alpha$, (2.6) with $p = \alpha$, $A = B_2$, $\Omega = \sigma B$, the Poincaré inequality and (2.4),

$$\begin{aligned} \left| u(x) - u(y) \right| &\leq \left| u(x) - u_{B_2} \right| + \left| u(y) - u_{B_2} \right| \\ &\leq C_1 |B|^{-1/\alpha} \|u - u_{B_2}\|_{\alpha,\sigma B} + C_2 |B_2|^{-1/\alpha} \|u - u_{B_2}\|_{\alpha,B_2} \\ &\leq C_3 \left(\sigma/(\sigma-1) \right)^{n/\alpha} |B|^{-1/\alpha} \|u - u_{\sigma B}\|_{\alpha,\sigma B} + C_2 |B_2|^{-1/\alpha} \|u - u_{B_2}\|_{\alpha,B_2} \\ &\leq C_4 |B|^{(\alpha-n)/\alpha n} \|\nabla u\|_{\alpha,\sigma B} + C_4 |B_2|^{(\alpha-n)/\alpha n} \|\nabla u\|_{\alpha,B_2} \\ &\leq C_5 |B|^{(s-n)/sn} \|\nabla u\|_{s,\sigma B}. \end{aligned}$$

Hence, if $y, z \in B$, then

$$|u(y) - u(z)| \le |u(y) - u(x)| + |u(z) - u(x)| \le 2C_5 |B|^{(s-n)/sn} ||\nabla u||_{s,\sigma B}$$

Remark 2.9. In the case that $n < \alpha$ and $u \in W^1_{\alpha}(\Omega)$, Lemma 2.7 is valid whether or not u is a solution to (1.4) even when $\sigma = 1$. See [BI].

3. Proof of Theorem 1.11 and Theorem 1.14

We need the following facts.

Lemma 3.1. Suppose that $f: \Omega \to \mathbb{R}^m$, $0 < k \leq 1$ and $0 < \eta < 1$. There exists a constant C_1 , independent of f, such that

$$|f(x_1) - f(x_2)| \le C_1 |x_1 - x_2|^k$$

for all $x_1, x_2 \in \Omega$ with $|x_1 - x_2| \leq \eta d(x_1, \partial \Omega)$ if and only if there is a constant C_2 , independent of f, such that

$$\|f\|_{\operatorname{loc}}^k < C_2.$$

A similar statement holds for $||f||_{loc,\partial}^k$.

A proof of Lemma 3.1 appears in [L].

Lemma 3.2. Suppose $f: \Omega \to \mathbb{R}^m$, $0 < k \leq 1$ and $0 < \eta < 1$. There exists a constant C_1 , independent of f, such that

(3.3)
$$|f(x_1) - f(x_2)| \le C_1 |x_1 - x_2|^k$$

for all $x_1, x_2 \in \Omega$ with $|x_1 - x_2| = \eta d(x_1, \partial \Omega)$ if and only if there is a constant C_2 , independent of f, such that

$$\|f\|_{\mathrm{loc},\partial}^k < C_2.$$

Proof. Assume that $||f||_{loc,\partial}^k < C_2$. It follows from Lemma 3.1 that there is a constant C such that

$$|f(x_1) - f(x_2)| \le C(|x_1 - x_2| + d(x_1, \partial\Omega))^k$$

for all $x_1, x_2 \in \Omega$ with $|x_1 - x_2| \leq \eta d(x_1, \partial \Omega)$. Hence if $|x_1 - x_2| = \eta d(x_1, \partial \Omega)$, then

$$|f(x_1) - f(x_2)| \le C(1 + 1/\eta)^k |x_1 - x_2|^k.$$

Conversely, suppose that

$$\left|f(x) - f(y)\right| \le C_1 |x - y|^k$$

for all $x, y \in \Omega$ with $|x - y| = \eta d(x, \partial \Omega)$. Fix $x_1, x_2 \in \Omega$ with $|x_1 - x_2| < \eta d(x_1, \partial \Omega)$. Let $R_1 = \eta d(x_1, \partial \Omega)$ and $R_2 = \eta d(x_2, \partial \Omega)$. Then $R_2 \leq R_1 + \eta d(x_2, \partial \Omega)$.

