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Abstract. Lef 9(J€) denote the algebra of all bounded linear operators on a separa-

ble Hilbert space .l€. The first objective of this note is to study the class Ds(9(.r€)) of all
9(J€)-va\rcd functions tr. meromorphic in the open disc D and holomorphic at 0, admitting a
representation of the form

F(z) - (,i sizi) 
-'{ r2t

J, k" + ,)(r" - z)-L a»1ry+i
, =-^r

o, r,\,

where gi -F1 eC, j = 0,...,N, E isapositiveoperatormeasuleand äi - -(ä-i)- e-Y(-rf),
j = 0,..., N. Evidently, the class Ds(9(,r€)) contains the holomorphic operator-valued functions
in D with non-negative real part. It also contains the KreYn-Langer classes Cr , rc = 0, 1,. . ., of
meromorphic operator functions [16].

If J e g(tr), J = J-r = "I', and [/ is a definitizable unitary operator in the Krein
space (J€,(J-,.)*), one can define the spectra of non-negative and non-positive type of [/ and

constructthespectralfunctionof I/ withthehelpof thefunction z* J(U*zI)(U-zI)-t,which
belongs fo Ds(9Qe)) . For an arbitrary F e Do(-g(hf)) we define analogues of the spectra of
non-negative and non-positive type of definitizable unitary operators in the same way. Multiplicity
functions for these sets are defined with the help of an analogue of the spectral function.

The second objective of this paper is to study the behaviour of the "sflectra of non-negative
and non-positive type of .P" under perturbations of .P. For F in a fixed class C' these sets

depend continuously on .F' with respect to the uniform weak convergence.

1. Introduction

Let ,ff be a separable complex Hilbert space and let 9(tr) denote the alge-

bra of all bounded linear operators on ,ff. For a Banach space X, let 90,*(X)
denote the set of all functions z * Drrrcizi of a complex variable z with
ci € X, where the sum is finite, 9s,@ :: %q-(C). The set of all 9(,tr)-valued
functions meromorphic in the open unit disc D and holomorphic at 0 will be

denoted by Mo(g@)). Throughout this paper, all functions F € Mo(g(tr))
are tacitly assumed to be extrapolated to the exterior of the unit circle T such

that F(z-l): -(F(z))., , e D. The set of all points z € C such that (the
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extrapolated) F cannot be analytically continued in z
F and denoted by o(F).

Let Ct,*@(tr)) be the class of all functions F
the kernel Cr,

CrQ,e) ': (1 - r()-'(r( 4 + F,(O.),

is called the spectrum of

€ Mo(g(tr)) such that

z€D,

has exactly rc, n €. N6 :: N U {0}, negative squares, i.e. for any positive integer

matrix ((Cr(r",zp)ar,*r)),,r:r,...,0 h..atmost rc negativeeigenvaluesandforat
least one choice of le , z1r...tZkt ort...rr7, it has exactly rc negative eigenvalues.
These classes of operator functions were introduced by M.G. Krein and H. Langer
in [16]. For basic results on these classes see [16], [17], [18], [19], [4]. Recall that
C{,0(Z1W)) coincides with the class of all holomorpii" -f 6fj-valued functions
F in D such that Re F(z) ) 0,, z € D, or, equivalently, -F admits a representation

(0.1)

(0.2) F(r) - i^t + (ad-' 
Io'" 

("" * ,)("n, - z)-t d»(0),

where S e 9(.tr) is self-adjoint and E is a positive operator measure in ,ff (see

".S. [g]). If .F e C{,-(-3(Jf)), th"n, as a consequence of a representation of tr.
by means of a unitary operator in a Pontryagin space II^ (see [10]), .F, can be
written in the form

(0.3)

where g
operator
function

F(r) - s(r)-, 
{ lr'n 

("n, + ,)("n, - z1-r d,»(e) +

0

G(')),

€ %0,*, s(r) > 0 if lzl: t, G € 90,*(91.tr)) and D is a positive
measure (see [19], Section 1.3). Simple examples show that not every

of the form (0.3) belongs to one of the classes C{*(-Z1X)) , r : 0, 1, . . ..
The first objective of this note is to study the class of all operator functions

F e Mo(9(.tr)) which admit a representation of the form (0.8), wher e g e gs,oo
and g is only assumed to be real on T, E is a positive operator measure and
G e Os,oo(g(.tr)) (Section 2). We shall denote this class by Do(-g(#)). gv
definition, Do(-Y(tr)) contains the classes C{,-(-g(tr)) , o : 0, 1, . . ..

In our study we shall largely make use of the fact that, by the well-known dual-
ity of spaces of locally holomorphic functions, for every function F e Mo(g(tr))
there is a corresponding continuous linear mapping Tr of. the space of locally holo-
morphic functions on o(.F') in 9(.tr) (see e.g. [14], [z]). This correspondence is
one-to-one up to constant operator functions with a skew-self-adjoint value. If e.g.
r e cto@@)) and (0.2) holds, then ?r is the Radon measure correspondirlg
to E.
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For F € Do(g("tr)), f, restricted to T is an 9(,tr)-valued distribution,
and the properties of Tr are very similar to those of the functional calculus of a
definitizable unitary operator U in a Krein space. We remark that the functional
calculus of such an operator [/ is of the form Tpu for a certain operator function
Fu € Do(g(tr)) closely connected with the resolvent of [/ (see Example L.3).

For .F' e Do(-g("tr)) we define, analogously to the operator case, i.e. by extension
of Tp, a so-called spectral function of F.

Recall that, for a definitizable unitary operator U in a Krein space, there
exists a maximal non-negative (maximal non-positive) U-invariant subspace ,,.//a
(or ..,//-) such that o(tJ I //+) c D (o(U | -4-) c D), [20]. The sets of (U) ::
o(U I dl and oP(U) :: o(U I "//-) which do not depend on the special choice
of .tila and -,//- can also be defined by making use of the functional calculus or the
spectral function of U. We have o(U) oD: "?(U) U oP(U). This classification
of spectral points is carried over to functions F e Do(g(tr)) by making use of
ft. The notion of multiplicity of an isolated point p of af (U) (o?(U)) which is
by definition the algebraic multiplicity of the eigenvalue pr of U I ,//+ (U I .//-)
can be carried over to the case of a function F € Do(9(.tr)) with the aid of a
certain sesquilinear functional which is closely related to Tr.

The second objective of this note is to study the behaviour of o!(f') and
aP(f) (the analogues of "?(U) and og(U)) under perturbations of F (Sec-
tion 3). For the case where F belongs to a fixed class Cfr^ (g(tr)) we prove that
o9(f) depends continuously on .t. with respect to uniform weak convergence in
the neighbourhood of a point in D. In this case o?(F) coincides with the union
of the set of poles of ,F in D and the set of the so-called generalized poles of
negative type of .F. ([19], Corollary 3.2).

With the exception of Proposition 3.5, we do not make use of representations
of holomorphic operator functions by unitary operators in Krein spaces (see e.g.

[5], [16]). Operator representations for functions of the class D6 (g(,tr)) will be
considered in a subsequent paper.

By a linear fractional transformation of the independent variable all results
of this note can be carried over to functions which are meromorphic in the open
upper half-plane.

Remark for notation: C*(T,,ff) denotes the space of. C* functions on T
with values in .ff . Similar notation is used for other spaces of vector-valued
functions.

