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Abstract. For /€,g,westudytheSchwarziancoefficients s, definedby {I'r}=Esnzn.
The problem of determining the value maxs Re{s,y} and the functions for which this maximum is
attained is approached using variational methods. Necessary coefficient inequalities are obtained
as an application of the spire variation, and a quadratic differential equation involving Faber

polynomials is derived using Schiffer's boundary variation. It is also shown that any zero of the

associated quadratic diferential on the omitted set is simple.

1. Introduction

Within the theory of functions of a complex variable, the Schwarzian deriva-
tive appears in connection with univalence criteria [3, p. 258], conformal mapping

[7, p. 199], homeomorphic and quasiconformal extensions and the growing theory
of Teichmöller spaces [5]. Indeed, Bernardi [1] lists more than one hundred ref-
erences to books and papers which are concerned with the Schwarzian derivative.
A concise introduction to this vast and important theory is given by Lehto [5,
p. 51tr1.

If a function f(z) is analytic and locally univalent in the domain D, then

f'(r) * 0 there, and we may define the Schwarzian derivative of f in D by the
relation

(1)

Consequently, we may define Schwarzian coeffi.cients for f(z) near a finite point
zo by mearls of an expansion the form

{f ,r}- »s,( f;ro)(, - zo)n.

Rather than considering these coefficients in full generality, we restrict our atten-
tion here to the Schwarzian coefficients of univalent functions belonging to two
well-known classes.
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If necessary, we shall write s"(/) in order to avoid confusion.
In this paper, we consider the problem of determining the value

3N : ma,x l"N(/)l (n > o)

and the corresponding extremal functions. Equivalently, w€ may consider the
problem of determining

222

Let ,.S denote the class
are analytic and univalent in
Schwaruian coefficients sn of
expansion

(2)
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of functions f(r) - z + azz2 + aszs + ... which
the unit disk U - {, : lzl < 1} . We define the
f (near zs - 0 ) to be the coeffi.cients in the Taylor

{f , ,}- i snzn .

n:o

.61,, - maxR" {rr(/)}fes

{g, r} - z-- i onz-n .

n:0

could consider the problem of determining the value

år,,, _ rIIäX R" { ols(g)}
g€E

since the set {s"(/) : / e .9} is a closed disk centered at the origin. Indeed, if
"f e ,S, fher fr(z):f(rtr)lq e ,S and ""(f,):,ln+'"n(f),whenever lfl < 1.

Another formulation of this problem is possible. Let E denote the class of
functions S(r): z*bolbrz-r *bzz-z +... which are meromorphic and univalent
in A: {z:lzl > t}. Wedefine theSchwarziancoefr.cients on of g (near z6 - oo)
to be the coefficients in the Laurent expansion

(3)

(6)

(4)

In an analogous manner, we

(5)

and the corresponding extremal functions. However, it is easy to see that problems
(3) and (5) are actually equivalent, by utilizing an inversion. If / € ,S, then
sQ):tlf$lz) €81 conversely,if se E andcischosensothat g(r)+"*0,
then there exists un f. € .9 such that g(z) * c : llf"Qlz). The Schwarzian
composition law [3, p. 259]

{/ o u, z} _ {f , *(r)} (-'(r))' + t u, z}

implies that {9, ,} : ,-o {f ,11 ,} . Hence, a comparison of (2) and (a) shows that
,r(/): oN(S), for any f e S, and that "x(g) - oN(s *c): rr(/"), for any
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g e E. It follows that öN :.61,, for any N ) 0, and that the corresponding
extremal functions are related by inversion and translation. In theory then, we

need only consider one formulation or the other. However, in certain respects,

it may be computationally more advantageous to favor one formulation over the
other. Indeed, we shall have occasion to establish results with reference to both
classes.

Some partial results are known. In [12], the author has shown that .i6 :
6, 3r - 16 and .62 : 30(1 + 2e-341\. The corresponding extremal functions
are quite well-known, and will be described after our general discussion to follow
of the associated quadratic differential equation. The author also establishes the
uniform bound .e7v < |zr(If +2)', N ) 0, in addition to other inequalities and
results which will be recalled as needed.

Most of our further results, including a great many necessary conditions for
the extremal functions and their coefficients, may be obtained through the use of
the following extremely useful

Variational Lemma. Let f € S(E).
(a) If f*(r): f(r)+eh(z)+e2r(z) *o(ez) € S(»), then

(7)

where

(8)

and

(e)

{/. ,,2}- {f ,r} + €l(h; f) * e2*(h,,ri f) + o(€')

t(h; f) :$) "-f(f)

*(h,,r; f)- l(r; f) ,((Tt')',+ $)'
(b) rf f.(z) - /( z) + 82h(r) + p3'( z) + r(p',) € ,s(»), then

{/. ,z}- {f ,r} + 82\h;/) + p',/(r; f) + o(p3).

