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Abstract. We show that there exist domains with arbitrary small domain constant in the

sense of Lehto and which are not starlike with respect to the origin.

1. Introduction

Let A be any simply connected domain with at least one boundary point in
C. The Poinca.rö density (or hyperbolic density) of .4 is defined as

rtt(z) :: lf'Q)l u, z e. A,
t _ lf Q)1"

where f(z) is a conformal mapping which maps A onto A : {z : lrl < t}'
Clearly it is independent of the choice of f (z).

Let

s(f ,,) ,: (f,)'al - +(lr,)'
be the Sehwarzian deilvative of /. We shall also write ^9y(z) = S("f,2) if we do

not want to emphasize z. It is well-known that S(l,r): 0 if and only if f(z)
is a Möbius transformation. Let z : z(e) be a conformal mapping of a domain
B --+ A. Then we have, after a simple computation

(1) S(f o z,O : S(/, ,)r'(O' t S(2,().

Let us define a norm on .Sy as follows

llsrll, ': :El ls1y,,)lne(,)-'.

It g(z) is also defined on A, then one can show that

(2) llsr - srlla : llsr.r-'llrrrr .
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Now we put

(3)
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f (r) - z, then

lls, ll" - lls,-,ll g@)

Lehto introduced a notion of domain constant (see [9, p. 61])

(4)

We note that 6(A) is independent of the choice of f (z). We shall call two domains
Möbius equivalent (or simply equivalent) if they differ by a Möbius transformation.
Hence 6(,4) : 0 if and only if A is Möbius equivalent to the unit disc. It is thus
evident that 6(A) can be regarded as some kind of measure (or distance) of how
much A deviates from A. Due to the invariance property (3) of the Schwarzian, we
can rewrite the definition of the domain constant as 6(,4) - sup { lS(f, 4ltl6(z)-2 :

z e A,/: A --+ A conformal). In fact

6(A) : sup {61a3 - "Zl, /: A -r B conformaJ,B equivalent to A},
where f(r): r+DT a,Zn, provided / is invariant with respect to Koebe trans-
formation i.e. the function

g(r)_ (/otrlxz)-(/otrlxO)
(/ o ,)'(o)

where u(z) is an automorphism of the unit disc, belongs to the same class as /.
We can thus transform 6(,4) to a coefficient problem (see also [g]). The following
results, except the last one, are the consequences of this new characterization:
(i) fbr aJI simply connected domains A, we have 6(A) ( 6 (Nehari [11], Lehto

[9, p. 60]);
(ii) If A is equivalent to a convex domain, then 6(A) < 2 (Lehto [9],

Robertson [14]);
(iii) If A is equivalent to a domain with bounded boundary rotation I

i.e.

i{ehari [12],

kr (k S4)

(i")

(Koepf [8]);
(v) If A is equivalent to a strongly-starlike domain of order a (< 7) i_e.

l*Srf' I fl . Lron , then 6(A) < 6 sin(|ar.) (Chiang [b, p. B1]).
All the domain constants mentioned above are known to be sharp except,

possibly, for (v). In this paper we shall consider the converse problem.

t2n

lgl /, lm"1'"'o;l do < kt

where u(r) --l* zfttf ft, then 6(,4) < (2k+4)l$- k) (Lehto and Tammi
[10], Lehto [9, p. 6a]);
rf A is equivalent to a domain which is close-to-convex of order B i.e. there
exisfs a convex conformal mapping g such that lary f, /g,l S l|n , tt ""

6(a) s {\i,T,-u, 
uu;:,,
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2. A class of more general domains

A domain A is a K-quasidisc if it is an image of the unit disc under a K-
quasiconformil mapping of the plane; its boundary is called K-quasicircle. Let A
be a Jordan domain and its boundary € a Jordan curve and 21 a\d zz € € which
divides it into two arcs €1 ard €2. Then 7 is said to satisfy the arc condition
if there exists a constant c (depending on A only) such that min; diam(€;) !
clzr-z2lfor all z1 ar,'d z2 e€. Ahlfors [1] gaveacharacterization of€: €
satisfies the arc condition if and only if € is a K -quasicircle.