I thank Professors H. Langer and I.S. Louhivaara for encouragement and
critical help in the preparation of the manuscript.
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1. Some functionals related to meromorphic operator functions on D
1.1. Deflnition and basic properties. For any subset I of.ttre extended

complex plane C we write .? ,: {, €e : z-r € s}. For any scalar (or 9(,tr)-
valued)function / definedonaset 9: A C e wedefine iji =T@a
titttl ,: fQ"-')*), t, e 9. By gå,* (gå,*(g(.tr))) we denote the set of all
functions 9 € 90,* (CI0,*(g(,tr)), see Introduction) such that g : 0.We shall
say that I € 9o,* is of degree < .^f if Ck): »I-, cizi , ci € C. Let H(K)
denote the space of locally holomorphic functions on the compact set K C C
equipped with the usual topology (see [15], Section 27.4).

Let on : äo be a countable subset of C \ T whose accumulation points belong
to T. We denote by O(T U os,9(ff)) the linear space of all

T e -?(He U oo), s(,tr))

(for these mappings we write f * T.f ) such that the following holds:

(i) For every point zo e oo, the restriction of 7 to the subspace ofall functions
/ € I/(T U oe) which are zero in some neighbourhood of (T U oe) \ {ro} has the
form / - Dj=o A,f@)Qi where A, e 9(tr), u : 0,...,k.

(ii) 
".f 

: (T.f)*, f e H(T gor).

We define a product of. T e O(TU og,9(.tr)) and g € f/(TUoo), g:0 by
gT.f ::T.sf , f € I/(Tgor).

With every function F e Mo(e(XD we connect certain analytic functionals.
Set o6(tr') ,: ,(F) \ T. First we define an element Tp of. O(f U ,o(F),9(,tr))
by

Tr.f ,- - l_Fe)/( 
,)(iz)-tdr, f e H(T u oo(r)),

where € is the oriented boundary of a finite union G of smooth domains contain-
ing TUo6(.F') such that / is defined on G and O 4 G.We have TFL:Tp, if.
and only if .F,1 - Fz : iS for some ^9 

: ,S* e 9(-tr).
Every T e @(T U o6, g(,tr)), where os is as above, is of the form ?p for

some .F' eMo(-g(.tr)). Indeed, let f{z)=(2tr)-rz(r-\)-r, ) e C \(Tuas),and 
Te) :: T.f 

^.
Then ) F+ f'(.\) ': ?())- iifOl belongs to Ms(g(tr)) and we have as I os(.F,)
a^nd 7 - TF.

ff .F € Mo(-s(J?)), then

( 1.1)

( 1.2)
"r())-r(Ä)-r,(*),

) # T u oo(F),
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and

(1.3) rr(Å)-å"r(0):r())-iImr(0), )eTu"o(r,).

The correspondence between F and 7p is a special case of a more general corre-
spondence considered in [7], Thdoröme 3.

Furthermore, for every function .F' € Mo(g(tr)) and every pair u, u €
f (l u ao(F), .ff) , we define an analytic functional Tp(u,u) e If (T u os(F))' by

(1.4) Tp(u,r).f : - l*trAluQ),u(z-l))f(r)(tr)-'d,z, f eä(Tuoo(F)),

where 7 is defined as in (1.1). For a related (more general) functional see [7],
Th6oröme 2. The sesquilinear form (u, u) *+ Tp(u,u)./ in .ff (f u oo(F), tr) is

Hermitian if / : f. Frrtth"t*ore, we have

(1.5) Tr(su,,r)."f : Tp(u,0r).f :Tr(r,u).gf :, sTp(u,v).f ,

f ,s e H(r u os(r')) t utu e ä(T uos(F),,tr).

It is often sufficient to consider 7r(.,.) on %s,*(ff), which is a dense linear
subspace of ä(T U os(F), tr) . Let u,u e 90,*(tr),

u(z): D *,r", u(z): D orr'.
v:-N p:-N

Then, for every / e A(t u oo(F')), we have

N
Tp(u,r).f : » ((Tr.p,-rf)x,,at),

utl'=-N

where px(z) :: zk , k :0, +1,....
The Hermitian form 7r(.,.).1 is connected with the kernel Cp (see (0.t)) bV

the relation

(1.6) 2r(Cp(z;,rj)*;,ni) : Tr(u;,u j).L,

where z; belong to the domain of holomorphy of F, x; € .ff , ui(z) 1: (z-z;)-r x;,
i : Lr2, , , . ,n. We remark that the set of the functions of the form

u(r):iQ-zi)'*,
i:1.
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is dense in ä(T U os(F),.tr).
Assume now, in addition, that F has no more than a finite number of poles

in D. Then, by I/o(T u os(F)) (Ar(T u os(,F'))), *" denote the closed linear
subspace of I/(T u ae(.F,)) consisting of all / € I/(T u os(,F,)) which are zero
on a neighbourhood of T (or "o(F)). The natural isomorphisms of ä(T) onto
Ar (T U os(.F')) and of H(T,.tr) onto If1(T u oo(f') ,.ff) are denoted by a. We
define

t p. f ,- Tr.Lf , f € ä(T),
and

t r(u, u).f ,- Tr(tu, LU).0 f , u, u € H (T , ff),
Then one verifies without difficulty that Tr has the form

(1.7) rr .f - t p.f +i i {r;i fu) 0,;) * riiftn @t' )},
i- 1 j:o

f e ä(T).

f € ä(TUoo(r)) ,

where

(1.8) Ttot Q) ,-- f (r), yti)e) - iz@fu-t) ldr)(r), j _ t,2,. . .,

Ftr...tpk are the poles of -F in D, rr,...trk their orders, respectively and
F;i e 9(tr).

We denote bv M{(g(X))t ffi:7,2,..., the set of all F e Mo(-g(tr))
with finite 

"o(f,) 
such that

( 1.9)

for some rl € (0,1). We set Mr- (g(.tr))': Uä:, Uy(-f1X1).
The following proposition is well known [14].

Proposition 1.1. Let F e Uo(Z6f)) ,"d let os(F) be frnite. Then we

have F € Mtre@» if and only if tp is a g(.tr)-valued distribution on T.
Let F € Mtr e@» for some positive integer m. Then tp can be extended

by continuity to an element of 9(C*+1(T),-?(.tr)). .E,or every f e C-+'(T)
and every q € @3,* we have

( 1.10) Qt r .f -

where the limits
topology.

12r
Iim I G?"nt)F(r"n') - q(r-L "")F(r-L e")) f ("") aertl Jo \r

fff 2 lr" o" {q( reio)r( reio) } /( "") do,

and integrals are understood in the sense of the weak operator
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It follows from (1.10) that for F e Mff (g(tr)) and a real function .f €
C*+t(T) the operator tp.f is self-adjoint.

Now we shall prove similar properties for the functiona,l ,r(',').
Proposition 1.2. Let F Q Mtr e@)) for some positive integer m. Then:
(i) 

"åe 
mapping (u,r,f) a tp(u,u)./ is continuous with respect to the

topology of C*+r(T,tr) x C*+l(T,#) * C-+t(T) . Hence this mapping can
be extended to this space by continuity.

(ii) Fbr every q e 96,*, u,u € C*+r(T,tr), f € C-+l(T) we have

qt p (u,,). I :f,ff l' 1 (, e "i 
0 

) F (, 
"i \ - n (!, "") . ( i,") ) 

u("n' ),, ("' \) y @; \ ae

: tjff , 
lo'" 

(R" {q(rr,a )reeie)}u("i01,r1"i01) 11ei01al..

Proof. Assume that u, u e H(T,,tr) ard / € ä(T) are defined for lzl €
Ql,n-'), where 7 is as in (1.9). Then we have

(1.11) tp(u,u).f : - l*(rQ)u(z),u(z-L))f 
(z)(iz)-rdz,

where, for € we may take e.g. the boundary of. {z , Lh + t) S lrl < z(rt + 1)-'i .