 $\eta |x_1 - x_2| \leq R_1 + |x_1 - x_2|$ and $R_1 - |x_1 - x_2| \leq R_1 - \eta |x_1 - x_2| \leq R_2$. Hence $\partial B(x_1, R_1) \cap \partial B(x_2, R_2) \neq \emptyset$. Let $x_3 \in \partial B(x_1, R_1) \cap \partial B(x_2, R_2)$. We obtain

$$\begin{aligned} \left| f(x_1) - f(x_2) \right| &\leq \left| f(x_1) - f(x_3) \right| + \left| f(x_2) - f(x_3) \right| \\ &\leq C_1 \left(|x_1 - x_3|^k + |x_2 - x_3|^k \right) \\ &\leq C_1 \left(\eta^k d(x_1, \partial \Omega)^k + \eta^k \left(|x_1 - x_2| + d(x_1, \partial \Omega) \right)^k \right) \\ &\leq C \left(|x_1 - x_2| + d(x_1, \partial \Omega) \right)^k. \end{aligned}$$

It then again follows from Lemma 3.1 that $\|f\|_{loc,\partial}^k < \infty$.

We show that (1.12) implies (1.13). In view of Lemma 3.2, we only need to verify (3.3) for some $\eta < 1$. Fix x_1 and x_2 with $|x_1 - x_2| = \frac{1}{4} d(x_1, \partial \Omega)$ and let $B = B(x_1, 2|x_1 - x_2|)$. Using (2.8) and (1.12) we obtain

$$|u(x_1) - u(x_2)| \le C_1 |B|^{(\alpha - n)/\alpha n} ||\nabla u||_{\alpha, B} = C_1 |B|^{1/n} D_u(x_1) \le C_2 |x_1 - x_2|^k.$$

Conversely, we assume (1.13) and use the fact that if U is a solution to (1.4) in Ω , then there is a constant C_3 , depending only on n, α , a, and b, so that

(3.4)
$$\|\nabla U\|_{\alpha,B'} \le C_3 |B'|^{-1/n} \|U\|_{\alpha,2B'}$$

for all balls B' with $2B' \subset \Omega$. See [S]. Using (3.4) with $U = u - u(x_1)$ we obtain, with B as above,

$$D_u(x_1) = |B|^{-1/\alpha} \|\nabla u\|_{\alpha,2B} \le C_4 |B|^{-(\alpha+n)/\alpha n} \|u - u(x_1)\|_{\alpha,4B}$$

$$\le C_5 d(x_1, \partial \Omega)^{k-1}.$$

This completes the proof of Theorem 1.11.

Next it follows from Theorem 1.11 with Lemma 1.8 that (1.15) implies (1.16) in a $\operatorname{Lip}_{k,k'}$ -extension domain. The last part of Theorem 1.14 follows by applying Lemma 3.5. Its proof appears in [N2].

Lemma 3.5. Let u be a solution to (1.4) in Ω , continuous in $\overline{\Omega}$ and $0 < k \leq 1$. There exists a constant β , depending on n, α , a, and b, such that if $k \leq \beta$ and if there exists a constant C_1 such that

(3.6)
$$|u(x_1) - u(x_2)| \le C_1 |x_1 - x_2|^k$$

for all $x_1 \in \Omega$ and $x_2 \in \partial \Omega$, then

$$\|u\|_{\Omega}^{k} \leq C_{2}$$

where C_2 depends only on n, α , a, b, and C_1 . If $\beta < k$, (3.6) only implies that

$$\|u\|^{\beta} \leq C_2(\operatorname{diam} \Omega)^{k-\beta}.$$

4. Examples

Example 4.1. We give an example to show that at least in the case that $\alpha = n$ the term $d(x_0, \partial \Omega)$ cannot in general be omitted from (1.13). The radial stretching $f(x) = (f_1, f_2, \ldots, f_n) = x|x|^{\gamma-1}$ where $\gamma = K^{1/(1-n)}$ is K-quasiconformal in $\mathbf{B}^n = \{x \in \mathbf{R}^n \mid |x| < 1\}$. As such each component f_i of f satisfies an equation of the form (1.4) with B = 0 and

$$A(x,h) = \begin{cases} J_f D f^{-1} | (D f^{-1})^t h |^{n-2} (D f^{-1})^t h, & \text{if } J_f \neq 0\\ |h|^{n-2} h, & \text{if } J_f = 0 \text{ or does not exist.} \end{cases}$$

Here Df is the derivative of f and J_f is the Jacobian determinant. Also, $\alpha = n$ in (1.5). See [GLM], [M]. It is easy to see that there is a constant C, depending only on n and K, such that

$$D_{f_i}(x) \leq C$$

for all $x \in \mathbf{B}^n$ and all $1 \le i \le n$. However $\|f_i\|^1 = \infty$ since

$$f_i(0, 0, r, 0, \dots, 0) - f_i(0, \dots, 0) = r^{\gamma}.$$

*i*th

In this case $\beta = K^{1/(1-n)}$ in Lemma 3.5 is sharp. See [N1].