This lemma is established through direct computation. It is worthwhile to
note here that for every integer n, we have

( 10)

and that

( 11)

t(f"; f) - n(n - 1)(" - 2)f"-3( f')'

l(r" f'; f) : sn {f ,, r}' + 2nzn-r {f , r} + n(n - 1X" - 2)zn-t
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In this paper, we shall employ general variational methods in the usual way
to obtain necessary conditions for extremal functions, their omitted sets, and their
coeffi.cients. The technique typically produces inequalities, equations and geomet-
rical restrictions of interest.

If / € ,S is extremal, then certainly

Re sN(/. ) S Re sN(/)

for every competitor "f. e ,S. If the linear functional Lx(h) denotes the coefficient
of zN in the series expansion of å, then 

"ru(/) - LN({f ,"}). In view of the
Variational Lemma (a), (12) implies that

(12)

( 13)

( 14)

Re ^DN (/( n; il) < 0

as € ---+ 0. Furthermore, if equality holds in (13), then we may also deduce that

Re 11, (*(h,r; /)) < 0.

Thus, our results depend upon the possible choices for h and r. Analogous in-
equalities hold for extremal functions in E.

In Chapter 2, we use the spire variation to show in Proposition 1 that the
Schwarzian coefficients of an extremal function must satisfy certain restrictive
inequalities.

In Chapter 3, we use Schiffer's powerful method of boundary variation to
produce in Theorem 1 a quadratic differential equation satisfied by any extremal
function. Theorem 2 establishes the fact that a zero of the associated quadratic
differential QN(*) dw2 whichoccurs on the omitted set fy must be simple, using
an argument devised by Leung and Schober, which combines Schiffer's truncation
method with Bombieri's second variation. We close with a short discussion of the
extremal functions when N : 0, 1 , ot 2.

2. The spire variation
We now introduce an elementary variation which will yield interesting coeffi-

cient inequalities for extremal functions.
The Koebe function, kr(z) : z/(l+nz)2, lnl : 1,, belongs to the class,S and

maps [/ onto the plane with a radial slit from kr(T):ll4 to oo. For 6 € (0,1),
the composition s",r(z): k;'((t - e)tcr(z)) maps U onto U less a short linear,
radial slit emanating from 7.

Now, if f e S,ther- f,,r(z) :.f(r",r1z))ls',,r(O) €,S, and f,,,t is known as
the spire variation of /. In order to utilize the Variational Lemma, we first expand
s",, and then f ,,, in powers of e, e small. Indeed, a straightforward application
of Taylor's Theorem yields
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and

f",rP1 : fQ) * ehr(z) * e2 rr(z) + o(e2)

as € -) 0, where

hr(z): f(r) - zf'(r)(W, 
-- *)

and

r,(z): f(,) -,f'(z)(#)(,- (+*) *lrt"r,)(H)'
Consequently, from the Variational Lemma, we obtain for e € (0, 1) and lrll : t,

(15) {f,,r,r7 : {f ,z} * et(hr; f) + ezm(tt,r,r,i f) + o(e2),

where I and rn are defined bV (8) and (9).
Now let p be an arbitrary probability measure on lZl :1, and set

p(z): t :!11 d*Oi.

hl=, '- "
Then, by the Herglotz Representation Theorem, p(0) : L and Rep(z) ) 0 for all
z € U [11, p. 4]. Furthermore, every analytic function of positive real part with
p(0) : 1 may be represented in this manner. We denote the class of all such p(z)
bv P.

After integrating (15) over l7l : 1, and noting the continuity of the function-
als Zry,l and nz, we obtain

I(16) J 'ru(Å,r) 
dp(rr) : rar(/) + €LN(t(hp;/)) + e'LN(*1hn,rp; f)) + o(r')

l,l l= I

where

hr(z): f(r) - zf'(z)p(z)

(17) rn(z) : f (r) + lzf'(z)(t - \p(r) * \zp'(z) * z2 p" (z))

+ lz2 7" 121Q + zzp'(z)).

Now, if / is an extremal function for the problem (3), then ResTy(/",r) ( .02y

for every choice of e and r7. Since the real part of the left-hand side of (16) is an
average of these lesser values, we conclude as e --+ 0 that

Re.Lry(l(hr;/)) < o
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for every p e P; however, since /(/;./) :0, this condition may be rewritten as

(18)

(1e)

Furthermore, if equality holds in (18), then we may also conclude as € -r 0 that

ReIy(*(ho,rpil)) <0 (pe P).