It is alsowell-knownthat if 6(A) < 2k,lc < 1, then A is a (1+k)/(1-k)-
quasidisc. On the other hand we have, if A is a K-quasidisc then

6(A) < 6(K'-l)l@'z+1)

(Lehto [9, p. 73]). It is therefore natural to ask if Ä has other geometrical prop-
erties provided 6(,a) is close to zero. A result of this type was proved by Gabriel.

Theorem A (Gabriel l7l). Let f (r) : , +Df anzn and suppose that

ls(f ,)l<-Zcs, for each z e L

where cs is the smallest positive root of the equation 2\/i - tar. 1/i : 0 . Then

/(A) is a starlike domain with respect to the origin.

On the other hand we prove below the following result of negative type.

Theorem L. Given 0 < e < I sufficiently small, then there exists a domain
A(e) containing the origin such that

6(,4(e)) < e

and A(e) is not a starlike domain (let alone a convex domain).

3. Preliminaries to the proof of Theorem 1

The proof of Theorem L depends upon the theory of second order differential
equation

(4) y"+Ay-o

and its linearly independent solutions. Similar to the Schwarzian derivatives we

introduce the following notations and lemmas due to Bank and Laine. We set

(E,c): t{(#)' -28;- (;)'}
where E is a meromorphic function and c is a non-zero constant.
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Lemma A (Bank and Laine [3]).
(a) Let A be afunction anaJytic in a region D , and as,sume that fi and f2 be

linearly independent solutions of equation (4). Then g :: hl fz has the following
properties:
(i) aII zeros of S'(z) in D are of even multiplicity;
(ii) ,4 : LS(s,4.

(b) Conversely, let g(z) be a non-constant analytic function defrned in a
simply connected domain D which possesses the property (i) and we define A by
(ii). 

"hen 
the equation (4) possesses two linearly independenf so/ufions h and

f2 such that g : hlfz.
Lemma B (Bank and Laine [3]).
(a) Let A(z) be analytic in a region D , and assume that equation (4) pos-

sesses two linearly independent analytic so/utions fi and f2 in D. Set E ,: hfz
and c,:W(h,f2) (theWronskianof f1 and fz). Th."
(i) aII zeros of E(z) are simple;
(ii) at a;nyzero z1 of E(z) in D,thenumberc/E'(z) isanoddinteger;
(iii) ,4: (8,.1.

(b) Conversely, let E(r) * 0 be a,n analytic function defined in a simply
connected rcgion D, and let c be a non-zero constant such that (i), (ii) above
hold. Then if we defrne A(z) by (iii) tåe equation (4) possesses two linearly
independent solutions h ,nd f2 such that E : hfz and c : W(h, fz).

we note that Lemma A is mostly well-known. we shall only make use of part
(a) of Lemma A and (b) of Lemma B, the rest is stated here for completeness.
We also note that in [3], Bank and Laine consider the above A(z) to be meromor-
phic a,nd the results seem to have an independent interest. They also have many
applications in the theory of differential equations (see [3]).

4. ProofofTheorem 1

We shall prove the Theorem by constructing an explicit counter-example. In
view of the new characterization of 6(A), it is sufficient to show that given e > 0
between 0 and 1 there exists a conformal mapping / (dependent on e) in A such
that (1 -lrl')'lS(f ,r)l ( e and /(A) : A is the required domain which is not
starlike with respect to the origin.

Given e ) 0,let E(z): zl(1-r')^ in A, where ),:il.t, O < p,<2e17. We
note that E(0) : 0 and this is the only zero of .E in A and

E'(r) _ 1+(2^-L)r,
, E'(0) - 1.

(1 - z2)r+l

Therefore E clearly satisfies (i), (ii) of Lemma B with c : -1 . Let A : lE,.l ,
then the corresponding equation (4) has two linearly independent solutions h, fz
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analytic in A such that E - fif2 and

w(fr, fz) = ": -1 : Å(0)r(0) - /r(o)/i(o).