We next give an example in a $\operatorname{Lip}_{k,k'}$ -extension domain where $k' \leq k$.

Example 4.2. Let $0 < k' \le k < 1$, $u = r^{k'} \cos k'\theta$ and $\Omega = \{(x, y) | |y| < x^{\gamma}$ with $\gamma = (1 - k')/(1 - k)$, $0 < x < 1\}$. Then Ω is a $\operatorname{Lip}_{k,k'}$ -extension domain, see [L], and u is harmonic in Ω . Notice that

$$\|u\|_{\rm loc}^k < \infty,$$

and

$$D_u(x) \le C d(x, \partial \Omega)^{k-1},$$

while we only have

$$\left\|u\right\|^{k'} < \infty.$$

A similar situation holds for the function $v = r^{k'}$ in Ω . When $k' = (\alpha - 2)/(\alpha - 1)$, v is a solution to the α -harmonic equation, $\alpha > 2$,

$$\operatorname{div}\left(|\nabla v|^{\alpha-2}\nabla v\right) = 0.$$

References

- [AG] ASTALA, K., and F.W. GEHRING: Quasiconformal analogues of theorems of Koebe and Hardy and Littlewood. - Michigan Math. J. 32, 1985, 99–108.
- [BI] BOJARSKI, B., and T. IWANIEC: Analytical foundations of the theory of quasiconformal mappings in Rⁿ. - Ann. Acad. Sci. Fenn. Ser. A I Math. 8, 1983, 257-324.
- [D] DUREN, P.L.: Theory of H^p-spaces. Academic Press, 1970.
- [G] GEHRING, F.W.: The L^p-integrability of the partial derivatives of a quasiconformal mapping. - Acta Math. 130, 1973, 265-277.
- [GM] GEHRING, F.W., and O. MARTIO: Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 203-221.
- [GLM] GRANLUND, S., P. LINDQVIST, and O. MARTIO: Conformally invariant variational integrals. - Trans. Amer. Math. Soc. 277, 1983, 43-73.
- [HL] HARDY, G.H., and J.E. LITTLEWOOD: Some properties of fractional integrals II. Math. Z. 34, 1932, 403-439.
- [H] HURRI, R.: Poincaré domains in Rⁿ. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 71, 1988.
- [IN] IWANIEC, T., and C.A. NOLDER: Hardy-Littlewood inequality for quasiregular mappings in certain domains in Rⁿ. - Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 267-282.
- [L] LAPPALAINEN, V.: Lip_h-extension domains. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 56, 1985.
- [M] MARTIO, O.: Potential theoretic aspects of non-linear elliptic partial differential equations.
 Report 44, University of Jyväskylä, Department of Mathematics, 1989.
- [MRV] MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Definitions for quasiregular mappings. -Ann. Acad. Sci. Fenn. Ser. A I Math. 448, 1969, 1-40.
- [ME] MEYERS, N.G., and A. ELCRAT: Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions. - Duke Math. J. 42, 1975, 121-136.
- [NP] NÄKKI, R., and B. PALKA: Lipschitz conditions and quasiconformal mappings. Indiana Univ. Math. J. 31, 1982, 377-401.
- [N1] NOLDER, C.A.: A quasiregular analogue of a theorem of Hardy and Littlewood. Trans. Amer. Math. Soc. 331, 1992, 215-226.
- [N2] NOLDER, C.A.: Hardy-Littlewood theorems for solutions of elliptic equations in divergence form. - Indiana Univ. Math. J. 40, 1991.
- [S] SERRIN, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 1964, 247-302.
- [V] VUORINEN, M.: Conformal geometry and quasiregular mappings. Springer-Verlag, 1988.

Received 19 June 1991