As an application of these observations, we provide necessary conditions sat-
isfied by the early coeffi.cients of an extremal function which will be significant in
the next section.

Proposition l. Let f e S and let sn(n - 0,1,. . .) denote its Schwarzia,n
coefrcients. Suppose that f is extremal for the problem

3N: marRe{s7y(/)}.

(a) For every ( € U and every n- 0,.. .,N, we have

(20) Re{(s,} sfffru*.
(b) .For eYery ry , lnl : l, we have

(2i) Re 
{ 

z1,nrr+ r ;(.rr+2XIr+B)nN+' +(Ir+z)"ru +z §trr*, - il" in* - i} 
= 

o
j=o

Proof. (a) Choose p(z):7-Crk, k:0,...,N, e eU. Then, using (11),
(18) becomes

Re-tiv(l(rf'p;/)) : Re{(N*2)s1,. - (N +2*&)(s7v-}} > 0

which becomes (20), if we set n : N - k. No useful information is gained if
n)N.
(b) Choose p(z) : (t + qz)lG - nz) : 1 + 2»Ll r1kzk, andthen use (11). o
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3. The Schiffer boundary variation

It was observed by Schiffer that it is possible to compose an extremal function
with a.nalytic functions which are univalent on its range in order to ultimately
produce nearby functions which serve as competitors for / [10, p. 433tr].

Generally speaking, if f e ,5 and ä is analytic and univalent on /(t/) , then

f n(r) : (n(f Q)) - f/(0)) lH'(0) € ^S. The invariance and composition laws for
the Schwarzian derivative combine to yield the relation

(22) {fru,Z}- {n,fQ)}(f'(r))' +{f,r}.

Now if f is an extremal function for the problem

.61, - må,x R" { sN(/) } ,
fes

then we may directly conclude that

<0

for any such ff.
We consider a specific example. Let a ard B be distinct finite points on

I : Ö - f (U), where / is an extremal function. Then some branch of. Lr,B(w):
log [(?, -a)/(. -B)] ir single-valued, analytic and univalent in /(U). Thefunc-
tions äo,B(.) : (0 - ")lL",B(.) + (a + 0)lZ are also single-valued, analytic
and univalent in f (U), so that the composed functions defined by f o,BQ) :
(H.,B(f Q)) - ä",p(0)) ln'",BQ) belong to ^9. Consequently, we deduce

<0;

equivalently, since

{tr,g,u}_
(P - o)'

2(* - d)'(* - p)'

we may write

(23)
- CI) '(t(z) - P)'

R"2,, (

Re 11, ({r, f(r)} (/' (4')

Re.t, ( {r,,8, f (r)}(/'( ,»')

e
)

t
a(rt

for every choice of d, 0 € I .

form after evaluation by the
useful concept.

- a)' (f '(r))'

This inequality may be written in a more explicit
functional Lx. To do this, we recall the followittg
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For /(z) : z * q2z2 + "' € S, the functions ,F'*(l) generated by

(24) ,"r(;CY,jo,) :å L*r*1,1"*

for z belonging to a neighborhood of the origin (depending on f ) are called the
Faber polynomials of f [tt, p. 40]. Differentiation with respect to t yields

(25) tQ):ilr;p1,*.
1- tf (z) i=,

Note that if. t:0, then f(r):D7:rGl*)FiQ)z*, so that Tna*: fi(0) for
every n1,:1,2,. .. Differentiation of (25) with respect to z gives

(26) f'(") -iFl*,(t)z^.(t - ty1,\' m=o

Consequently, by setting t:1la ar,d llB in (26), inequality (23) becomes

(27) 
".{ (#)' 

-P,' 
FL+,Ot,,)r{*,1r7B1} < o

[ 
-,*to

for all a,0 e f . Furthermore, as B ---+ oo, we obtain the special relation

(28) * 
{å _P,,* 

* 7)a41F'*,1r7*l} < o

m,&)0

for every o € f . These inequalities provide implicit restrictions on the omitted
set I- They imply that the image of I under a certain rational function lies in
the closed left half plane.

We now consider a method of varying Schwarzian coefficients which follows
from the discussion above. It was Schiffer's observation [10, p. 434] that, whenever
a, § e I are close to one another, it is possible to produce variations of functions of
interest. He used these variations to show that an extremal function must satisfy
a certain quadratic differential equation and that Af (U) must consist of a finite
union of analytic arcs.

