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Abstract. Let #(5#) denote the algebra of all bounded linear operators on a separa-
ble Hilbert space J#. The first objective of this note is to study the class Do(Z(3#°)) of all
£ (3#)-valued functions F' meromorphic in the open disc D and holomorphic at 0, admitting a
representation of the form

N N

P(s) = ( > gjzf)_l{/oh(e“’+z)<e"“ —olase)+ Y hjzf},

j=-N j=—N

where g; =g—; € C, j=0,...,N, T is a positive operator measure and h; = —(h-;)* € L(#),
j=0,...,N. Evidently, the class Do(£(5#)) contains the holomorphic operator-valued functions
in D with non-negative real part. It also contains the Krein-Langer classes Cx, £ = 0,1,..., of
meromorphic operator functions [16].

If J € L), J=J"1=J", and U is a definitizable unitary operator in the Krein
space (J#,(J-, ) ), one can define the spectra of non-negative and non-positive type of U and
construct the spectral function of U with the help of the function z — J(U+2I)(U —2I)~!, which
belongs to Do(Z(5#)). For an arbitrary F € Do(Z(5°)) we define analogues of the spectra of
non-negative and non-positive type of definitizable unitary operators in the same way. Multiplicity
functions for these sets are defined with the help of an analogue of the spectral function.

The second objective of this paper is to study the behaviour of the “sﬂectra of non-negative
and non-positive type of F” under perturbations of F. For F in a fixed class Cx these sets
depend continuously on F with respect to the uniform weak convergence.

1. Introduction

Let J# be a separable complex Hilbert space and let Z(5#) denote the alge-
bra of all bounded linear operators on 5. For a Banach space X , let % 00(X)
denote the set of all functions z +— Zjez ¢;jz) of a complex variable z with
c¢; € X, where the sum is finite, Zo,00 := Z0,00(C). The set of all £ (H#°)-valued
functions meromorphic in the open unit disc D and holomorphic at 0 will be
denoted by My (Z(5#)). Throughout this paper, all functions F € Mo (£(5¢))
are tacitly assumed to be extrapolated to the exterior of the unit circle T such

that F(z7') = —(F(z))", z € D. The set of all points z € C such that (the
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extrapolated) F' cannot be analytically continued in z is called the spectrum of
F and denoted by o(F).

Let Cif (Z(H#)) be the class of all functions F € M, (Z(4#)) such that
the kernel Cp,

(0.1) Cr(z,() = (1 - 207" (F(2) + F(¢)"),

has exactly x, x € Ny := N U {0}, negative squares, i.e. for any positive integer
k,any z1,...,2zx € D in the domain of holomorphy of F' and z,,...,z; € J€ the
matrix ((Cr(zv,24)T0, xﬂ))u y=1,..k has at most « negative eigenvalues and for at
least one choice of k, z,... ,’zk, ,xly, ...,z it has exactly x negative eigenvalues.
These classes of operator functions were introduced by M.G. Krein and H. Langer
in [16]. For basic results on these classes see [16], [17], [18], [19], [4]. Recall that
CJ: o(Z(£)) coincides with the class of all holomorphic £(#)-valued functions

F in D such that Re F((z) > 0, z € D, or, equivalently, F admits a representation

(0.2)  F(z) =4S+ (4m)7! 2W(e‘" +2)(e? —2)71dT(F), z€eD,

where S € £(H) is self-adjoint and ¥ is a positive operator measure in J# (see
eg. [3]). If F e Cyf (£L(H#)), then, as a consequence of a representation of F
by means of a unitary operator in a Pontryagin space II, (see [16]), F can be
written in the form

2w

(0.3) F(z) = 9(2)‘1{ A (e +2)(e’ — 2)"'d=(6) + G(z)},

§
where g € %o,0, g(2z) 2 01if 2| =1, G € %0700(.2’(%)) and ¥ is a positive
operator measure (see [19], Section 1.3). Simple examples show that not every
function of the form (0.3) belongs to one of the classes Cif, (£(5#)), k =0,1,....

The first objective of this note is to study the class of all operator functions
F € My(£()) which admit a representation of the form (0.3), where g € %, oo
and g is only assumed to be real on T, ¥ is a positive operator measure and
G € Ro,0o(£L(H#)) (Section 2). We shall denote this class by Dy (£(4#)). By
definition, Do (£ (#)) contains the classes C(;':K (£(5#)), k=0,1,....

In our study we shall largely make use of the fact that, by the well-known dual-
ity of spaces of locally holomorphic functions, for every function F € M, (.? (¥ ))
there is a corresponding continuous linear mapping Tr of the space of locally holo-
morphic functions on o(F) in .Z(5#) (see e.g. [14], [7]). This correspondence is
one-to-one up to constant operator functions with a skew-self-adjoint value. If e.g.
Fe C;:o (i’(%)) and (0.2) holds, then TF is the Radon measure corresponding

to ¥
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For F € Do(Z(5)), Tr restricted to T is an £(H)-valued distribution,
and the properties of TF are very similar to those of the functional calculus of a
definitizable unitary operator U in a Krein space. We remark that the functional
calculus of such an operator U is of the form TF, for a certain operator function
Fy € Do(Z(5#)) closely connected with the resolvent of U (see Example 1.3).
For F € Dy (.2’ (2 )) we define, analogously to the operator case, i.e. by extension
of TF, a so-called spectral function of F'.

Recall that, for a definitizable unitary operator U in a Krein space, there
exists a maximal non-negative (maximal non-positive) U -invariant subspace .#4
(or #_) such that o(U | #4) CD (o(U | #-) C D), [20]. The sets o2 (V) :=
o(U | #4) and 0P (U) := o(U | #-) which do not depend on the special choice
of A, and .#_ can also be defined by making use of the functional calculus or the
spectral function of U. We have o(U)ND = 0P (U) UoP(U). This classification
of spectral points is carried over to functions F € Do (£(5)) by making use of
Tr. The notion of multiplicity of an isolated point y of ¢ (U) (¢2(U)) which is
by definition the algebraic multiplicity of the eigenvalue p of U | #4 (U | #-)
can be carried over to the case of a function F € Do(£(5#)) with the aid of a
certain sesquilinear functional which is closely related to Tr.

The second objective of this note is to study the behaviour of o2 (F) and
oP(F) (the analogues of ¢P(U) and oP(U)) under perturbations of F (Sec-
tion 3). For the case where F belongs to a fixed class C¢ (£ (#)) we prove that
0P (F) depends continuously on F' with respect to uniform weak convergence in
the neighbourhood of a point in D. In this case 02 (F) coincides with the union
of the set of poles of F' in D and the set of the so-called generalized poles of
negative type of F' ([19], Corollary 3.2).

With the exception of Proposition 3.5, we do not make use of representations
of holomorphic operator functions by unitary operators in Krein spaces (see e.g.
5], [16]). Operator representations for functions of the class Do (£(H)) will be
considered in a subsequent paper.

By a linear fractional transformation of the independent variable all results
of this note can be carried over to functions which are meromorphic in the open
upper half-plane.

Remark for notation: C™(T, ) denotes the space of C™ functions on T
with values in J#. Similar notation is used for other spaces of vector-valued
functions.

I thank Professors H. Langer and LS. Louhivaara for encouragement and
critical help in the preparation of the manuscript.
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1. Some functionals related to meromorphic operator functions on D

1.1. Definition and basic properties. For any subset .# of the extended
complex plane C we write . := {z € C: 27! € s}. For any scalar (or Z()-
valued) function f defined on a set 2 = 9 C C we define f(u) := f(z1)
(f(u) :== F(EN)*), p € 2. By RS oo (R 0o (ZL(H))) we denote the set of all
functions g € %o, (.%”oyoo(i’(jf)) , see Introduction) such that ¢ = §. We shall
say that g € % 00 is of degree < N if g(z) = E?fz_N cjz?, c¢j € C. Let H(K)
denote the space of locally holomorphic functions on the compact set K C C
equipped with the usual topology (see [15], Section 27.4).