On account of (1.9) there exists ar A e 9(tr) and a holomorphic 9(tr)-va)ued
function Gt on {, , 

"t 
a lrl < t} such that

(i) cl-+tl1z) : F(z) * -4 (see (1.8)),
(ii) the function Gl can be extended by continuity to a continuous function

on {z : n < lzl < 1} (see e.g. [1a]; proof of Satz 19).

ln {z : 1. < lzl < q-1} there exists a function G" with similar properties.
We set G(z) :: G;(z) if lrl e (n,1) and G(z) :: G"(z) if lzl e (1,,17-1). Now we
easily find that

(1.12) {tct*t tiu(z),, u(z-t )) /(,) } "' (i,)-,

: (ct-+,t1 z)u(z), r(z-r)) f e)Qz)-l

+ (ctd 1,1utt) e),,(z-' )) f e)e z)-l

+ (cld 1z1u(z), ut't (z-' )) f t4t;,)-'
+ (ct*t1r1u(z),,u(z-t)) ft\e)Ur)-r, l"l e (rt,l) u (1,7-1).
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The integral along € of. the left-hand side of (1.12) is zero. By (1.12) and similar
relations the right-hand side of (1.11) is equal to

(-1)* yti e)(ir)-L dz.

Making use of the continuity of Gi and G" up to the unit circle, this integral
can be expressed as an integral along the unit circle. This implies the continuity
statement of (i). We can prove (ii) in a similar way.

It follows from Proposition 1.2 that, for fixed u, u e C*+r (T, ff) , lp(u, u) is
a distribution on T. For fixed / € C-+r(T) , (u,r) r-+ tp(u,u)./ is a sesquilinear
form on C^*r(T,,tr) and we have

tr(u,u).gf - tF(gu,u).f : te(u,9u).f , f ,g € C*+t(f).

The form (u,o),-. tp(u,u).f is Hermitian if / is real.

Example 1.3. Assume that on the Hilbert space .ff there is given an Her-
mitian sesquilinear form [.,.] such that l[", y]l S r llrll llyll , r,u e ,ff , for some
constant c. Let W be the Gram operator of [.,.],

l*.*rp:m+t ("r z)ut*l Q)'utnl 1--.))

( 1.13) (W*,y) -lr,y), r,U e .ff,

and satisfies the relation Fu(r) - -(fuQ-t)). ) z e

is closely connected with the Riesz-Dunford functional

and let U be a bounded and boundedly invertible operator such that every point
of o(U) \T is a pole of the resolvent of U and lUx,Uy): l*,y), r,U € .ff . Then
the function .Fy defined by

(1.14) Fu(r):- W(U + ,I)(U - ,I)*' _ -W + 2wLr(tf - ,D-r, z € a(u),

belongs to Ms (g (,tr))
a(U).

The functional Tp,
calculus of U ; we have

( 1.15) Tr,.f -arWf(U), feH(Tuo(u))

If, in addition, o(U)\T is a finite set and (U - zl)-r satisfies a growing condition
similar to (1.5), the Riesz-Dunford functional calculus can be extended by conti-
nuity to C'"(T) x H (o(U)\ T) , we have Fy e Mf; (g(tr)) and (1.1b) holds for
every / € C""(T) x H(o(U) \T). If O e p(W) holds, or, equivalefily, (.tr,[.,.))
is a Krein space, we shall replace below the letter W with G. In this case we havä
o(U) : 

"(Fu).
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L.2. Ranks of positivity and negativity of Tp(',').f . If I is a

linear space equipped with a Hermitian sesquilinear form [','], we denote by
**((9, t., .1)) ( "-((9,1., 

.l)) ) the least upper bound ( S * ) of the dimensions of

[.,.]-positive definite (ot [.,']-negative definite) subspaces of. 9. These quantities
are called the ranks of positivity and negativity of l',') on I .

If r€ Mo(-"(.z?)) and f e u(ruos(.F,)) with/:i,*"define
**(f ;.F) :: "+ 

((0o,*(tr),Te(,.)./) ) .

In this definition 9r,,-(tr) can be replaced with ä(T U os(F),,tr).
Let F e Mtr g@)) for some positive integer rn. Then we define *+(f ; F)

for every f e C*+t(T) x ä(os(.F')) with f : i by the same relation. In this case

CIy,*(tr) can be replaced, in view of Proposition 1.2, (i), with C-+1(T; tr) x
H(os(F),,tr) or with dense subspaces of this space.

By (1.6) a function F e Mo(g@)) belongs to C{*(g(tr)) (see Introduc-
tion) if and only if rc-(1; F): o.

Let .F e Mf;(g(,tr)). We shall say that an open subset 1 of T is of
positive type (negative type, type tr1-, type zr'- ) with respect to F if "-(f ;F) : 0

(*+(f;F) : O, o-(f;tr.) < *, n+(f;tr') < *) for all non-negative functions

/ e C-(T) x H(os(F)) with supp/ c 7.
Example 1.4. Let [.,'], U and Fu be as in Example 1.3 and let .Fy €

Mtr(9(tr)). Then it is easy to see that for every / € C-(T) x If (o(U) \ T)
we have

rc*( f; Fu) -,c+ ( (tr, [/(u)., .])).

In particular,if. (.ff,[.,.]) ir a Krein space, an open atc'l of T is of positive
(negative) type with respect to Fu if and only if it is of positive (negative) type
with respect to U (see [11], Section 2.7 ard especially Proposition 2.1).

Lemma L.5. Let F e Mo(g(.tr)), u e os(F)o D and let I be the multi-
plicity of the pole u of .F,. Assume that X e H(T u os(.F')) is equal to 7 in an
open neighbourhood 5l of {u,r-r} and equil to 0 in an open neighbourhood of
(r u os(r)) \ {", ,-t} . Then na(y;F) : o-(x; F) : I .

Proof. Let

(1.17) F(z):(z-u)-kA-r *...-l(, -r)-'A-, */o *...
be the Laurent expansion of. F at u. Then / is equal to the dimension of the
ralrge of the operator

0 ... 0 0

A-p00

( 1.16)

:

0

A-x

A-x
A-k+1

A-z
A-t

:

A-t
A-z

:

A-r
A-k+r
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in ,ffk (see [17], Lemma 4.1).
The linear subspace of If (TUos(f)) ot all functions u e ä(TU"6(tr')) which

are zero outside lln D (ltn D; is denoted by If i (H" ). Now developing arbitrary
functions ui e Hi and u" € If" in Taylor series at z and l-1 , respectively, and
putting them and the relation (1.17) into (1.4) we find this to hold: If / is finite,
there exist linearly independent systems of functions ui,o € Hi , a - 1,...,1, and
u",g € H' , I - 1,..., /, such that

( 1.18)

(1.19)

Tr(Lti,otue,p).X - 6.,,g) e,, p :1,. " rl,

functions. Therefore, itand there are no such systems consisting of more than I
view of the relation

Te(u; * uetui * u.).X: Tr(u;,u.).X *Tp(u",u;).y
: 2 Re Tr(u;,u").x, ui e Hi , u. € H" ,

the ranks of positivity and negativity of the form (u, u) ++ Tp(u, u).X are equal
to I. If I: oo, then, for every positive integer I', there exist systems of functions
ui,q€Hiru",g€H"rar§:1,.'.,1',whichsatisfyarelationanalogousto(1.18).
Hence rc+(X;F): n-(X;F): *.

Remark 1.6. Lemma 1.5 implies the well-known fact that, for a function
f e C{*(-Z(.tr)) , the total multiplicity of the poles of .F' in D is not greater
than r.