Near oo , L.,p(*) has an expansion of the form
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in powersof (ra-*)-'. Consequently, if 4,0 e t and lB-ol : p is small, then

H,*@) : li, - ffi% - #* + oe4)

where O(en) denotes an error term which is bounded by a constant multiple of pa

as p -+ 0,uniformlyineachset ltr.,-al ) e ) 0. If / €,9 and a,0 ef : Ö-;1U;,
then by composing / with Ho,B ard normalizing, we obtain

(2e)

(33)

f,,BQ): f(r) - W-o)'( )

r (o - a), ( f'? (z)(2f (z) - 3.") 

) + o(pn)\ 24.,r (te) - o)'

which belongs to ,9. In view of the Variational Lemma, we obtain

,r(å,B) :,ru(.f) - @# r,. (t (ff, f))
(so) .%#'.(,(##;r)) + okn)

: rry(.f) + ifB - o),e*@; il + @ - o)3-Rj,,(a; f) + o(p4)

where

(31) QN(o;f): L^r(ua>-lltt) : 
å ;r("l 

r)r,1r" 
u,)')

and

(82) Riv(o; r):LN(#S) :-å*("1-) r,*(r,(r,),)

from which it is clear that

.Bn (o; f)- l*Qrr(o; f).
Evidently Qry is a polynomial of degree N + 4 h 7la, whose coefficients may be

written in terms of the coefficients of /. Indeed, if we write f" (z): DL, of,) ,k :
»Lo o$nru+", then for n ( .lf , we get

Lw(f' .(f')'): ftrt*((/"*')' ./')(34) :# » @+1)(n+k+1)4ffi,a-ar'
' rn*k*n=N
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An alternate expression for Qry will be extremely useful. From (26) and (31),
we deduce that

(s5) eil(o; il: * » Fi*rgla)F'k+Jtla)
a1f>=x

where F- denotes the rn-th Faber polynomial of /.
Clearly, Oiv is defined for values of a : f (r), " e AU . We wish to extend

this definition to U - i0), and to consider in depth the extended function. To do
this, we must first recall a definition.

The Grunslry coefficients cnp of afunction f e S are the coeffi.cients generated
from / by setting

(36)

Note that O is analytic in [/ x [/ since / is univalent in U [11, p. 46]. A tedious
computation shows that

ae, o - ros (%l- + å å cnk,n ek
n--0,t-0

{f,r}-6.}*W

F*(tlf@) - z-rrt - mi c*nzn

( 37)

By substituting (36) into (37) and comparing the result with (2), we see that

s1g-O » kmcl,,n.
k*m=Nr*2

Thus, each Schwarzian coefficient is a "slanted" linear combination of Grunsky
coefficients. The Grunsky coefficients are also related to the Faber polynomials.
It is well known that for each rn : 1,2r. . ., the relation

(38)

(3e)
n:L

holds for all z € U - t0) [11, p. 41].
We are now ready to prove an important

Lemma. Let f €S. Forz €U- t0),define

G tr (,) - 6 

rn*å*, l, * F,(t I f e»71, * F* 0 t r e)))

- I gpzP,
P--N-2

(40)
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where F* denotes

9-t'r-z
9-r't-t

I *p

9+t
and, for p>2,

g+p- 12 (m-p)nmcr**6 » mnklc*kcnt
n*m:Nlp*2 m*n=N*Z k+l:p

wherel* denotes a sum takenover m and n suchthat n*m: N *pl2,with
the restrictionsthat p* 1 < ml N *p*1, a,nd'J,1n 1Itr+ 1.

Moreover, if Gx(r) is reil on lzl : I a,nd continuous on A - {0} , then
GN(r) : GN(llz) for 0 < lrl < - , and Gl'r assumes the canonical form

N+2
G x(r) : 9o * » (T+pz-P * s+prP).

P:l

(41)

the m -th Faber polynomial of f . Then,

- (,^\I + 1XN + zxlf + 3)

-0
-(..^f +z+p)sN-p (p:0,
- (,^r + 1)rrr+t

,ltr)

(42)

Proof. The coefficients g, of Gru are determined by substituting (39) into
(40), and equating coefficients while making use of (38). The sum !* may be
described as an "incomplete, weighted, slanted sum", and the double sum as a
"double convolution product" of a submatrix of the Grunsky matrix with itself.

Due to relation (39), it is clear that Gr,, has a pole of order N + 2 at the origin,
and no other poles in U - {0}. Bv the Koebe }-Theorem [3, p. 31], lt1 71111 S +
for z e 0(J ,so that Gar has no poles on 0U. Now, if Gl,, is continuous on 7-{O}
and is real on 0U , then the Schwarz Reflection Principle allows us to conclude
that Giy has an extension to 0 ( lzl < +oo which satisfies di@: GN(llz),
which forces Gr to have the form (42). Note, in particular, that 96 is real, that
the coefficients g-, and ga, are symmetric with respect to the real axis and that
g+p:0forall p>N *3'o

We may now prove

Theorem L. Let f e S be extremal for the problem

,, : 
?åJ.Re{s1,.}.