Let 09 = 69 be a countable subset of C\T whose accumulation points belong

to T. We denote by ®(T U oo, £(H)) the linear space of all
T e Z(H(TUayg), L(H#))

(for these mappings we write f +— T.f) such that the following holds:

(i) For every point zy € gy, the restriction of T' to the subspace of all functions
f € H(T Uog) which are zero in some neighbourhood of (T Uadg) \ {20} has the
form f+— Zﬁ:o A, f)(zy) where A, € L(H#), v=0,...,k.

(1) T.f =(T.f)*, f€ H(TUay).

We define a product of T' € @(TUUO,Y(%)) and g € H(TUoy), g =§ by
gT.f:=T.gf, fe HTUoy).

With every function F € My (£ (#)) we connect certain analytic functionals.
Set 0o(F) := o(F)\ T. First we define an element Tr of (T U oo(F), ZL(H))
by

(1.1) Tp.f = —[g F(2)f(2)(iz) dz, fe H(TUoo(F)),

where % is the oriented boundary of a finite union G of smooth domains contain-
ing T U 0o(F) such that f is defined on G and 0 ¢ G. We have Tr, = T, if
and only if F; — F; =S for some S = S* € Z(#).

Every T € <I>(T U ao,i’(.}f)) , where g is as above, is of the form Tr for
some F € My(Z(#)). Indeed, let fi(z):=(2m)"12(2—A)"1, A € C\(TUay),
and

T()\) :=T.fa.

Then A — F()) := T()\)—%T(O) belongs to My (£ (5#)) and we have o D oo(F)
and T =Tr.
If F e My(£(#)), then

(1.2) Tr(\) = F(\) — F(c0), A ¢ TUoo(F),
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and
(1.3) Tr(A) — 1Tp(0) = F(\) —iImF(0), X ¢ TUoo(F).

The correspondence between F' and TF is a special case of a more general corre-
spondence considered in (7], Théoréme 3.
Furthermore, for every function F' € M, (.?’ (2 )) and every pair u,v €

H(TUoo(F), ), we define an analytic functional Tr(u,v) € H(TU ao(F))’ by

(1.4) Tr(u,v).f=-— [g (F(2)u(z),v(z7")) f(2)(iz)'dz, f € H(T Uoo(F)),

where € is defined as in (1.1). For a related (more general) functional see [7],
Théoréme 2. The sesquilinear form (u,v) — Tr(u,v).f in H(T U oo(F), H#) is
Hermitian if f = f. Furthermore, we have

(15) Tp(gu,v).f = TF(U,gv).f = TF(’LL,'U).gf = gTF(U,'U)-f,
f,9 € H(TUoo(F)), wu,v€ H(TUao(F),H#).

It is often sufficient to consider Tr(:,-) on %y ,c0(F¢), which is a dense linear

subspace of H(T U oo(F), ). Let u,v € Zo,00(H),

N N
u(z) = Z z,2%, v(z) = Z yuzh.

v=—N pu=—-N

Then, for every f € H(T Uoo(F)), we have

N
Tr(u,0).f = Y (Tr-Po—nf)Tu,yu),
V7I‘=_N
where pi(z) := 2%, k=0,%1,....
The Hermitian form Tr(:,-).1 is connected with the kernel Cr (see (0.1)) by
the relation

(1.6) 27r(CF(zi,Zj):ci,xj) = Tr(ui,uj).1,

where z; belong to the domain of holomorphy of F, z; € #, u(z) := (z—z) "'z,
1=1,2,...,n. We remark that the set of the functions of the form

n

u(z) = Z(z —z) tay

i=1
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is dense in H(T U oo(F), ).

Assume now, in addition, that F' has no more than a finite number of poles
in D. Then, by Ho(T U oo(F)) (Hi(T Uoo(F))), we denote the closed linear
subspace of H(T U go(F)) consisting of all f € H(T U oo(F)) which are zero
on a neighbourhood of T (or ¢o(F')). The natural isomorphisms of H(T) onto
H (T Uoo(F)) and of H(T,#) onto H;(T U oo(F), ) are denoted by ¢. We
define

tp.f :=Tp.f, f e H(T),
and
tr(u,v).f := Tp(wu, ). f, u,v € H(T,2¢), fe€ H(T).

Then one verifies without difficulty that Tr has the form

ri—1

(1.7) Tp.f = tr. f+Z S {Fs M)+ Fyfarh ), f € H(TUoo(F)),
i=1 j=0

where

18) @) =fk), ) =ia(dfVVd2) =), i=12,.

H1,..., 4k are the poles of F in D, ry,...,rx their orders, respectively, and

Fij e £(o€).

We denote by M{" (£ (), m = 1,2,..., the set of all F € My(L(H#))
with finite o¢(F') such that

(1.9) sup {[|[F(2)[| |1 = I2I]" : |zl € (, ) U (1,n 1)} < o0
for some n € (0,1). We set M2 (L(H)) = Um_, M (L(#)).

The following proposition is well known [14].

Proposition 1.1. Let F € My(%(5)) and let oo(F) be finite. Then we
have F € M§°(Z(5¢)) if and only if tp is a £ (I )-valued distribution on T.

Let F € MJ"(Z(5#)) for some positive integer m. Then tr can be extended
by continuity to an element of &£ (C™*!(T), % (#)). For every f € C™(T)
and every q € %; , we have

(110)  gtr.f=lim 7 (alre ) F(re®) - g(r e ) F(r=1ei)) f(e*) db
r 0

= lim 2/0 ) Re {q(reio)F(reie)}f(eio)d6,

rT1

where the limits and integrals are understood in the sense of the weak operator
topology.
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It follows from (1.10) that for F € M{*(£(4¢)) and a real function f €
C™*1(T) the operator tp.f is self-adjoint.

Now we shall prove similar properties for the functional tp(-,-).

Proposition 1.2. Let F € M{* (£(#)) for some positive integer m. Then:

(i) The mapping (u,v, f) — tr(u,v).f is continuous with respect to the
topology of C™TY(T,5#) x C™t(T, ) x C™*+(T). Hence this mapping can
be extended to this space by continuity.

(i) For every q € % o, u,v € C™*Y(T, ), f € C™(T) we have

gtr(u,v).f = 1:%{1 /02"((‘1(rei0)F(T6ia) - q(%eie)F(%ew))u(eie), v(eio)) f(e*)dé

~tim 2 " (Re {a(re ) F(re) u(e®), v(e™®)) f(e) db.

rT1

Proof. Assume that u,v € H(T,5) and f € H(T) are defined for |z| €
(n,n~1), where 7 is as in (1.9). Then we have

(1.11) tr(u,v).f = ——[g (F(z)u(z),v(E'l))f(z)(iz)"ldz,

where, for € we may take e.g. the boundary of {z: 1(n+1) < |z| <2(n+1)7'}.
On account of (1.9) there exists an A € £ () and a holomorphic £ (5#)-valued
function G; on {z:n < |z| < 1} such that

() GI™M(2) = F(z) + A (see (1.8)),

(ii) the function G; can be extended by continuity to a continuous function
on {z:n < |z| <1} (see e.g. [14]; proof of Satz 19).

In {z 11 < z] < 7]_1} there exists a function G. with similar properties.

We set G(z) := Gi(z) if |z| € (n,1) and G(z) := Ge(z) if |z| € (1,77!). Now we
easily find that

(112) { (@)@} 62)7
= (G ()u(z), 0(z ™)) £(2)(i2) ™
+ (Gl (2), 0( 1)) f(2)(i2)7!
+ (G (=), (™) £(2)(02)
+ (G"(=)u(2),0(z™) N2 T2l € (1)U (07,
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The integral along € of the left-hand side of (1.12) is zero. By (1.12) and similar
relations the right-hand side of (1.11) is equal to

Com [ (6, ) )

a+p+y=m+1

Making use of the continuity of G; and G. up to the unit circle, this integral
can be expressed as an integral along the unit circle. This implies the continuity
statement of (i). We can prove (ii) in a similar way.