1.3. Decompositions of .F. Moments of Tp. Let .F' e Mf;(g(tr)).
Assume that 1, j : 1,...,1, are open arcs of T with Uili : T, and let

xj e C*(T) x I/(o6(.F')), j - 1,...,1, such that 0 < xi(s) < 1 (, € T),
suppxj C 1 and Dti=tXi:1 on T. Let Xo € äo(tuas(.F,)) be equal to 1 on
a neighbourhood of o6(.F'). Then, according to (1.3), we have

r(Å) - ilmr(0) (xiTp . f x - $n)-1 XiTe.l) .

I

+»
J:0

The functions .\ r-» XiTr.f»-(4")-'XiTp.L::4()), j :0,...,1, belong to
Mtr(glf)), .nd we have

(1.20) TFi : XjTr

Moreover, we have

and TFi(',') - xjTe(',').

"(.F'0) - os(r,)) o@i) C "(F) OsuppXj, j_1,...,1.
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We shall need some relations for the moments q :: (2tr)-'Tr.p-t, Pt(z) ::
zt, I :0,+1,..., of Tp. Here we only assume that F e Mo(g(tr)). The
relations (1.2) and (1.3) imply

( po : (2")-' Tp.l : 2 Re f'(0),

(1'21) 
{ o, : (2n)-rTr.p-t - {tr'rr fir^lr=o: Ir-lr,(r)(0) if 

' 
> L,

t tl/l!-'(r(tl)10;;. if,<-1.
If u(z),:D?=-*aizi , xi e ff, we have by (1.2i)

(1.22) (2n)-rTp(u,u).L: f, @o-,*i,xx).
i,k:-n

lf. g e Q3,*, sQ): »il:-, gpzk, then, by (1.21),

N

(1.23) (%r)-r sTp.p-t: I oov,-o.
k:-N

1.4. Characterization of arcs of positive and negative type. In the
following lemma we characterize the open arcs of positive type in different ways.

A similar result holds for open arcs of negative type.

Lemma 1,7, Let F e Mf;(9(tr)) and let 1 be either an open arc of T
ot J : T. ?åen the following conditions are equivalent:

(i) 7 is of positive type with respect to F .

(ii) tp restricted to 7 is a positive measure, i.e. for every non-negative f €
C-(T) witå supp f cl the operator tp.f is non-negative.

(iii) Tåere exists a 9o € C-(T), oo(eie) > 0 if 
"ie € j such that the form

(u,, v),- t p (u, u). g s is non- negative semi- definit e.

(iv) 
"åe 

following two conditions axe satisfied for every r e ,2f :

(a) liminf,lr ((F(reia; - .F'(r-t ""))r,r) > 0 for almost.u"ry 
"i0 

e1.
(B) inf {((r(rerd) - F(r-rei\)r,t):eiq e 10,,r € (1 -6,1)} > -a for ev-

ery closed subarc lo of 1 and sufficiently small6 > 0.

Proof. We prove the lemma for 1 I T. A similar reasoning applies if 7 : f .

Evidently, (i) implies (ii).
(ii) + (i): Assume that (ii) holds. Let g be an arbitrary non-negative function

belonging to C*(T) x l/(o6(.F,)) with suppg C 7. Set 'h i:'y and let tz be an

open arc of T such that 71 l)'lz: T and 72 fl suppg : 0. Then we decompose

f' as in (1.19)r

r()) - irm r'(o) + rb()) + rr()) + rr()).



Then, by the relations (1.20),, TF, is a positive measure and Te(.,.).g
If u e frqoo(.tr), Proposition 1.2 gives

rr,(u,u).s -Iii I,'" (t*, ?"n') - frr,(l'") ) 
u(""),ut""l)
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- TFr(',').g.

g ("n') d,o .

Since the operators

ip,(r"io) - fr,(|""),
which are Abel-Poisson integrals of the positive measure Tp' are non-negative,
we conclude that Tpr(u,u).5 > 0. Hence the assertion (i) holds.

That (ii) is equivalent to (iv) follows by a reasoning similar to the proof of
(ii) + (i) and by making use of the Lebesgue Theorem.

(ii) + (iii): Assume that (ii) holds. Let ss € C-(T) such that go I T\Z = 0
and go(eio) > 0 if "" e"y.Then g6tp is a positive measure on T. Set .F,1(,\)::
gotp.fx- (4n)-'Sofr.l. Then we see as above that tp(u,u).go: Tr,(u,u).t is
non-negative for all u e Qs,""(tr).

(iii) + (ii): Assume that (iii) holds. For every p € 90,* we have

((te.ppso)*,*):tp(r,r).ppgo:ts(pr,pr).gs ) 0, x e .ff.
Then (ii) follows from the fact that, for an arbitrary positive integer n'L ) every
non-negative C* finction on T is the limit in C*(T) of a sequence of functions
of the form pp.

2. The class D6 (g(tr))
2.L. Characterizations of the class D6 (g(tr)). In what follows we

are concerned with the subclass Os(-?(.tr)) of Ms(g(,tr)) defined above in
the introduction. The subclass D6 (g(tr)) is the set of all F e Mo(-g(tr))
satisfying a relation of the form

g(r)F(r) - H(z)+ih(z), z € D,

where g € fr|,*, ff is holomorphic in D, ReH(z) : i@Q) * H(z).) Z 0,
z €D, and ä e 93,*(g(2f)) . A function g e CI|,* with this property is called
a definitizing function for .F . By means of the Laurent expansions at 0 of the
functions occurring in (2.1) we see that If a.nd h are uniquely determined by
.F qnd g if we require, in addition, that ImI/(0) : 0. If, in this case, g(z) :
D-i-, giri ,|h"n h(z) : »r1-, hizi , where

N

,* {» Q\-'s-,F(")(o)},
u:0

(2.1)

{ 

o 

^'o:

N

_JL
u:j

(2.2)
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Remark 2.1. Let F e Mo(g(.tr)). If there exists a g e frfl,* such that

s(z)F(z):E(z)!ie(z),

where EeDo(s@)) and e eg3*g@»,then F e Do(s@)). This

immediately follows from the definition of the class Ds (g(tr)).

Proposition 2.2. For any F e Mo(g(,tr)) the following assertions are

equivalent:
(i) r e Do(s(Jf)).
(ii) Tåere exisfs a g e %fi,* such that supp(gft) C T and gtp is a positive

measure on T.
(iii) .F, e Mf;(g(tr)). There exists afinite set e C T sucå that ill subarcs

of T \ e are either of positive or of negative type with respect to F.
(iv) ?åere exist 91 € C, gt: g1l, /: -N,...,N, sucå that the oper-

ator Toeplitz matrix (»[-, orvo-1)i,j=-n, where 9, : (2tr)-tTp.p-i, i :
0, +1, . . . (see (1,.27)), is apositive operator in .ff2"+t for every positive integer n.

Moreover, the following statements are equivalent:
(i') sQ): D[-ar gtzt E CIfi,* is a definitizing function for F.
(ii') For g we have supp(gTp) CT, and gtp is a positive measure on T.
(iv') Tåe numbers gt, I : --4I,.. ., N, have the properties mentioned in (iv)'

Proof. Assume that (i) holds. Then, by the definition of. Tr and (2.1), it
follows that supp(gTr) c T. In view of (1.10), gtp is a positive measure.

Let g € Qfl,* anddefine /(()) :: gTr.f »-( tr)-tsTp.L, f e C\(fuo6(f')),
where f »(z) :: (2tr)-12(z - ,\)-' . Then

(2.8) Rer{()) :"(sTe).fx-,fr-,1)l-'(1 - l)l'), ) € c\ (luoo(r)).