Then, f satisfies the quadratic differential equation

6 » l,*r*Otra)ll,*r"Otrot))znin=N*2
N

-(Itr + 2)rrr + »(,^r + 2 + p)(rr,, -pz*n a ffiz*r)
P:l

+ (.,^r + lxtr + zxrr + 3)(r-N-', + ,+N+21

(43)
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where F^ denotes the m-th Faber polynomial of f *rd s* denote the Schwarzia,n
coeffi.cients of f . AIso, the set I 1 omitted by f consists of a frnite union of analytic
arcs,

Proof. In his dissertation, Overholt [8, p. 39] considered the problem

TaäReI(iå, z))

where .t is a continuous linear functional on H(U), the class of analytic functions
on the unit disk. He used Schiffer's Theorem [3, p. 2971to show that if / is an
extremal function for this problem, then its omitted set ly consists of finitely
many analytic trajectory arcs of the quadratic differential

_r1 ff'QDz .\ a-,.
\ (/(,) - -)" /

With I - Lx, this conclusion is equivalent to the statement that f1 is the
finite union of analytic arcs parametrized by u., : u(t) satisfying the quadratic
differential equation

Qr,r(-) d,uz: -1 » Fi-+1 (1 l.)ri,+l( tl*) d*'> 0.
w4 m+k:N

This differential equation for the omitted arc leads naturally to a differential equa-
tion for the extremal function. Since f1 is the finite union of analytic arcs, / has
an analytic continuation across the unit circle, except at finitely many points.
Also, 11 has the parametrization ur(t) : f("n'),.'(t):iei'f("i'). The differen-
tial equation (aa) therefore asserts that the meromorphic function G7y defined in
the previous lemma is continuous, real and non-negative on the unit circle when /
is extremal. Thus, Giv has the form (42) and its coefficients are given by (41), all
of which results in equation (43). Unfortunately, this equation involves the initial
coefficients of the unknown extremal function. We observe in passing that the
fact that go : (ff * 2)s1y is real could also have been obtained through the use
of the rotation variation (f -ifhr)). Also, the symmetric coefficient condition
gt :7l1 may be rewritten as

(N 11)s7y..r : (ff + 3)srv=

and could have otherwise been obtained through the use of the Marty Variation
[3, p. 59]. This suggests that the necessary conditions 9+p : T--p (p: 2,... , trf )
and g+p : 0 (p : /f + 3,...) involving the Schwarzian and Grunsky coe cients
of the extremal function, and hence the differential equation (a3) itself, may be
viewed as an infinite succession of "higher Marty relations". We also wish to point
out here that Proposition 1(a), obtained as an application of the spire variation,
may now be interpreted to say that lg+rl < g, (p:0,...,N), while Proposition
1(b) confirms the conclusion that Gr is non-negative on the unit circle. o
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Our next goal is to understand in greater depth the geometry of the extremal
configurationl i.e., to describe the omitted set f1 - C - f(U). We wish to
show that the quadratic differentiat Q1y(ur) dw2 can have only simple zeroes on
11. The general theory of the trajectory structure of quadratic differentials [9,
Chapter 8] will then imply that the omitted analytic arcs may branch out in at
most three equiangular directions at each occurring zero. The required arguments
may be carried out within the established framework with respect to the class ,S,

or equivalently, with respect to the class E. For technical reasons we now transfer
our arguments to E.

As it has been pointed out, if / € ^9 is extremal for the coefficient problem
max/€s Re {srv(/)} , then sQ) : tl f Qlz) belongs to E, "ar(/) 

: oar(g) and s
is extremal for the problem maxs€» Re {ory(9)} . The omitted set I, : Ö - 9(A)
for an extremal S € » may be obtained by inverting the omitted set 11 : A- f(U)
of an extremal f e,S; i.e., if to € 11 , then u € l, where u:11u. Indeed, since

du2 : dw2 f ua ar.d

the omitted set l, consists of finitely many analytic trajectory arcs of the
quadratic differential

L v (f " (f ')') - L-N-4( s'' I s'*n),

(45) P,nr(r) duz - (å ("1') '-'Ir-4( 
g'' tg,+4)'") dr' ,

which is obtained in this form from (31) by substitution.
We are now ready to prove

Theorern 2. The quadratic differential P7,r(u) duz can have only simple
zeroes on the omitted set l, .

Proof. Leung and Schober [6] have recently proven a general result of this
type for support points in E. Their argument is adapted here to reflect the fact
that we are dealing with the Schwarzian derivative and its coefficients.