It follows from Proposition 1.2 that, for fixed u,v € C™*(T, ), tp(u,v) is
a distribution on T. For fixed f € C™*(T), (u,v) — tp(u,v).f is a sesquilinear
form on C™*!(T, 5#) and we have

tr(u,v).9f = tr(gu,v).f = tr(u,gv).f, f,g € C™TYT).

The form (u,v) — tp(u,v).f is Hermitian if f is real.

Example 1.3. Assume that on the Hilbert space J# there is given an Her-
mitian sesquilinear form [-,-] such that |[z,y]| < c|z| |ly||, z,y € 5, for some
constant c¢. Let W be the Gram operator of [, ],

(1.13) (Wz,y) =[z,y], z,y€ 7,

and let U be a bounded and boundedly invertible operator such that every point
of o(U)\T is a pole of the resolvent of U and [Uz,Uy] = [z,y], =,y € #. Then
the function Fy defined by

(1.14) Fy(2) = WU +z2I)(U —zI)™ = =W+ 2WU(U — 1)}, z € o(V),

belongs to Mo (£ (#)) and satisfies the relation Fy(z) = —(FU(Z_l))*, z €
o(U).

The functional T, is closely connected with the Riesz—-Dunford functional
calculus of U; we have

(1.15) Tr,.f = 47W f(U), feH(Tua(U)).

If, in addition, o(U)\T is a finite set and (U —zI)~! satisfies a growing condition
similar to (1.5), the Riesz-Dunford functional calculus can be extended by conti-
nuity to C*°(T) x H(o(U)\ T), we have Fy € Mg® (£(2#)) and (1.15) holds for
every f € C®(T) x H(o(U)\ T). If 0 € o(W) holds, or, equivalently, (2,1,
is a Krein space, we shall replace below the letter W with G. In this case we have

o(U) = o(Fv).
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1.2. Ranks of positivity and negativity of Tr(-,-).f. If Z is a
linear space equipped with a Hermitian sesquilinear form [-,-], we denote by
£+ ((Z,[5]) (6=((£Z,[,-]))) the least upper bound (< co) of the dimensions of
[-,-]-positive definite (or [-,-]-negative definite) subspaces of Z. These quantities
are called the ranks of positivity and negativity of [-,-] on Z.

If Fe M (ZL(H)) and f € H(TUoo(F)) with f = f, we define

kx(f; F) := ks ((Ro,00(), Tr (). f)) -
In this definition %y oo(H#°) can be replaced with H(T U oo(F), ).

Let F € MJ"(£()) for some positive integer m. Then we define x4 (f; F')
for every f € C™F(T) x H(oo(F)) with f = f by the same relation. In this case
Ry 00(H°) can be replaced, in view of Proposition 1.2, (i), with C™+1(T;#) x
H(oo(F), ) or with dense subspaces of this space.

By (1.6) a function F' € My(Z()) belongs to Cif (Z(H#)) (see Introduc-
tion) if and only if k_(1; F) = k.

Let F € Mg (£()). We shall say that an open subset v of T is of
positive type (negative type, type 4, type m_) with respect to F if k_(f; F) =0
(k+(f;F) =0, k_(f; F) < 00, k4(f; F) < o0) for all non-negative functions
f € C®(T) x H(oo(F)) with supp f C 7.

Example 1.4. Let [-,-], U and Fy be as in Example 1.3 and let Fy €
Mge(ZL(5#)). Then it is easy to see that for every f € C°(T) x H(o(U) \ T)

we have
(1.16) k+(f; Fu) = w2 (2, [f(U)-]))-
In particular, if (J2,[,-]) is a Krein space, an open arc 7 of T is of positive
(negative) type with respect to Fy if and only if it is of positive (negative) type
with respect to U (see [11], Section 2.1 and especially Proposition 2.1).

Lemma 1.5. Let F € My(£(5¢)), v € 0o(F)ND and let | be the multi-

plicity of the pole v of F. Assume that x € H(T U UO(F)) is equal to 1 in an

open neighbourhood Y of {v,7~!} and equal to 0 in an open neighbourhood of
(TUoo(F))\{v,v7'}. Then ki(x;F) =r_(x;F) =1.

Proof. Let
(1.17) F)=(z-v) A+ - +(z—v) "A1 + 4o+

be the Laurent expansion of F' at v. Then [ is equal to the dimension of the
range of the operator

Ay 0 ... 0 0
Agpr Ak ... 0 0
A, A ... A 0

Ay Ay .. Ay A
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in JF (see [17], Lemma 4.1).
The linear subspace of H(TUoo(F)) of all functions u € H(TUao(F)) which

are zero outside UND (UN ﬁ) is denoted by H' (H®). Now developing arbitrary
functions u; € H* and u. € H® in Taylor series at v and 7~!, respectively, and
putting them and the relation (1.17) into (1.4) we find this to hold: If ! is finite,

there exist linearly independent systems of functions u; o € H', a = 1,...,[, and
uepg € H¢, B =1,...,1, such that

(1.18) Tr(Ui,o,Ue,g)-X = ba,p8, a,f=1,...,1,

and there are no such systems consisting of more than [ functions. Therefore, in
view of the relation

Tr(ui + e, ui +te)x = Tr(ui,ue) X + Tr(ue, ui).x
= 2ReTp(ui,ue).x, uj € H', u, € H®,

the ranks of positivity and negativity of the form (u,v) — Tr(u,v).x are equal
to . If | = oo, then, for every positive integer [', there exist systems of functions
Ui € HY ) ue g € H®, @, =1,...,1' which satisfy a relation analogous to (1.18).
Hence w4 (x; F) = k-(x; F) =

Remark 1.6. Lemma 1.5 implies the well-known fact that, for a function
F ¢ Cg:n(.?(jf)) , the total multiplicity of the poles of F in D is not greater
than «.

1.3. Decompositions of F. Moments of Tr. Let F € M{°(L()).
Assume that v;, 7 = 1,...,l, are open arcs of T with Uj')’j = T, and let

xj € C=(T) x H(O’o(F)), J = 1,...,1, such that 0 < xj(s) <1 (s € T),

supp x; C 7; and 23:1 X; =1 on T. Let xo € Hp (TUJO(F)) be equal to 1 on
a neighbourhood of o¢(F'). Then, according to (1.3), we have

l
(1.19) FQ\) =iIm F(0)+ Y _ (x;Tr-fr — (47) "' x;Tr.1).
J=0

The functions A — x;Tp.fr — (47)"'x;Tr.1 =: Fj(\), j = 0,...,[, belong to
Mg° (£(4£)), and we have
(120) TFJ- = XjTF and TF, (-, ) = XjTF(', )

Moreover, we have

o(Fy) = ao(F), o(Fj) C o(F) Nsupp xj, j=1,...,L
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We shall need some relations for the moments ¢; := (27) ' Tr.p_1, pi(2) :=
2!, 1 = 0,%1,..., of Tr. Here we only assume that F € Mo(_?(ﬁf)) The
relations (1.2) and (1.3) imply

@o = (27) ' Tr.1 = 2Re F(0),

d! :
(121 ¢1=(2m) " Tp.p_y = NTr =7 fa o= UTTFO(0) i 121,
1= (FUD(0))* ifl<-1.

If u(z):= 3%, z;2, z; € A, we have by (1.21)

n

(1.22) @m) ' Tr(uw,u)l= Y (pr—;zj,7k).

jk==n

If g € %3 or 9(2) = S pe_n gk2¥, then, by (1.21),

N
(1.23) (27()_1gTF.p_1= E gkPil—k-
k=—N

1.4. Characterization of arcs of positive and negative type. In the
following lemma we characterize the open arcs of positive type in different ways.
A similar result holds for open arcs of negative type.

Lemma 1.7. Let F € M§°(£(5)) and let v be either an open arc of T
or v =T. Then the following conditions are equivalent:

(i) v is of positive type with respect to F.

(i1) tp restricted to v is a positive measure, i.e. for every non-negative f €
C*°(T) with supp f C v the operator tr.f is non-negative.

(iii) There exists a go € C*(T), go(e'®) > 0 if €'® € v such that the form
(u,v) — tp(u,v).go Is non-negative semi-definite.