Moreover (see (1.2)),

(2.4) I((.\) : g(^X?r./r)+ 
"o.(g 

- s()))/^ - (a")-'Qrr).t
: e())r()) - e(.\)F(m) +re.(g - g(r))/^ - (a")-'kril.L.

If (ii) holds, K is holomorphicin DUD and, by (2.3), Re.K(,\) ) 0, Å e D.
Therefore, by (2.a), .F, belongs to Ds(g(tr)) and g is a definitizing function
for .F. Hence (i) and (ii) as well as (i') and (ii') are equivalent.

Let (i) and (i') hold and let Fr,...,px be the zeros of g on T. Denote
the degree of the zero p,j, i : 1,..., k, of g by ,i. Then by (2.t) we have

F eMtr@@)) with rn.-max{r; i j:1,...,,k} *1. Hence lp isan g(tr)-
valued distribution on T. Then, in view of Lemma 1.7, (iii) is a consequence of
(ii). That (iii) implies (ii) can be verified similarly to [9], Hilfssatz 2.
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Assume again that (ii) holds. Then we have gTp - Tx and, on account of
Lemma 1.7, 0 I Tqa(u,u).L, u e 9n,*(,ff ). Then the relations (1.23) and (1.22)
imply the assertion (iv).

Assume that (iv) holds and set g(z): Dl-ry glzt. Th"n Tr.f ig ) 0 for
every / e 9o,*. Now, approximating the function fi-r, for arbitrary ) with
0 < lll ( e, by functions belonging to 9s,* we obtain from (2.3) ReK()) > 0
for l,\l < e . Then K canbeanalyticallycontinuedto D suchthat Re.ff(,\) ) 0 for
all ,\ e D, and the relation (2.4) implies (i). Moreover, the above considerations
show that (i') is equivalent to (iv').

Remark 2.3. In the notions of [8] the assertion (iv) means ihat the sequence
(p,) 

"ut be definitized. If (iv) holds, the relations ?t: (2tr)-rTp.p-t, l:
0,*1,..., and assertion (ii) yield an integral representation of the sequenc. (pt)
(cf. also [22]).

Example 2.4.
additior, that there

(2.5)

Then

Let W, tl and Fu be as in Example 1.3 and assume, in
exists a g e 9å,* such that

s(z)Fu(z): Gs(u)(u + zl)(u - zl-r - G(s(u) - s(z)I)(u - zt)-1(u * zr).

It is easy to see that the first term on the right side of this relation belongs to
Cto(9(tr)) and that the second term is of the form ih(z), h e %fi,*(g(tr)).
Hence Fu € Do(g(.tr)), and g is a definitizingfunction for Fy. lf ("tr,1.,.1)
is a Krein space, unitary operators U h ,tr with the property (2.5) are called
definitizable.

From the well-known operator representations of the functions of the classes
Ct,-(g(.tr)) it immediately follows, as mentioned in the introduction, that these
classes are contained in D6 (9(tr)). Now we give a proof of this fact along the
lines of [2], proof of Theorem 3.1, where operator representations are not used.

Proposition 2,5. We have C{,.(-g(.?f)) c po (g(.tr)) , K : 0,1,.. .. For
every F e C{,*(g(tr)) there exists a definitizing function g € 93,* which is
non-negative on T.

Proof. 1. For rc : 0 the assertion follows by the definition of the class
Do(-g("tr)) . t et rc ) 0. Assume first that .ff : C.

Let F € cil^(c) and let Q denote the set of all functions g(z) : lqlzt €
%fi,* suchthat q(z) ) 0 for z € T. Let, as above, 9r: (%r)-rTp.p_;, i:



O p er at or- value d meromorphic fun ct ions 27L

0, *1, . . .. We set

C,: _ t(» qw-,,! qtel-r,'
ll

,» qt?'-,) iq€ a\
I

{ (tr")-1 eTr .po, (2")-t qT, .p-1 1 . . . , (2n)-1 QTr.p-^)

(see (1.23)). Since every g € Q can be written as g - q'?, q' e %s,oo, the
form ?p(.,.).q : Tp(q'.,,g'.).1 has no more than rc-negative squares and the
Hermitia^n symmetric'Toeplitz matrix (Dtq1gi-x-,)rf,o:o has no more than rc

negative eigenvalues (see (1.22), (1.23)).
We denote by C" the set of all vectors ("t,"!,...,"'l) e R x C^ such that

the Toeplitz matrix (c'j-1)i,x:0, c" r:: c'1', I :1,...,rc, has only non-negative

eigenvalues.
EvidentlS C::Ct *C" is a cone. If (c6, ctt...,c^) € C, then ("i-o)l,o:o,

c-I:Tir l:1,...,rc, has no more than rc negative eigenvalues.

Let ö:: (60, ör,...,ä^) € R x C' such that (öi-;)i,x:', ö-t : ä, I :
1,...,rc, has rc f 1 negative eigenvalues. Then ä has a positive distance from the
cone C in Rx C*. Hencethereexists avector ä: (å0,br,...,ö^) € RxC^,
b + 0, such that

K

:q€ A\ cRxc*

if (.o,ctt...,c*) € C.

*6iz-i is non-negative on T.

(2.6)
j:L

Evidently, (1, r-",... , "-ixt) € C for every t € R. Hence, by (2.6)

t e R,

i.e. the function g(z):- b6 + »;:, *biri
For arbitrary q e a we obtain by (2.6)

j:t j:L

* qrr i *bipi * qrr i
j:L j:t

+ »;:,

0 < eTr.bo 1 i6p-i - Tr.qg.

Then it follows, as in the proof of Proposition 2.2 ((iv) + (i)), that .F € Dg(C)
and that g is a definitizing function for F.

2. Now we consider the general case. Let f e Cfl."(g(.tr)). Then 
"o(F)

is finite by Remark 1.6. For arbitrary c € .ff, z ,- (tr(z)r,,c) belongs to
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UX,=o Cfi.,(C) and, by the first part of the proof, there exists a 6 ) 0 (not
depending on o ) such that

Then, by the principle of uniform boundedness, .F' € Mf ("Qq).
We assert that there exists a finite set e C T such that all subarcs of T

contained in T \ e are of positive type with respect to .F . Indeed, suppose that
thereexists a sequence ll € T, i : 7,2,..., Å; * Åi for i lj suchthat for every i
there exists no open arc 7 J .\; of positive type. This implies that o_(1;F) : *,
a contradiction. By Proposition 2.2 it follows that F e Ds(g(,tr)).

3. To prove the last assertion, we assume that the set e : {prr. .. , /rr} it
minimal with the above-mentioned properties. Let 1i, j : 1,... , l, and yi,
j :0,...,1, be as in Section 1.3 and assume, in addition,that p,i €.fj, pj *.y*,j,k : 1,..., l, j + å. Define Fi, i :0,...,/, as in Section 1.8. Let ur,...,t/*
bethepolesof F in D andlet n6 bethemultiplicityof u11, k:1,...,rn. Then

(2.7) go(z):- ft, z-r - D1,)'*( z - uk)n*
k:1

is a definitizing function for -F'o (see the proof of Lemma 1.5), and DLrn* :
K-(Xo;F) :' rce (see Lemma 1.5). The degree of gs is ris, and SoG-päsitive
on T.

Let j be one of the numbers 1,

a definitizing function of degree
,l . Now we prove that the function \ has

(2.8) r-(1; Fi) : rc-(xi; F) :, oj.