The first phase of our argument utilizes the Schiffer truncation variation to
show that the presence of a &-th order zero on f, implies that the Schwarzian
coefficient inequality Re{o1.(G)} } 0 is valid for all G(u) : w*DTociw-i
which are analytic and univalent in the complement of the linear segment [0,4] .

Let us denote this class by I . We then show that there exist functions Gx e I
for which Re {a1(G1)} < O for each k > 2, thus eliminating the possibility of
zeroes on l, of multiplicity greater than one.

After a translation, we may assume that o : 0 is a zero of order k for P7,,.(u).
This condition holds if and only if L-N-n(g'' I g"+n) : 0 for n : 0,...,|c -1 and
L-N-n(g'zlSk+n) * 0, due to the form of P1,,. Furthermore) after rotating the
functional and the function, we may also assume that .L-1,.- n(g'' lgk+n) ( 0 and
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that one of the omitted arcs emarlates from the origin in the positive horizontal
direction (i.e., P7y(u) du2 x (cuk *...)dr'near ?r:0 with c > 0).

To apply Schiffer's truncation [2, p. 2161, we consider a disk lul < 6 for a
sufficiently small positive 6. We delete all arcs of l, except for that connected
part of the arc emanating from the origin in the positive horizontal direction that
lies inside this disk. Designate this subarc UV fi, and let .F'a be the conformal map
from A onto the complement of ff with an expansion of the form F5(z) : pz*0(1)
around z : @ with p > 0. Then lla and the original extremal g are related by a
Schwarz function tr, : A --+ A satisfying ]Io o w : g and to'(m) : |fp. As 6 --+ 0,
we have p ---+ 0. The functiot g6 : (1lO)Fa in E is extremal for the new functional
Re)6(9), definedby )a(g) : oN(pgoto), since ,\a(Sa) : oN(Faou) - o7'7(g). Let
us designate the set omitted by 96 to 6" li , obtained from f ! by dilating by the
factor 1/p. Since Zj is an arc emanating from tr : 0 in the positive horizontal
direction, it approaches the line segment [0,4] as 6 --+ 0. By the Carath6odory
Convergence Theorem, 96 approaches the Koebe function K(z): z*2*lf z as
6 --+ 0.

Now let Ga be analytic and univalent in the complement of 1l and have
an expansion of the form G6(ur): * * Dpoci(6)ur-j around ur : oo. Then,
9ä : Ga o 96 serves as a variation of ge , and so Re)6(9i) ( ReÅ5(95), or
ReoTy(gi o to) ( Reo;y(96 o .), by using the definition of )6. Since gf, o w :
G6o g6o t , we concludethat Re t -x-n({G60 g60 -,r}) ( ReZ-ru- a({gaow,z}),
or Re L-N-+({Go, Su o -}(gd o *)'') ( 0, due to the Schwarzian composition law
(6). Since 96 o w(z) : SQ)lp, this last condition becomes

Re ^L-N-4

which may be interpreted as a coefficient inequality. For if we write {G5,w} :
DLo on(G6)w-"-a, this condition becomes

({", ,s(,)lo}

on(c a) Q'+n (g' (r))' I G@)"*n)

R" { ok(ca)sk+4L-w-4(s'' lgk++) + O(pn+t)} < 0.

,,@

Re^t-N--(»
n:0

<0.

Our assumption on the order of the zero allows us to write this inequality in the
simplified form

Recalling that Z-rv- r(g'' lgo+n) ( 0, dividing by p&+n and letting p ---+ 0(6 -* 0),
leads us to the conclusion that Re 

"*(G) 
) 0 for all G e g .

In the next phase of our argument, we produce a partial differential equation
for Löwner chains ir I , ar,d then use a second order variation of the identity in g
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We begin with the familiar Löwner equation for the class S.
be a continuous complex-valued function on [0, *) with ly ttll
differential equation

235

Let ,.ff - ,Y(t)

- 1. Then the

(46)

(50)

af rL * ,tr.2) a/ 
U ) o,z € u)At-z\tryr) a, \ -

has a solution such that the functions e-tf(zrt) e ,S, , > 0. In order to refer
the Löwner chain /(z,t) to the complement of the segment [0,4], we make use of
the function K(z) : z *2+tlz, which maps U \ {0} onto the complement of

[0,4]. Denote the inverse of K by S(to): (. -2-w1/t:[1.)/2, where the
branch of the square root is chosen so that JT :7. The corresponding Löwner
chain of mappings F(.,t) defined in the complement of [0,4] are given by the
composition F(w,t): llf (S(w),t). From (a6) and the chain rule, one finds that
F(w,t) satisfies the differential equation