(iv) The following two conditions are satisfied for every = € ¢ :

(@) liminf,q1 ((F(re®) — F(r='e*®))z,z) > 0 for almost every e € v.

(B) inf {((F(re*) — F(r~'e))z,z) : ' € y0,r € (1 - 6,1)} > —oo for ev-
ery closed subarc vy of v and sufficiently small 6 > 0.

Proof. We prove the lemma for 4 # T. A similar reasoning applies if v = T.
Evidently, (i) implies (ii).

(i1) = (1): Assume that (ii) holds. Let g be an arbitrary non-negative function
belonging to C*°(T) x H(oo(F)) with suppg C 7. Set 71 :=~ and let v, be an
open arc of T such that 4; Uy, = T and 42 Nsuppg = @. Then we decompose
F asin (1.19):

F()) = iIm F(0) + Fo(A) + F1(A) + Fa()).



268 Peter Jonas

Then, by the relations (1.20), TF, is a positive measure and Tr(-,-).g = Tr,(+,-).g-
If u € Zo,00(S#), Proposition 1.2 gives

27
Te(uug =tim [ ({Trn(re®) = T, (3e) Pule),u(e) ) o(c ) .
1 Jo r

Since the operators .

T 10 T 10

Tr,(re'”) — Tp, (;e ),
which are Abel-Poisson integrals of the positive measure Tp, , are non-negative,
we conclude that T (u,u).g > 0. Hence the assertion (i) holds.

That (ii) is equivalent to (iv) follows by a reasoning similar to the proof of
(i1) = (i) and by making use of the Lebesgue Theorem.

(i1) = (iii): Assume that (ii) holds. Let go € C°(T) such that go | T\7 =0
and go(e?®) > 0 if € € v. Then gotr is a positive measure on T. Set ()=
gotr.fa — (4m)"1gotr.1. Then we see as above that tp(u,u).g0 = Tr, (u,u).1 is
non-negative for all u € % o(H).

(iil) = (ii): Assume that (ii1) holds. For every p € % oo we have

((tr-ppgo)z,z) = tr(z,z).ppgo = tr(pz,pr).g0 >0, z € H.

Then (ii) follows from the fact that, for an arbitrary positive integer m, every
non-negative C™ function on T is the limit in C™(T) of a sequence of functions
of the form pp.

2. The class Do (Z(57))

2.1. Characterizations of the class Do(£(5)). In what follows we
are concerned with the subclass Do (£(H#)) of Mo(ZL(H)) defined above in
the introduction. The subclass Do(L(H)) is the set of all F € My (L(¢))

satisfying a relation of the form
(2.1) 9(z)F(z) = H(z) +ih(s),  z€D,

where g € % ., H is holomorphic in D, ReH(z) = 1(H(z) + H(z)*) > 0,
ze€D,and h € % (£ (H)). A function g € ) ~ With this property is called
a definitizing function for F'. By means of the Laurent expansions at 0 of the
functions occurring in (2.1) we see that H and h are uniquely determined by
F and g if we require, in addition, that Im H(0) = 0. If, in this case, g(z) =
Z;V:_N g;2’, then h(z) = Zjvz_N hjz9, where

ho = Im { ﬁ:(u!)_lg-uF(u)(O)},
N

hi=hty=iy ((v=3)) " 7=(FU(0)", 0<j<N.

v=j

(2.2)
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Remark 2.1. Let F € Mo(ZL(H)). If there exists a g € %; o, such that
9(:)F(2) = E(z) + ie(2),

where E € Do(Z(#)) and e € %5 (£ (), then F € Do(£L(H#)). This
immediately follows from the definition of the class Do (£(H#)) .

Proposition 2.2. For any F € My(Z(5)) the following assertions are
equivalent:

(i) F € Do(£L(o£)).

(ii) There exists a g € Z§ o, such that supp(¢Tr) C T and gtr is a positive
measure on T.

(iii) F € M§°(Z(H#)). There exists a finite set ¢ C T such that all subarcs
of T \ e are either of positive or of negative type with respect to F'.

(iv) There exist g1 € C, ¢t = g—1, | = —N,..., N, such that the oper-
ator Toeplitz matrix (Zﬁ___NngOk—j—l):’j__:_n, where ¢; = (271—)—1Tp.p_,-, 1=
0,41,... (see (1.21)), is a positive operator in J#*"*! for every positive integer n.

Moreover, the following statements are equivalent:

i) g9(2) = Zﬁ___N q12' € Ay o, is a definitizing function for F.

(i1") For g we have supp(¢gTr) C T, and gtF is a positive measure on T.

(iv') The numbers g;, l = —N,..., N, have the properties mentioned in (iv).

Proof. Assume that (i) holds. Then, by the definition of T and (2.1), it
follows that supp(¢Tr) C T. In view of (1.10), gtFr is a positive measure.

Let g € #; ., and define K(\) := gTp.fa—(47)"'gTr.1, A € C\(TUoo(F)),
where f(z) := (27)7'z(z — A)™'. Then

(2.3)  ReK()\) = 7(gTr).-fr-1 fi-1 N 72(1 = |M?), A€ C\ (TUao(F)).
Moreover (see (1.2)),

(24) K\) =g\ (Tr.fr)+ TF.(g — g()\))f,\ — (47)"Y(¢TF) 1
= g(MF(X) = g(A)F(0) + Tr.(g — g(N)) fr — (47) " (¢TF).1.

If (ii) holds, K is holomorphic in D UD and, by (2.3), ReK(\) > 0, A € D.
Therefore, by (2.4), F belongs to Do(£(5)) and g is a definitizing function
for F'. Hence (i) and (ii) as well as (i’) and (ii’) are equivalent.

Let (i) and (i') hold and let pq,...,ur be the zeros of ¢ on T. Denote
the degree of the zero pj, j = 1,...,k, of g by r;. Then by (2.1) we have
F e M{"(£L(4£)) with m =max{r;:j=1,...,k} + 1. Hence tr is an Z(H#)-
valued distribution on T. Then, in view of Lemma 1.7, (iii) is a consequence of
(i1). That (iii) implies (ii) can be verified similarly to [9], Hilfssatz 2.
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Assume again that (ii) holds. Then we have ¢gTr = Tk and, on account of
Lemma 1.7, 0 < Tk (u,u).1, u € Zo,00(¢). Then the relations (1.23) and (1.22)
imply the assertion (iv).

Assume that (iv) holds and set g(z) = ZIA;_NgIZI. Then Tr.ffg > 0 for
every f € %o,. Now, approximating the function f5-., for arbitrary A with
0 < |A| < €, by functions belonging to %, we obtain from (2.3) Re K(\) > 0
for |A| < €. Then K can be analytically continued to D such that Re K(\) > 0 for
all A € D, and the relation (2.4) implies (i). Moreover, the above considerations
show that (i') is equivalent to (iv').

Remark 2.3. In the notions of [8] the assertion (iv) means that the sequence
(p1) can be definitized. If (iv) holds, the relations ¢; = (27) ' Tr.p_;, | =
0,+£1,..., and assertion (ii) yield an integral representation of the sequence (¢;)
(cf. also [22]).

Example 2.4. Let W, U and Fy be as in Example 1.3 and assume, in
addition, that there exists a g € 5 o such that

(2.5) [9(U)z,z] >0, z € .
Then
§(2)Fu(2) = Gg(U)(U + 2I)(U — )™ = G(g(U) = g())(U — 2I)" (U + =I),

It is easy to see that the first term on the right side of this relation belongs to
C&to (£(4#)) and that the second term is of the form ih(z), h € A3 oo (Z(H)).
Hence Fy € Do(£(5#)), and g is a definitizing function for Fy. If (42,[,])
is a Krein space, unitary operators U in J# with the property (2.5) are called
definitizable.

From the well-known operator representations of the functions of the classes
C'(;*:K (£(2#)) it immediately follows, as mentioned in the introduction, that these

classes are contained in Do (Z()). Now we give a proof of this fact along the
lines of [2], proof of Theorem 3.1, where operator representations are not used.

Proposition 2.5. We have Cf(£(5#)) C Do(£(5#)), x =0,1,.... For
every F € C'J:K (ZL()) there exists a definitizing function g € X; o0 Which is
non-negative on T.