By the first part of the proof, there exists for every a e ,ff a function of the form
Kj

JIf z - zo)(z-1 - zo),
o:1

which is definitizing for z ,-. (FiQ)r,*). Then we prove as in [10], proof of
Lemma 3, that

giQ):-(z-pj)*i(z-L

sup {tr.r 4r,r) I

(2.9)

zd € C,

- t, )*t
is definitizing for F1is also definitizing for z å (piQ)*, r). Hence g j

It is easy to see that the function

(2.10)

is a definit izing function for
Proposition 2.5 is proved.

g i: go9l' ' ' 9r

F. SinceD'i-ooi- K) thedegreeof g is K)and
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The function I € zfi,* defined by (2.7)-(2.10) will be called the normal

defrnitizing function for .F' e C{,.(-g(tr)) .

Let din.ff ( oo. Then it is easy to see that for every g e Q3,*, @s t:
{Sf , f € @s,*(,ff)} is a linear subspace of. frs,oo(,ff) with finite codimension.

Ii in addition, 9 is a definitizing function for a function F e Do(g(tr)) and g

is non-negative on T, g : åå with h e Qn,oo, we have

Te(gf ,gf).L : Te(hf ,hf).g > 0, f e %s,*(.tr),

and, hence, rc-(1;F) < -. Then, making use of Propositions2.2 and2.5 we

obtain

Corollary 2.6. Let dim.tr ( oo and F e Mf;(g(tr)). Then F belongs

to one of the classes Ct,.(?(Jf)), t:0,1,.. ., if and only if there exists afinite
set e C T sucå that all subarcs of T \ e are of positive type with respect to F.

Analogues of the functionals Tp ard ?r(',') with F as in Corollary 2.6 and
dim,tr : 1 were studied in [13] in connection with models of cyclic self-adjoint
operators in Pontryagin spaces.

2.2. Tlrre critical points. Let F e Do(9("tr)). A point ) e T is called a

critical point of F if ,\ is not contained in an open arc of positive or of negative
type. According to Proposition 2.2,lhe set of all critical points of F, which will
be denoted by c(F), is finite. By c""(F) we denote the set of those points .\

of T which are not contained in an open arc of type z'". or 7t-. Let 
"?(-F)(oP(f)) be the union of o6(F) o D and the set of all points Å € T n o(,F')

such that ,\ is not contained in an open arc of T of negative (positive) type (see

Lemma L.7). Analogously, replacing D with O, *" define the sets "p1f; ""a
"9(r). Evidently, we have

o(F)-o?(r)uo9(r'), .(r) -"D*(r) no9(r).

Lemma 2.7. If ,\ e Tno(.F,) andthere exists adefinitizingfunction g e
frfi,* for .F' sucå that s(\) > 0 (or s()) < 0), then .\ e of (f,) \ c(r,) (.\ e

"9(r) \ "(F)).Moreover, there exists a definitizing function go € %fi,* for F such that

c(.F) : /Go) n (o(r) \ "o(r)) and 
"o(r') 

: .rf (so)\T,

where /(go) 7: {z € C: gs(z) - 0}.

The first assertion of Lemma 2.7 is a consequence of Proposition 2.2. The
second assertion can be proved similarly to [10], Lemma 3.
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2.3. The spectral function. Let F e Do(-"(.tr)). W" denote by A(.F.)
the Boolean algebra of Borel subsets å of e such that

a,<n(b n o(r)) n c(F) :9.
Here the first term is the boundary of the set å n o(.F,) with respect to the relative
topology of o(.F,) (as a subset of C).

By B-(F, ,2f) we denote the linear space of all bounded Borel measurable
,ff -vahrcd functions / defined on the union of T n o(.F') and an open neighbour-
hood 116 of os(.F') (depending on 

"f ), llo nt - 0, such that
(i) U(r) : z e (T n o(,F')) U g" ) is contained in some finite-dimensional

subspace of. .ff (depending on 
"f ).

(ii) There exist an open neighbourhood [Jr of. c(,F) in T (depending on /)
and a C- function fi on llr such that / and fi coincide on !11 n a(,F,).

(iii) / is locally holomorphic on lln.
Set B-(.F):: B-(4C).
For an arbitrary ä e A(F) we define a function *t e B*(F) as follows: We

set rt6Q):1 if ze bnrTno(F') ar,d rt6Q):0 if ze (r no(tr')) \å. Further,
f6 is equal to 1 in some neighbourhood of å fl "o(F) and equal to 0 in some
neighbourhood of as(.F') \ å.

The functionals 7p and ?p(.,.) can be extended by continuity to B-(.F,)
and B-(F, tr) , B*(F,tr) x B-(f), respectively. It is sufficient to verify
this for functions fo e B*(F) *d uo,uo € B*(F,,ff) whichate zero on some
neighbourhood of c(P) in T n o(r). Let 7s and 7 be open subsets of T \ c(r)
such that 7o C 7,7 C T \.(]I) and /6, us a,rrd u0 are zero on (l n o(f)) \ 7o.
Let the functions f " e C* (T) x ä (os (.F.)), u n, u. e C* (T, #), H (os(F),.tr),,
n : lr2r. . ., with supports contained in 7 have the following properties:

(") f", un, un, fl : lr2r. . ., are uniformly bounded.
(b) U" {""(r) : z €. T} U {u"(z) : z e T} is contained in some finite-

dimensional subspace of. .ff.
(c) The sequences (f"), (""), (u^) converge pointwise to some functions /,

u, u, respectively.

Then by Lemma 1.7 ((i) + (ii)), the sequences

(Tr .f ") and (f r(un, un) f ")
converge weakly. we denote the limits by Te.f and ?p(u,u)./, respectively.
Repeating this procedure (transfinite induction) we define ?p./6 and Tr(uo,ro)./o
(cf. [10], p.727).

We now define

Er(b) :: Tr.*.0, ä € A(.F),
Er(u,u;b) :- Tr(r,r).Xu, u,u € B*(l7, -tr), b e l3(.F').



/, 11\ t 'f 1a;r; :: rc* ((ao,*(r),Ep(.,.;bu e))),

[ "?10;.F) 
:: ^-((so,*(tr),Er(.,.;a u a;;;.

If 6 is an arbitrary subset of D which is open in D we set

(, 1r\ t ,f 1a;r; :: sup {"?(a; F) : b € a(r'),6 c 6} ,

[ "?14;.F) 
:: s"p {'?(å;F) : ä € a(r'), å c 6} .

It is easy to see that we have a!(.F') n 6 : 0 if and only if r!14;f; : g.

"?(.F') 
fl6 is an infinite set, we have r!(6;F) : *. For every ) € o?(f')
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These set functions on E}(.F') are called the spectral function and the form spectral
function of .F, respectively.

If ä is T-symmetric, Ep(b) is self-adjoint and Ee(',';ä) is a Hermitian
sesquilinear form. The restriction of Ep(.) to T \ c(.F,) is an 9(,tr)-valued
(generally unbounded) measure. If 1 C T is an open arc of positive (negative)
type and å is a relatively compact Borel subset of 7, then Er(b) > 0 (.EF(ä) < 0)
and .Ep(.,.;ä) is a positive semidefinite (negative semidefinite) form on B*(F,,tr)
(or, equivalently, on %o,*(tr)).

For every å e Is(,F'), ä C D, we defi.ne

If
the

quantity

(2.13) inf {"?(6; r) : 6 c D,6 open in D,) € 6}

is called the multiplicity of ) (for the notation cf. Example 2.9).
In the following lemma we express the quantities (2.12) as limits of the ranks

of positiviiy and negativity which were introduced in Section 1.2. For an open
T-symmetric subset G of e and e € (0,1), let E(G,e) denote the set of all real
C- functions x on e with the following properties:

@) xQ):1 if dist"(z,C \G) > e, xQ):0 if dist6(z,C \O Siu,where
dist6(.,.) is the distance on the Riemann complex sphere.

(B)0<xQ)<-1,2€d.
0) xQ) : x(z-r), z ee .