(47)

where

(48)

and that G(u:,t) : et F(u:,t) e E. We use (47)
the chain { Ct w,t), , } of Schwarzians. To do
subtract the resultirrg equations. Multiply the
G(r,t) , and insert 1"S( u) - u) where necessary

,y(t)s(r)
to produce a Löwner equation for
this, replace u) by u in (47), and
result by et , divide by G$u,,t)
to obtain

T-n(u,t)#

R(ra,t)- (ttw)-o,) 1

i( t ,y(t)s(,
ll

(4e)

where

R(*,t) - R(u,,t)

ö(, ,u,t) - t"S (

Now since the Schwarzian may also be defined in the class I by

{C(.,t), w} : 6 lim Q -o(w, u,t),

we may differentiate (a9) and let u -+ r.D to obtain the differential equation

g"tG(*,t),.\ 
- R(w,q*{cr u,t),,}

+2tct u,t),utj*R@,r) + #R@,,t).

-1 + #-B( u,t)#+n(u,t)#+
1.D-U

G(*,,
)

(' ,t)g
U

,
u)
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The Schwarzian coefficients of a function G e I are defined by the relation

€
{G,*}: » o1,(G)w-k-a.

lc=0

We will use (50) and a variational argument to show that there exist functions
Gx e I such that Re {o7,(G7,)} < O for all t§ > 2, but first we wish to remark
that Re{"r(G)} ) 0 for all G e g,if. k: 0,1. If s(z) - z *boih/z+..' € »,
then G(tu) : s(t1S(w)) eg, sothat G(w):w*(bo-2)+ (å1 -1)ur-11
(bz*2h-2)w-z *(år*4bz*5h-5)u:-r*"'andevery G e I rnay bewritten
in this manner. An elementary computation shows that

"o(G): 6(1 - år),

or(G) :24(2 - 2h - b2),

or(G) :72(24 - 5åe - 20b2 - 23h - b?).

and so forth. It is well known [3, p. 134] that Re{å1} < t, so that Reos(G) ) 0 for
all G e 9 . Also, Garabedian and Schiffer [4] have shown that Re{2bt * bz} 12,
implyingthat Re{"r(G)} ) 0 for all G € 9. The statement that there exists a
G e I for which Re {or(G)} ( 0 may be interpreted to mean that there exists a

S e» for which ReiSä3 +20b2 +23h +b?\ > 24, and so forth, for k ) 3.
Choose ,f (, : 

"ie@(t), 
where e is a small real parameter and O is a bounded

continuous function of f . Then, we have the asymptotic expansions

R(*,t,€) - -w -

and

{C(.,t,e),w} : ö(.,,t)+eV(w,t) + e2e@,t) + o(€2)

as 6 --+ 0. If e:0, then tr(t):1, independent of t, and the solution to ( O)

is f(z,t): "'rl(7 * z)2, so that GQo,t): t-u. Henc" ö(*,t) : 0. Substituting
these expansions into (a9) and equating coeffi.cients of 6, we obtain the equations

o @2 (t)*e'ffi) *o(e27

#- -?t)*v@,t)-2v(*,t)

and

0Q
at
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since {c(.,t,e),w} : o(1) as w --+ oo, the expansions of v and a
around'iniinity are of the form V(u,t) : Di":oV,(t)w-"-a and Q(u,t) :
DLo Q,U)r-"-a. It follows from this system of differential equations that

V;(t) - (n * 2)V"(r) + 2iO(tXn *1)sd,+r (n > 0)

and that

n-l

Q',(t) : (n * 2)Q,Q) + 2i(n + 3) D a" -, - ivi (t)o (t) - n'+r (n *1 )a o2 (t) (" 2 1 )

l:0

where oo

,/'
n:o

with d, : (2n)r.l@\2 .

If ur is restricted to a large disk, then G(w,t,e) is uniformly bounded. There-

fore, the coefficients v.(t) arld Q"(t1 vanish at t: oo. Thus, the system can be

integrated to yield

%(o)- -2i(r*1)rd"+r O(r)e-@*2)'dt

and

n-L

Q*Q)_ -a(n+ 3) »U + t)fi,4-jdj*,,
j:0

O(r ) O(r ) e- @- i)t- (i +z) 
" d,t dt

l,*

l,* l,*
(51 )

+4n+r @ * ,), lr- o' (t)"-('* D' dt.

In the expansion of { G(tu, 0, e), r.u } : Ef:oon(C10, e;).-n-a , the coefficients

are of theform o,(G(O,e)) : elr"(0)+e28"(O)*0(e2). Evidently, %(0) is purelv

imaginary and Q,(0) is real, so Re {""(C(0,"))} : e'Q"Q) * O(e3).