Proof. 1. For k = 0 the assertion follows by the definition of the class
Do(Z(4)). Let & > 0. Assume first that J# = C.

Let F € Cf,(C) and let @ denote the set of all functions ¢(z) = 3 qiz' €
Hj, o such that ¢(z) > 0 for z € T. Let, as above, ¢; = (27) ' Tr.p_i, i =



Operator-valued meromorphic functions 271

0,+1,.... We set

C':= {(ZQI‘P—I,ZQI(PI—h”'72‘1!90&-1) 1q € Q}
1 ] 1
= {((27")_1‘1TF-P0a (27) ' qTr.p-1,...,(27) ' qTr.p-x) 1 q € Q} CRxC"

(see (1.23)). Since every ¢ € @ can be written as ¢ = 77, ¢ € %o, the
form Tr(-,-).¢ = Tr(q':,¢"-).-1 has no more than s negative squares and the
Hermitian symmetric Toeplitz matrix (z,qup i-k—’);,k=o has no more than «
negative eigenvalues (see (1.22), (1.23)).

We denote by C" the set of all vectors (cg,cf,...,cl) € R x C* such that
the Toeplitz matrix (C_ljl—k);,k=0’ ) = c_f, l=1,...,k, has only non-negative
eigenvalues.

Evidently, C := C' + C" is a cone. If (co,c1,...,¢x) € C, then (¢j—k)}x=0>
c_1=7¢, l=1,...,k, has no more than k negative eigenvalues.

Let & := (&,¢1,...,6x) € R x C* such that (éj—k);,k=0a é =6, l =
1,...,k, has k + 1 negative eigenvalues. Then ¢ has a positive distance from the
cone C in R x C*. Hence there exists a vector b = (bo,b1,...,bs) € R x C*,
b # 0, such that

(2.6) cobo +Re2c]-l_)j >0 if (co,c1,...,¢x) € C.

i=1

Evidently, (1,e7%,...,e7 ) € C for every t € R. Hence, by (2.6)
by + Z %bjeijt + Z %Bje_ijt >0, teR,
j=1 j=1

i.e. the function g(z) := bo + X, 1b;27 + > 1b;z77 is non-negative on T.
For arbitrary ¢ € Q we obtain by (2.6)

x

0<qTr.bo1+qTF. E 2b;p; + qTF. Z 1bip—; = Tr.qq.

i=1

<
Il
-

Then it follows, as in the proof of Proposition 2.2 ((iv) = (i)), that F' € Do(C)
and that g is a definitizing function for F'.

2. Now we consider the general case. Let F' € CJ:OO (£(4)). Then oo(F)
is finite by Remark 1.6. For arbitrary z € 5, z — (F(z)m,x) belongs to
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Us—o C(;*:K.(C) and, by the first part of the proof, there exists a § > 0 (not
depending on z) such that

sup{'(F(z):v,x)l(l - |2:|)2K+1 1-6< 2| < 1} < 00.

Then, by the principle of uniform boundedness, F € M® (,2”(.%”)) .

We assert that there exists a finite set ¢ C T such that all subarcs of T
contained in T \ e are of positive type with respect to F. Indeed, suppose that
there exists a sequence A\; € T, i=1,2,..., \; # \j for i # j such that for every :

there exists no open arc 4 3 A; of positive type. This implies that k_(1; F) = oo,
a contradiction. By Proposition 2.2 it follows that F' € Do(£(H#)).

3. To prove the last assertion, we assume that the set e = {uy,...,u} is
minimal with the above-mentioned properties. Let 7;, j = 1,...,1, and X5
J =0,...,1, be as in Section 1.3 and assume, in addition, that u; € v;, wi & vk,
Jyk=1,...,1, j # k. Define Fj, j =0,...,l, as in Section 1.3. Let v1,...,vm
be the poles of F' in D and let nyx be the multiplicity of vz, k =1,...,m. Then

(2.7) go(z) := :[—[(z_l — k)" (z — v
k=1

is a definitizing function for Fy (see the proof of Lemma 1.5), and Yo g =

k—(xo0; F) =: ko (see Lemma 1.5). The degree of gy is k¢, and gq is positive
on T.

Let 7 be one of the numbers 1,...,l. Now we prove that the function Fj has
a definitizing function of degree
(2.8) (L Fj) = 6—(x;; F) = &;.

By the first part of the proof, there exists for every z € 5 a function of the form
H(z —zo)(27 = Z4), zq € C,

which is definitizing for z — (Fj(z)z,z). Then we prove as in [10], proof of
Lemma 3, that

(2.9) 91(2) = (2 = i) (=70 = )

is also definitizing for z — (Fj(z)x,x). Hence g; is definitizing for Fj.
It is easy to see that the function

(2.10) g:=4gog1 -G

is a definitizing function for F. SinceEi-:O K; = K, the degree of ¢ is k, and
Proposition 2.5 is proved.
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The function g € Z%; , defined by (2.7)-(2.10) will be called the normal
definitizing function for F' € CJ:K (£(52)).

Let dimJ# < co. Then it is easy to see that for every g € %; oo, %y :=
{9f : f € Ro,00(H#)} is a linear subspace of Ho,c0(H#) with finite codimension.
If, in addition, g is a definitizing function for a function F € Do (£ (5#)) and ¢
is non-negativeon T, g = hh with h € Ko, , We have

Tr(9f,9f)1 =Tr(hf, hf).9 20,  f€ Ro,00(I),

and, hence, k_(1;F) < co. Then, making use of Propositions 2.2 and 2.5 we
obtain

Corollary 2.6. Let dim 9 < co and F € M§°(Z£(#)). Then F belongs

to one of the classes C’[{K (.2’(.%”)) , & =0,1,..., if and only if there exists a finite
set e C T such that all subarcs of T \ e are of positive type with respect to F'.

Analogues of the functionals T and Tg(-,-) with F' as in Corollary 2.6 and
dim s = 1 were studied in [13] in connection with models of cyclic self-adjoint
operators in Pontryagin spaces.

2.2. The critical points. Let F € D, (.2’(.%”)) A point A € T is called a
critical point of F' if )\ is not contained in an open arc of positive or of negative
type. According to Proposition 2.2, the set of all critical points of F', which will
be denoted by c(F), is finite. By coo(F) we denote the set of those points A
of T which are not contained in an open arc of type 74 or 7—. Let oP(F)
(6P(F)) be the union of go(F) N D and the set of all points A € T N o(F)
such that A is not contained in an open arc of T of negative (positive) type (see

Lemma 1.7). Analogously, replacing D with ]3, we define the sets U?(F) and
o2 (F). Evidently, we have

o(F) = e®(F)UGD(F),  c(F)=oP(F)noD(F).

Lemma 2.7. If A € TNo(F) and there exists a definitizing function g €
A; o for F such that g(A\) > 0 (or g(A) < 0), then X € eP(F)\ c(F) (X €
oP(F)\ ¢(F)).

Moreover, there exists a definitizing function go € %; , for F' such that

o(F)=A(g0) N (o(F)\oo(F))  and  oo(F)=A(9)\T,

where A (g0) := {z € C: go(2) = 0}.

The first assertion of Lemma 2.7 is a consequence of Proposition 2.2. The
second assertion can be proved similarly to [10], Lemma 3.
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2.3. The spectral function. Let F € Do (£ (5¢)). We denote by B(F)
the Boolean algebra of Borel subsets b of C such that

0,(F)(bﬂo'(F)) ﬂC(F) = @

Here the first term is the boundary of the set bNo(F) with respect to the relative
topology of o(F') (as a subset of C).
By B%(F, ) we denote the linear space of all bounded Borel measurable

J -valued functions f defined on the union of T No(F) and an open neighbour-
hood Uy of oo(F) (depending on f), Uy N'T = @, such that

(i) {f(2) : z € (TNo(F)) Ullo} is contained in some finite-dimensional
subspace of J# (depending on f).

(ii) There exist an open neighbourhood {; of ¢(F) in T (depending on f)
and a C* function f; on {; such that f and f; coincide on i; N o(F).