(6) x'l' and (1 - x)rlz are C* functions.

Lemma 2.8. Let theset 6cD beopen in D, let en € (0,1), n:7,2,...,
6,, 10, andlet X, eE(6U6,en), n:!,2,.... Then na(y,;F) is defrnedfor
sufrciently large n attd

(2.L4) ,?(6; r,) - sup,c*( Xnir,).

Proof. By the definition of the spectral function we

supn rc+(X,,r,). Since, for every uru e 90,*(ff),
Te(u, u) .Xn - Tp(x',/'u, X!'{.L - E r(xl/' u,, X',1' ,; G),

the opposite inequality is also true.
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Example 2.9. Let [.,'], U and .F'y be as in Example 1.3 and assume, in
addition, that (.tr,[-,.]) ir aKreinspace, [.,.] : (G.,.) and U is definitizablein
(tr,1.,.]) . Then, according to Example 1.4, we have c(t/) : c(Fu). Furthermore,

4rGE(b;U): Ee,(b), be 23(Fy),

where D(.;U) is the spectral function of [/ (see e.g. [11], Section 2.2).

For every set å C D, å e A(.F'u), which is open in D, we have

(2.15) 
"!1a; 

ry; : ^+((tr, [E(å u å;rz).,.])).

This is a consequence of (1.16) and Lemma 2.7.
Let .tila and -,//- be as in the introduction. Then it is easy to see that

"!(F'u):o(ulz*).
For ä as in (2.15) let o(U I //+) fl ö be a finite set. Then rD*@;f() is the total -

algebraic multiplicity of the points of the spectrum of t/ | -,ila in å (cf. [12],
Proposition 2.7).

3. Convergent sequences of functions of the class Do(-?(tr))

Let thefunctions Fn e Do(g(,tr)),t n:7,2,..., and Foo € Mo(-"(1f))
satisfy the following conditions:

(i) There exists an 7 € (0,1) such that

o(F") a {, ,lrl < ,l}- 0, n - L,2,..., oo.

(ii) For every pair n, U € .tr we have

J5, (r"tr)*,v) : (r*Q)x,v)

uniformly h {z : lrl < rl}.
(iii) There is a positive integer .lf and a sequence of functions 9r, € gå,*,

n: \r2,..., of degree ( I[ such that gn is a definitizing function of .ti, n:
7r2r''"

In this section we consider the distribution sequence (Tp^), the set sequences
("?tr"l) and (oP(F")), and the corresponding sequences of muttiplicity func-
tions.
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Theorem 3.1 . Let Fn € Oo(g(tr)), n - 1,,2,, . .

assum e the above conditionr (i), (ii), (iii) to be satisfr,ed.

(1) r'oo € oo(g(tr)).
(2) For every pair n, U € .tr and every f e 90,*

J*(TF^.f x,y) - (Tr*.f r,y).

set 6s C D which is open in D we
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.2 f'.o € Mo(sttr)) , and
Then the following ho/ds;

we have

have

< Iyg,*f 
"?(60;4,).

Proof. The assertion (2) is a consequence of (1.21). To prove (3) it is sufficient
to show that every subsequenc" (fj) "f (.F.") possesses a subsequence (Fj0) for
which (3) holds. Every sequence of functions of. Zfi,* of degree ( N possesses

a subsequence such that the corresponding (2If * 1)-systems of coefficients con-
verge, which is equivalent to the uniform convergence of that subsequence on every
compact subset of C \ {0} . Hence it is sufficient to verify (3) under the additional
assumption that

(3) For every

'?(60; fl-) S 1i"-, Uf ,? (60; Fn),
??+OO

,3 (60; f,- )

,$ g"Q) -: s*(r)

y)_

(3.1)

exists uniformly on all compact subsets of C \ {0i. We have goo e gö,*.
We define holomorphic functions Hn ir D with ReH.(z) ) 0, z € D, and

Imä"(0) : 0 and functions h" e 9å,*(-3("tr)) by

(3.2) e "(z) 
F"(z) - H n(r) + ihn(r), z € D, n- 7r2,,

Then by (ii) and (2.2) there exists an åoo e gå,*(g(tr)) such that for every
pairo,y€trwehave

(3.3)

uniformly
have

(3.4)

uniformly in {, , lrl
C{,,(g(tr)) . since

Iim
n*r@

(n." Q)r,(tr"(r)*, y)

on every compact subset of C \ {0}. Hence, for every r,A € .ff, we

e*Q)F*(z) - H,o(r) + ih*(r)., z € D,
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we conclude that assertion (1) holds, and goo is a definitizing function for -F'oo.

Now we verify as in [6], Lemma II.3, that for every fixed r € ,ff the ftnc-
tions (I/r(z)r,t), n: L,2,..., a,re uniformly bounded and equicontinuous on
every compact subset of D. Hence every subsequence of this sequence contains a
subsequence which converges uniformly on every compact subset of D. Since, on
the other hand, the limits of all such subsequences coincide with If.o by (3.4), it
follows that for every r, y e tr we have

(3.5)

uniformly on all compact subsets of D. Moreover, there exists a constant M such
that

lln,(r)ll s Ml 1- lrll-', z €D, n-7,2,...,oo

(see [L], Section 2).
In assertion (3) the case of a general set 6s C D which is open in D can

easily be reduced to the following cases:

(") 6o : {z : dist6(2, zs) I es} , *here zo e oo(Foo) and es is chosen such

that 61 n (a6(.F'-) U T) : {zs}.
(b) 6o : {, €_D : dist"(z,j) I eo}, *h"." 7 is a closed arc of T and es is

chosen such that 66 fl o6(.Foo) :0.
Assume first that (a) holds. 'We assume, in addition, that the boundary of

6o U 6o contains no zero of g-. This is no restriction. According to (3.1) there
exists arr integer n6 such that [J {rl'(S) ; n ) nn\ has a positive distance from
the boundary of 66 U 60. Then by (3.1), (3.3) and (3.5) we obtain

,|$E+(",u;66 U6o): Er- (u,u;6sU6o), u,u €90,*(tr),

which implies (3).

Let now the condition (b) be satisfied. We may further assume that

(3.6)

(3.7)

(3.8)

6oO/(g*)C1.

If rf (6s;IL) < oo, we set 16 ;: rf(6s;.F'."). If ,?(60;F-): oo, ?-6 is assumed
to be an arbitrary positive integer. Then, by Lemma 2.7, we find a function
X € E(60 U 66,e|), eä € (0,e0), such that

By (3.1) and (3.7) there exists an integer n6 such that [J {/k") : n ) ns} has
a positive distance from
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Then by (3.6) there exists a constant M' such that

llr."(r)ll < M'11- lrll-', z€,s\T, n) ns.

Making use of this relation and the relations (3.1), (3.3) and (3.5), one verifies
similarly to the proof of Proposition 1.2 (see also [11], Proposition 1.1) that

,,}$ 7., (u, u).X : TF* (u, u).X

for every pair z,u € %s,*(ff). In view of (3.8) it follows that rc..(x; F.)) rs
for sufficiently large rr. By Lemma 2.7 this implies the first relation of (3). The
second relation of (3) can be proved in a similar way.

If we assume, in addition, that the functions Fr, fl:1,2,...,oo, belong to
a fixed class Cfi^ (g(tr)), we get stronger results. The following corollary shows

in particular that in this case the sequence ("P(.F")) converges to 09(-F-).

Corollary 3.2. Let F" e Ct,*(g(tr)), T1 : 1,2,...,a, and assume that
the conätions (i) and (ii) are satisfied. Then

(1') lim,*oo o2(F"): o9(F-) in the sense of the Hausdorff distance in e .