Now, assume that k > 2. Substitute O(t) - e2-6)t (6 > 0) into (5L), and

discard all terms except the one for which i : 0 ,, to obtain

e*(o) s r -+-r6(no*'(* 
+ 1), - 24(k + 3)d*-.,dt1.

As 6 --+ 0, the expression on the right becomes negative, showing that Q;(0) < 0.

The function O(t) is not bounded, but the truncation O2v(t) : min {U, O1t;} l.
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bounded, and an application of the Dominated Convergence Theorem leads us to
conclude that Q*(0), and hence Re {a; (Co(0, e)) } , is negative for some function
G* e I determined from Oy(t).

To summarize our results, we recall that the presence of a &-th order zero of
Prv(r) on l, implied that Re {ox(G)} ) 0 for every G € 9; since we have shown
that there exists functions G*(.,0,e) e I for which Re{o1(Gr(0,r))} < 0, for

Corollary 2.L. Thefunctions K*(r): (X1z^))'/* , *) 4, where K(z):
z * 2 * lf z, cannot be solutions to the problem

å1,,. - max Re
e€»

forany N >2. Consequently, dy ) o7y(K1y..z):2(N +1X.^f *3), for N>_2.

Proof. The functions K^(z) map Ä onto the plane less m symmetric, equally
spaced radial slits emanating from the origin. If. K* were extremal, then these
slits would lie on the trajectories of the quadratic differential Py(u)du2, and would
imply the existence of a zero of order m-2 at the origin. But this has been shown
to be impossible if m - 2 ) 2. a

We close this paper with a short discussion of the extremal functions in 5
when N:0,1,2. The cases -lf > 3 will be discussed in a later paper.

In N:0, then Qo(w)dw2 : -dw2lwa. Consequently, the omitted set lies
on the imaginary axis. Utilizing the Schwarz Reflection Principle in the usual way,
we deduce that the extremal function satisfies the equation

(, * i)'(, - i)'

{"r(g)}

ff&)': z2

which is easily integrated to obtain f(r): zlQ+.iz)2, arotated Koebe function.
If .lf : 1, the author has shown [12, Theorem 1] by other methods that the

extremal function is /(z) : zl(7- z3)21s. With az :0, the quadratic differential
reduces to Q{w)dwz - -4dw2ltrs, and the corresponding differential equation is

(, * 1)'( z - "irr 
/3 )' (, - e-it /z 

1z

z3

The omitted set consists of three equally spaced, symmetric, radial arcs parame-
trized by ur(f) : ct, c - -1, "irls, "-itl3 and t e 12-2/3,a).

If N : 2, then the author has previously shown by other methods [12, The-
orem 2] that the extremal function f (z) in this case is the square-root transform
of the extremal function f»(z) : z + dz(^)22 * ... for the coefficient problem
maxr€s Re{o3 - 

^"2}, 
with ), : LT l20. The solution to this problem is well
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where ,f (t) _ cos O(r)

known and is discussed in detail elsewhere, [3, p. 104-7] or [9, p. 165-7]. The
Löwner Theory provides the formula

foo

"zji--z I .t(t)e-tdt
Jo

+ i sin O(t)

cos o(r) -
et-\, 0

1, Å

Å

*oo

and 
[ +tr - e2(t-^)ltlz, o <t 1r

sino(t) : ( -[r - e2(t-^))t/2, r ( t ( )
[0, )<r<+m

and r is chosen so that If "-' sin O(f ) dt : 0.

Hence, "r(fx): -2(l * 1)e-) : -91"-ttl2o - -7-5814.'.. Since f(r) --
(f 

^(r'?))r/2 
,itfollows that a3(/) : ioz(f »): -fie-rt/20 : -0.7907... and that

so("f) : 6("r(/) - "3{f)): oos(.f) : -1ä!r-t7/20 - -4.7443..., äs az(f):0
since / is odd. Hence, the quadratic differential in this case reduces to the form

Qr@)d'w2:-(10+ "0.\#
and the corresponding differential equation assumes the form

az2 (to + sofz (z)) (ffi)' : 602-a * 6soz-2 * 4s2 a 6sozz + 602a,

where sz : 30(1 a2"-t+1s1.
The omitted set contains both simple zeroes of Q2(w)dw2. They are Iocated

at It s, where *s: y/7}f!"o): *1.4518.... Three equally spaced analytic
arcs emanate from each zero. In particular, the radial segments [to6,m) and
(-*, -tos] are omitted.

In view of our work here, it may be reasonable to suggest that all zeroes of
QN(w)dwz belong to the omitted set.
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