(iii) f is locally holomorphic on .

Set B®(F) := B*(F,C).

For an arbitrary b € B(F) we define a function x, € B®(F) as follows: We
set Xp(2) =1if z€ bNTNo(F) and xp(z) =0 if z € (TNo(F)) \ b. Further,
Xb is equal to 1 in some neighbourhood of b N o¢(F) and equal to 0 in some
neighbourhood of oo (F) \ b.

The functionals Tp and Tp(-,-) can be extended by continuity to B>(F)
and B*(F,5) x B®(F,#) x B™(F), respectively. It is sufficient to verify
this for functions fo € B®(F) and ug,vy € B®(F,#) which are zero on some
neighbourhood of ¢(F) in T No(F). Let 7 and v be open subsets of T \ ¢(F)
such that % C vy, ¥ C T\ ¢(F) and fy, ug and vy are zero on (TNno(F)) \ 7.
Let the functions f, € C°(T)x H(0o(F)), un,vs € C®(T, ) x H(oo(F), ),
n =1,2,..., with supports contained in 4 have the following properties:

(a) fa, Un, vn, n=1,2,..., are uniformly bounded.

(b) Un{un(2) : 2z € T} U {va(z) : z € T} is contained in some finite-
dimensional subspace of 7.

(¢) The sequences (f»), (un), (va) converge pointwise to some functions f,
u, v, respectively.

Then by Lemma 1.7 ((i) = (ii)), the sequences

(Tr.fn) and (Tp(un,vn).fn)

converge weakly. We denote the limits by Tr.f and Tr(u,v).f, respectively.
Repeating this procedure (transfinite induction) we define Tr. fo and Tr(uo,vo)-fo
(cf. [10], p. 127).
We now define
Ep(b) = TF.Xp, be %(F),
Er(u,v;b) := Tr(u,v).Xs, u,v € B¥(F, ), be B(F).
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These set functions on B(F') are called the spectral function and the form spectral
function of F', respectively.

If b is T-symmetric, Ep(b) is self-adjoint and Ep(-,-;b) is a Hermitian
sesquilinear form. The restriction of Ep(:) to T \ ¢(F) is an Z(5)-valued
(generally unbounded) measure. If ¥ C T is an open arc of positive (negative)
type and b is a relatively compact Borel subset of 7, then Ep(b) > 0 (Er(b) <0)
and Ep(-,-;b) is a positive semidefinite (negative semidefinite) form on B (F, )
(or, equivalently, on %y, o0(F)).

For every b € B(F), b C D, we define

2.11) { r+D(b JF) = k4 ((Zo,00(), Er(-, ;b UD))),
r2(b; F) := k_((Ro,00(H), Ep (-, ,bUb))

If § is an arbitrary subset of D which is open in D we set
{ r2(8; F) :=sup {r?(b; F) : b€ B(F),b C 6},

r2(6; F) :=sup {r2(b; F) : b € B(F),b C 6} .
It is easy to see that we have cP(F)N§ = 0 if and only if r2(6F) = 0. If
oP(F) N § is an infinite set, we have r2 (8 F) = co. For every A € o2 (F) the
quantity
(2.13) inf {r2(6;F): 6 C D,6 open in D, \ € §}

is called the multiplicity of A (for the notation cf. Example 2.9).

In the following lemma we express the quantities (2.12) as limits of the ranks
of positivity and negativity which were introduced in Section 1.2. For an open
T-symmetric subset G of C and ¢ € (0,1), let Z(G,¢) denote the set of all real
C* functions x on C with the following properties:

(@) x(z) =1 if distg(z,C\ G) > €, x(z) = 0 if distg(z, C\ G) < 3¢, where
distg(+, ) is the distance on the Riemann complex sphere.

(B)0<x(2)<1, zeC.

(7) x(2) =x(271), z € C.
(6) x/? and (1 — x)'/? are C* functions.

Lemma 2.8. Let the set § C D be open in D, let ¢, € (0,1), n =1,2,...,

(2.12)

en | 0, and let x, € E(&ué,an), n =1,2,.... Then k4(xn;F) is defined for
sufficiently large n and
(2.14) r2(6; F) = sup ks (xn; F).

Proof. By the definition of the spectral function we have r2(&;F) <
sup,, K+(xn; F'). Since, for every u,v € %,00(I€),

Tr(u,v).xn = Tr(xs/*u, x3/*v).1 = Er(x}/*u,x}/*v;G), n=1,2,...,

the opposite inequality is also true.
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Example 2.9. Let [-,-], U and Fy be as in Example 1.3 and assume, in
addition, that (4#,[-,"]) is a Krein space, [-,-] = (G-,-) and U is definitizable in
(.9?, [ ]) Then, according to Example 1.4, we have ¢(U) = ¢(Fy). Furthermore,

4rGE(b;U) = Ep, (b),  be B(Fy),

where E(-;U) is the spectral function of U (see e.g. [11], Section 2.2).
For every set b C D, b € B(Fy), which is open in D, we have

(2.15) r2 (b Fu) = k. ((22, [E(bUB;U)-,])).

This is a consequence of (1.16) and Lemma 2.7.
Let .#, and .#_ be as in the introduction. Then it is easy to see that

oR(Fy)=o(U | Mys).

For b asin (2.15) let o(U | .#+) Nb be a finite set. Then rP(b; Fy) is the total -
algebraic multiplicity of the points of the spectrum of U | .#4 in b (cf. [12],
Proposition 2.7).

3. Convergent sequences of functions of the class D, (£ (5#))
Let the functions F;, € Do(.?’(.%”)), n=12...,and Fy € Mo(.?(jf))

satisfy the following conditions:

(1) There exists an n € (0,1) such that
o(Fo)N{z:|z| <n} =0, n=12,...,00.
(i1) For every pair z,y € J# we have

nlirr;o (Fn(z)x,y) = (Foo(z)x,y)

uniformly in {z: |z| < n}.
(iii) There is a positive integer N and a sequence of functions g, € s 00

n=1,2,..., of degree < N such that g, is a definitizing function of F,, n =
1,2,....

In this section we consider the distribution sequence (T, ), the set sequences

(cR(Fn)) and (¢P(Fy,)), and the corresponding sequences of multiplicity func-
tions.
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Theorem 3.1. Let F, € Do(ZL(H#)), n=1,2,..., Fx € Mo(.?f(.%ﬁ)), and
assume the above conditions (i), (i), (iii) to be satisfied. Then the following holds:

(1) Fo € Do (Z(52)).
(2) For every pair z,y € J and every f € %o,0.o we have

nIeréo(TF"'f z,y) = (Tr,.fz,y).
(3) For every set §g C D which is open in D we have
2 (60; Foo) < liminf r2 (6o F), r2(60; Fso) < liminf rP(&o; F,,).

Proof. The assertion (2) is a consequence of (1.21). To prove (3) it is sufficient
to show that every subsequence (F?) of (F,) possesses a subsequence (F2?) for
which (3) holds. Every sequence of functions of % ., of degree < N possesses
a subsequence such that the corresponding (2N + 1)-systems of coefficients con-
verge, which is equivalent to the uniform convergence of that subsequence on every
compact subset of C\ {0}. Hence it is sufficient to verify (3) under the additional
assumption that

(3.1) Jm gn(2) = goo(2)
exists uniformly on all compact subsets of C \ {0}. We have go, € %; -
We define holomorphic functions H, in D with Re H,(z) > 0, z € D, and
Im H,(0) = 0 and functions h, € Z; ., (ZL(#)) by
(3.2) gn(2)Fp(2z) = Hu(z) + thp(z), zeD, n=1,2,....

Then by (ii) and (2.2) there exists an hoo € % o, (Z(F#)) such that for every
pair z,y € J€ we have

(3.3) nli_)rr;j (hn(2)z,y) = (hoo(2)z,y)

uniformly on every compact subset of C\ {0}. Hence, for every z,y € 5, we
have

(3.4) lim (Hn(2)z,y) = (Hoo(2)z,y)

n—oo

uniformly in {z Dz < n}, where Hy, is a function belonging to the class

Cio(ZL(52)). Since

9oo(2)Foo(2) = Hoo(2) + theo(2), z€D,
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we conclude that assertion (1) holds, and goo is a definitizing function for F.