(2') Let tåe sets b1,b2 C D be open in D and h C bz. Then we have

r?(h;F-) s r3(å1; F,) S 121or; r*1

for sufrciently large n.
(3') If / € C'"(T) x ä(os(.F-)) and f is holomorphic in a neighbourhood

of oP(F"") , then

,[("+'f',v): (7r-'f *,Y), r,Y e 'ff'

(4t) Let gn be the normal definitizing function of Fr, n : L,2,. . . ,,m (see

the remark following Proposition 2.5). Then

,lSo"(r) : s(z)

uniformly on every compact subsef of C \ {0}. For every n, e ,ff the seguence
of the positive measures (grTr^.(.)r,r) , Tt:1,2,...) converges to the positive

measure (9*Tr*.(')r, r) with respect to the weak* topology of (C(T))' .

(5t) Let 1 be a,n a,rc of T and a and B its endpoints. Assume that a a,nd

B do not belong to oP(.F-) and that Er'-({"}) - EF*({B}) :0 åoids. T}ren
we have

lim, (Ep,(7)r,y) : (Er*(l)*,y), r,y €.ff.
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Proof. In view of Proposition 2.5, the functions F, , ft : 1,2, . . . , oo , satisfy
the condition (iii) with lf : rc.

Let o!(.F-): {rr, ...,u*}. We choose eo ) 0 such that the closures of the
sets 6i(e6) ;: {z € D: dist6(z,uj) < eo} , j - 1,.. . )rn,, are pairwise disjoint and
for every 27. with ux €.D we have }rG")-OT: 0. By Theorem 3.1 there is a
positive integer No such that for n ) lfs we have

r?(6j(rr); f,"") < r?(6i(ro);r"), j-1,.. .,rn,

and, hence,
tn

» "?(6i(eo);r'-) s »,? (6i('o);r").
j:t j=l

the left-hand side of this relation is equal to rc and the right-hand side is
we get

Since

(3 e)

for n ) N6.
Let ä1 and å2 be as in assertion (2'). h is easy to see that (3.9) implies the

first inequality in (2'). Let the set är C D be open in D such that å3 f D\ ä2

and ä1 n 63 : 0. Then

o-r?(br;F"") S r?1ar;,r..") < r91ar;tr.") < o-r?(br;F.)
for sufficiently large n, which proves the second inequality of (2t). The assertion
( 1') is a consequence of ( 2').

From (1') and (2') it follows that, for the normal definitizing functions g,, of
Fn, ft : lr2r... r@, we have

(3.10) ]yyt"Q): e*Q)

uniformly on every compact subset of C \ {0}. We now define a sequence of
functions Hn, fl : 1,2,. . . , 6, as in (3.2). These functions fulfil the relations (3.5)
and (3.6). Then one verifies the assertio" (3') similarly to [11], Proposition 1.1,
making use of (3.10), (3.3), (3.5) and (3.6).

On account of (3.5) the positive measures grTF- on T are uniformly bounded.
Let u be an arbitrary element of. .tr. Then, by the Helly theorem, every sub-
sequence of. ((g*Tp-).(.)r,o) contains a subsequence ((gn,Tp.,).(.)r,r) which
converges in the weak* sense. Since, on account of (3'),

,[A ((g'' ?.e,,)'e*' x) : ((s *TP*)'P*,')

for g€ 90,*, ((g,,Tr^ ).(.)r,z) convergesto ((g-?p-).(.)r,r).Itfollowsthat
((gnTr^).(')r,r) converges to ((goo?p-).(.)r,r) in the weak* sense.

The assertion (5') is a consequence of (3') and (4').
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Remark 3.3. Let the assumptions of Example 1.3 be fulfilled and let, in
addition, (X,1.,.]) b" a Pontryagin space. If, then, the functions F," in Corol-

lary 3.2 have the form (1.14), this corollary can be regarded as a perturbation
result for unitary operators in Pontryagin spaces. For a similar result see [21],
Theorem 3.4.

Remark 3.4. If, in addition to the assumptions of Theorem 3.1, we have

o,Q)F,(z) : En(z) ! ie*(z), tx : L,2, . .., where E^ e Ct*e@» for some

fixed rc ) 0, and eo € CIfi,*(g(tr)), then Corollary 3.2 applied to -8, gives

some additional information on the sequences ("9(.F,")) and ("?«nl).
As an application of Corollary 3.2 we shall show in the following proposition

that, for an arbitrary F e C{,*(g(tr)), the set oP(f)flT coincides with the set

of generalized poles of negative type of .t., which were introduced in [19]. We recall
the definition from [19]: A point pr € T is called a generalized pole of negative
type and multiplicity m of F if for each sufficiently small e ) 0 there exists a

number N(e) > 0 such that for o > N(e) the function z å F(z) +o-f has zeros

of total multiplicity m in {z € D : dist6( z, p) < e} .

Proposition 3.5. Let F € C;:^ (g(tr)). Then oP(f) fi T coincides with

the set of generilized poles of negative type of F. If l, e o?@) fl T, tåe multi-
plicity of pr as an element of o2(F) (see (2.13)) coincides with the multiplicity
of p, as a generalized pole of negative type.

Proof. 1. Let M be a positive number such that for every a ) M the
function z r-+ F(z) * o.I is boundedly invertible in some open neighbourhood llo
of 0. Let a ) M. Then the function

z *, (rQ) - "I)(r1z) + oI)-' - I - za(F(z)+ or)-'

can be extrapolated in a unique way to a meromorphic function Oo of the class

St,.(g("rf)) , i.". the kernel (1 - (r)-'(r- 8"(0. Q"Q)) has rc negative squares

(tf6]). Hence F(z)+ a.[ is boundedly invertible for all z € D with the exception
of a finite number of points and

(3.11) zå(rr z)+*/) -'

is meromorphic in D. On account of [16], Satz 3.2, (3.11) has poles in D of total
multiplicity rc. Hence, in view of Lemma 1.5, we have rc < ^-(r;1f(");-t) 

:
,c-(1;p(o)) for the function p(o) , defined by

prde):- {ä:)::l ii:Z
D
o.
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On the other hand, by the definition of ?p1"y(.,.).1 we have rc-(1;.F,(")) S ,r and,
hence

(8.12) r,(o) e C{,.(-?(rf)).

A point u e D is apole of .F if and only if it is a pole of F('). The multiplicities of
y with respect to .t. and -F'(o) coincide. For every set 6 e D with 6 n os(F) : $
which is open in D it follows from Lemma2.7 that r9(6;ft"); < r?14;f;.
Then, on account of (3.12), we find that o?(F) : oP(.F.(')) and that, for every
p e oD-(F) flT, the multiplicities of p as a point oi o?(.F') and as a point of

"P1ft.l; coincide.

holds for all z e D with the exception of a finite set. As in the first part of
the proof we see that the function (3.13) has poles in D of total multiplicity rc

and that, for the function .F'p defined by extrapolation of (3.13) to D such that
FBQ): -(ruQ-1;)* holds, we have

(3.14)

(3.15)

FB € C{,*(g(tr)).

such that

,lglleue)-p(o)@ll -
uniformly for lzl < 11.

Let p, € T. Then making use of (3.12), (3.14), (3.15) and Corollary 3.2 we see

that for sufficiently small e > 0 there is a number N(e) such that for B > N(e)

'3 ( 6,; Fp) - '3 (6,; F(*) ),

where 6, :: {z e D : dist"(r,p) < e}. Th"n the first part of the proof and the
fact that the poles of. FB in D coincide with the zeros of p@+F) in D, according
to their multiplicities (see (3.13)), yield the desired conclusion.
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