Now we verify as in [6], Lemma II.3, that for every fixed z € S the func-
tions (Hn(z):c,a:), n = 1,2,..., are uniformly bounded and equicontinuous on
every compact subset of D. Hence every subsequence of this sequence contains a
subsequence which converges uniformly on every compact subset of D. Since, on
the other hand, the limits of all such subsequences coincide with Ho, by (3.4), it
follows that for every z,y € S we have

(3.5) nlgr(lx (Hn(2)z,y) = (Hoo(2)z,y), z €D,

uniformly on all compact subsets of D. Moreover, there exists a constant M such
that

(3.6) |Ha(2)| S M|1=12l|7", 2€D,n=12,...,0

(see [1], Section 2). . .
In assertion (3) the case of a general set §o C D which is open in D can
easily be reduced to the following cases:

(a) 6o = {z s distg(2, 20) < 60}, where zy € 09(Foo) and g is chosen such
that 8o N (0o(Feo) UT) = {20}

(b) 8o = {z € D : distg(z,7) < €0}, where 7 is a closed arc of T and &g is
chosen such that 6o N oo(Fso) = 0.

Assume first that (a) holds. We assume, in addition, that the boundary of

6o U 30 contains no zero of go,. This is no restriction. According to (3.1) there
exists an integer no such that |J{.#'(gn) : n > no} has a positive distance from

the boundary of § U &,. Then by (3.1), (3.3) and (3.5) we obtain

lim Efp, (u,v;6 U 50) = Er_(u,v;8 U 50), u,v € Zo,00(I),

which implies (3).
Let now the condition (b) be satisfied. We may further assume that
(3.7 8o N A (goo) C -

If T?(6O;F°°) < 00, we set o = TE(‘SO;FOO)- If 7'-?(50;Foo) = 00, rg is assumed
to be an allbitrary positive integer. Then, by Lemma 2.7, we find a function
X € Z(60 U do,h), € € (0,€0), such that

(3.8) k4 (X Foo) 2 o

By (3.1) and (3.7) there exists an integer ng such that |J{.#(gn) : n > no} has
a positive distance from

S = {z: 1ef < distg(2,C \ (60 U &)) < &b}
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Then by (3.6) there exists a constant M’ such that
”F"(Z)HSMI|1_IZ!|—17 ZES\T, TLZTZ().

Making use of this relation and the relations (3.1), (3.3) and (3.5), one verifies
similarly to the proof of Proposition 1.2 (see also [11], Proposition 1.1) that

lim TF, (u,v).x = TF,, (u,v).x

for every pair u,v € %o 00o(H°). In view of (3.8) it follows that ki (x;Fn) > 7o
for sufficiently large n. By Lemma 2.7 this implies the first relation of (3). The
second relation of (3) can be proved in a similar way.

If we assume, in addition, that the functions F,, n = 1,2,...,00, belong to
a fixed class Cg: «(ZL(H)), we get stronger results. The following corollary shows

in particular that in this case the sequence (62 (F},)) converges to o2 (Fu).

Corollary 3.2. Let F, € Cg:n(.i"(.%")), n=1,2,...,00, and assume that
the conditions (i) and (ii) are satisfied. Then

(1') limp o 02(F,) = 0P(Fs) in the sense of the Hausdorff distance in C.
(2') Let the sets by,b;, C D be open in D and b, C b,. Then we have

rP(by; Foo) < 7P (by; Fy) < 12 (b2 Fioo)

for sufficiently large n.

(3") If f € C=(T) x H(0o(Fs)) and f is holomorphic in a neighbourhood
of 0P (Fy), then

lim (Tr, f2,9) = (Te. fz,9), 2.y € .

(4") Let g, be the normal definitizing function of F,,, n =1,2,...,00 (see
the remark following Proposition 2.5). Then

Jlim gn(2) = g(2)

uniformly on every compact subset of C\ {0}. For every z € S# the sequence
of the positive measures (gnTp".(-)x,x), n = 1,2,..., converges to the positive
measure (§ooTF,, .(-)z,x) with respect to the weak* topology of (C(T))l.

(5') Let v be an arc of T and a and f its endpoints. Assume that o and
B do not belong to 02 (Fw) and that Er_({a}) = Er_ ({8}) = 0 holds. Then

we have
nh—va;o (EF,.(’Y)xay) = (EFW(7)xay)7 T,y € .
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Proof. In view of Proposition 2.5, the functions F;,, n = 1,2,...,00, satisfy
the condition (iii) with N = «.

Let 0P(F.) = {v1,...,vm}. We choose g9 > 0 such that the closures of the
sets 8(eg) := {z €D: distg(z,v5) < eo}, Jj =1,...,m, are pairwise disjoint and
for every vx with vx € D we have §k(¢9) N T = . By Theorem 3.1 there is a
positive integer Ny such that for n > Ny we have

T]_)(5](€o)7Foo) < T—D(éj(EO);Fn)a ] =1,...,m,

and, hence,
m m

Zr? (6j(c0); Fo) Z (8;(c0);

i=1 =1
Since the left-hand side of this relation is equal to « and the right-hand side is
< k, we get

(3.9) r2(8i(e0); Fo) =2 (6j(€0); Fn), 7 =1,...,m,

for n > Ny.

Let b; and b, be as in assertion (2'). It is easy to see that (3.9) implies the
first inequality in (2'). Let the set b3 C D be open in D such that b3 D D\ b,
and b Nb; = 0. Then

Kk — 12 (by; Fuoo) < 12 (b3; Foo) <12 (b3; Fp) < 6 — 2 (b1; F)

for sufficiently large n, which proves the second inequality of (2'). The assertion
(1') is a consequence of (2').

From (1') and (2') it follows that, for the normal definitizing functions g, of
F,,n=1,2,...,00, we have

(3.10) Him gn(2) = goo(2)

uniformly on every compact subset of C\ {0}. We now define a sequence of
functions Hy,, n =1,2,...,00, asin (3.2). These functions fulfil the relations (3.5)
and (3.6). Then one verifies the assertion (3') similarly to [11], Proposition 1.1,
making use of (3.10), (3.3), (3.5) and (3.6).

On account of (3.5) the positive measures ¢,TF, on T are uniformly bounded.
Let z be an arbitrary element of J#. Then, by the Helly theorem, every sub-
sequence of ((¢nTF,).(-)z,z) contains a subsequence ((gnl.TFn‘_).(-)x,:c) which
converges in the weak* sense. Since, on account of (3'),

IILIE'O ((gn;TF,.i )9‘9172’) = ((gooTFoo)-CPiE,iC)

for ¢ € Zo,00, ((9n:TF,,)-(-)z,z) converges to ((9eoTF,. )-(*)z,2). It follows that
((9nTF,)-(-)z,z) converges to ((gooTF,, )-(*)z,z) in the weak* sense.
The assertion (5') is a consequence of (3') and (4').
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Remark 3.3. Let the assumptions of Example 1.3 be fulfilled and let, in
addition, (.%” [ ]) be a Pontryagin space. If, then, the functions F;, in Corol-
lary 3.2 have the form (1.14), this corollary can be regarded as a perturbation

result for unitary operators in Pontryagin spaces. For a similar result see [21],
Theorem 3.4.

Remark 3.4. If, in addition to the assumptions of Theorem 3.1, we have
gn(2)Fn(z) = En(2) + ten(2), n = 1,2,..., where E, € C(;F,N(.Sf(jf)) for some
fixed k > 0, and e, € %#j oo (£(5)), then Corollary 3.2 applied to E, gives
some additional information on the sequences (0P (F,)) and (o (Fy)).

As an application of Corollary 3.2 we shall show in the following proposition
that, for an arbitrary F' € C(-)fn (£(5#)), the set eP(F)NT coincides with the set
of generalized poles of negative type of F', which were introduced in [19]. We recall
the definition from [19]: A point g € T is called a generalized pole of negative
type and multiplicity m of F if for each sufficiently small ¢ > 0 there exists a
number N(g) > 0 such that for a > N(¢) the function z — F(z) + ol has zeros
of total multiplicity m in {z € D :distg(z, 1) < 6} .

Proposition 3.5. Let F € Cf (£(J)). Then ¢2(F)NT coincides with
the set of generalized poles of negative type of F. If yu € o2(F)N'T, the multi-
plicity of u as an element of 0P (F) (see (2.13)) coincides with the multiplicity
of p as a generalized pole of negative type.

Proof. 1. Let M be a positive number such that for every @ > M the
function z +— F(z) + ol is boundedly invertible in some open neighbourhood i,
of 0. Let @« > M. Then the function

1

z (F(z) —al)(F(2) +ozI)_1 =I-2a(F(z)+al)”

can be extrapolated in a unique way to a meromorphic function @, of the class
.S'(',*:,c (L(o#)), i.e. the kernel (1—{z)"' (I - Qa(¢)*Qa(z)) has & negative squares
([16]). Hence F(z) + al is boundedly invertible for all z € D with the exception
of a finite number of points and

1

(3.11) 2 (F(z)+al)”

is meromorphic in D. On account of [16], Satz 3.2, (3.11) has poles in D of total
multiplicity x. Hence, in view of Lemma 1.5, we have k£ < k_ (1;(F(°‘))_1) =
k-(1; F(®) for the function F(@)  defined by

F(z)4al ifzeD
(@)(,) .= ~
F2(z): {F(z)—a[ if z € D.
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On the other hand, by the definition of T (+,+).1 we have k_(1; F(®)) < k and,
hence

(3.12) F) e cf (2(5#)).

A point v € D is a pole of F if and only if it is a pole of F(®) . The multiplicities of
v with respect to F and F(®) coincide. For every set § € D with § N oo(F) =0
which is open in D it follows from Lemma 2.7 that r2(§; F(®)) < rP(§; F).
Then, on account of (3.12), we find that ¢P(F) = ¢P(F(®)) and that, for every
p € cP(F)N T, the multiplicities of 4 as a point of ¢P(F) and as a point of
o2 (F(®) coincide.

2. Let 8> 0. It is easy to see that

(313) ((F(a)(z))—l +ﬁ_l>_1 — 4 ,52 (F(a+,3)(z))—1

holds for all z € D with the exception of a finite set. As in the first part of
the proof we see that the function (3.13) has poles in D of total multiplicity &

and that, for the function Fjs defined by extrapolation of (3.13) to D such that
Fp(z) = —(F3(271))" holds, we have

(3.14) Fs e Cf (ZL(52)).
There exists an n > 0 such that

(3.15) Jim |Fs(z) — F®(z)|| = 0

uniformly for |z| < 7.
Let 4 € T. Then making use of (3.12), (3.14), (3.15) and Corollary 3.2 we see
that for sufficiently small € > 0 there is a number N(¢) such that for 8 > N(e)

r?(ée; Fg) = rl_)(és; F(O‘)),

where 6. := {z € D : distg(z,4) < €}. Then the first part of the proof and the
fact that the poles of Fg in D coincide with the zeros of F(+#) in D, according
to their multiplicities (see (3.13)), yield the desired conclusion.



(1]

(2
3]

(4]
(5]

(6]

(7]
(8]
[9)
(10]

(11]

(12]
(13]
(14]
(15]

(16]

(17]

Operator-valued meromorphic functions 283

References

ARONSZAIN, N., and W.F. DONOGHUE, JR.: On exponential representations of analytic
functions in the upper half-plane with positive imaginary part. - J. Analyse Math. 5,
1956/1957, 321-388.

BERG, C., J.P.R. CHRISTENSEN, and P.H. MASERICK: Sequences with finitely many
negative squares. - J. Funct. Anal. 79, 1988, 260-287.

BRroDsKII, M.S.: Triangular and Jordan representations of linear operators. - Translations
of Mathematical Monographs 32. American Mathematical Society, Providence (N.J.),

1972.
DaHo, K., and H. LANGER: Matrix functions of the class N, .- Math. Nachr. 120, 1985,
275-294.

DuksMa, A., H. LANGER, and H.S.V. DE SN00: Representations of holomorphic op-
erator functions by means of resolvents of unitary or selfadjoint operators in Krein
spaces. - Operators in indefinite metric spaces, scattering theory and other topics
(Bucharest, 1985). Operator Theory: Advances and Applications 24. Birkhauser Ver-
lag, Basel-Boston—Stuttgart, 1987, 123-143.

DoNoGHUE, W.F., JR.: Monotone matrix functions and analytic continuation. - Die
Grundlehren der mathematischen Wissenschaften 207. Springer-Verlag, Berlin-Heidel-
berg-New York, 1974.

GROTHENDIECK, A.: Sur certains espaces de fonctions holomorphes. I. - J. Reine Angew.
Math. 192, 1953, 35-64.

IoHviDoV, I.S., and M.G. KREIN: Spectral theory of operators in spaces with an indefinite
metric. II. - Amer. Math. Soc. Transl. (2) 34, 1963, 283-373.

JoNas, P.: Zur Existenz von Eigenspektralfunktionen mit Singularitaten. - Math. Nachr.
88, 1979, 345-361.

Jonas, P.: On the functional calculus and the spectral function for definitizable operators
in Krein space. - Beitrage Anal. 16, 1981, 121-135.

Jonas, P.: On a class of unitary operators in Krein space. - Advances in invariant sub-
spaces and other results of operator theory (Timisoara and Herculane, 1984). Op-
erator Theory: Advances and Applications 17. Birkhauser Verlag, Basel-Boston—
Stuttgart, 1986, 151-172.

JoNas, P.: On a class of selfadjoint operators in Krein space and their compact pertur-
bations. - Integral Equations Operator Theory 11, 1988, 351-384.

Jonas, P., H. LANGER, and B. TEXTORIUS: Models and unitary equivalence of cyclic
selfadjoint operators in Pontrjagin space. - To appear.

KOTHE, G.: Die Randverteilungen analytischer Funktionen. - Math. Z. 57, 1952/1953,
13-33.

KOTHE, G.: Topologische lineare Raume. I. - Die Grundlehren der mathematischen Wis-
senschaften 107. Springer-Verlag, Berlin-Gottingen—-Heidelberg, 1960.

KREIN, M.G., and H. LANGER: Uber die verallgemeinerten Resolventen und die charak-
teristische Funktion eines isometrischen Operators im Raume II, . - Hilbert space
operators and operator algebras. Colloquia Mathematica Societatis Janos Bolyai 5.
North-Holland Publishing Company, Amsterdam-London, 1972, 353-399.

KREIN, M.G., and H. LANGER: Uber die Q-Funktion eines w-hermiteschen Operators
im Raume II, . - Acta Sci. Math. (Szeged) 34, 1973, 191-230.



284

(18]

(19]

20]
(21]

(22]

Peter Jonas

KREIN, M.G., and H. LANGER: Uber einige Fortsetzungsprobleme, die eng mit der Theo-
rie hermitescher Operatoren im Raume II, zusammenhingen. I. Einige Funktionen-
klassen und ihre Darstellungen. - Math. Nachr. 77, 1977, 187-236.

KREIN, M.G., and H. LANGER: Some propositions on analytic matrix functions related
to the theory of operators in the space II.. - Acta Sci. Math. (Szeged) 43, 1981,
181-205.

LANGER, H.: Invariante Teilrdume definisierbarer J-selbstadjungierter Operatoren. - Ann.
Acad. Sci. Fenn. Ser. A I Math. 475, 1971, 1-23.

LANGER, H., and B. NAJMAN: Perturbation theory of definitizable operators in Krein
spaces. - J. Operator Theory 9, 1983, 297-317.

SHTRAUS, V.A. [B.A. lltpayc]: O medunusupyeMom aHayiore npoGieMsl MOMEHTOB
Xaycmopoa. - Akad. Nauk Armyan. SSR Dokl. 84:1, 1987, 9-12.

Received 12 August 1991