Since E(0) : 0 we may assum" å(0) :0. Now

A(z):(8, -1) : tE,1) : ä {(#)' -#-(;)'} : ä {r(+)' -(il-h\
We calculate A(z). Differentiate log.E and we obtain

aA(z) : -{z(- ;.'#) . (} * 3)' - L#t
2 2(2^ * 2\2 z2) 1 4) 4)2 z2 (l - ,')'^-T:}tr- - 7 - 1- z'? - A- z'zY ,'
1 4.\ * 4\22 + 4,\(1 - ,2) + 4\2 z2 (7 - "')'^

z'z

L 8\*4\222 _ L(, _2\22+ 2.\(2,\- 1)rn _...)-G-T - 7\'- L'\' - 2l ' I
8),*4\222 /-. 2^Q\-1), \: - 1t- "Y 

+ (.2'\ - -f" + "' )'
Let

P(z) : r^ -'^Q)i-') "' + "'
be the term in the braces above. The nth coefficient of P(z) is equal to

:r^(+X=) (2)-Ln-1))
It is not difficult to see that the modulus of each term of the right hand side of the
above equality is strictly less than 1 as long as l,\l is chosen to be sufficiently small.
Hence we may assume all the coefficients of P(z) are bounded by 21,\l : 2p. We
deduce

(t - l,l')'l+e1,11< (r - l,l\'l-'ä._21f, 
I

+ (1 - 1,1'z1'z12» -2^(21- 
1) ,' * - . .l

< (r - 1';z;z 
slll + +-ll'zl

It - zzlz

+ (1 - 1212)'z (21x1 + 2l\llzl2 + zl\llzla + . . . )

< 121)l+ (1 - lrl')' ,'ll!,,L - l.l
: 121Ål + 2lll(1 - l,l') < 141.\1.
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Hence

(5) (r l,l')'la@l-
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analytic in A, and ft , f, considered above are linearly inde-
of (a), by Lemma A (.), the function f (r) defined by

f(,):ffi

Since A(r) is
pendent solutions

(6)

satisfies the identity A(r): iS(f,r). According to (4), fi and f2 arc analytic
and so is their product E: fifz and since the only zero of E(z) is when z:0
which is therefore the only zero of "fr. W" conclude that fi has only one zero and
/2 has no zero in A. Hence we deduce that / must be analytic in A (in fact
f'(r) : -W(fr, fr)lft l0 in A, so / is locally univalent). Now the inequality

(r r,l')'ls(r,41 _ (r - lrl,)'lztl . 2e < 2

implies, by the classical result of Nehari [11], that / is univalent in A.
The necessary and sufficient condition for an analytic function to be starlike

(see [13]) is that nQf ' / f) ) 0, z € A. However

f (,) hQ)f,(,) E(")

- exp {.\log(1 - ,')} - exp {;ptoglt - ,,1- p,arg(t - ,r)}
- exp (- parg(1 - "'))exp (iplog lt - ,rl).

Now the argument of. zftlf is ploglT - ,rl which tends to -oo as z ---+ l.
Therefore, there existsinfinitelymany z e a suchthat nQf'1fl < 0. This shows
that / cannot be starlike and also completes the proof. o

From the definition of the arc condition, a quasidisc does not allow any cusps
on the boundary of /(A). Fait, Krzyz and Zygmunt [6] constructed an explicit
quasiconformal extension for the class of strongly-starlike functions of order o
( < 1). This may characterize all the starlike domains without cusps. Thus it
would be interesting to find a quasidisc which is starlike but not strongly-starlike.
Theorem L shows that no matter how small that 6(A) may be, it is not necessarily
a starlike domain.
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5. An analogue for logarithmic derivatives

The logarithmic derivative does not share the same properties as the
Schwarzian derivatives, for it is only invariant with respect to linear mappings,
i... f" lf' : 0 if a^nd only if f (z) : o'z * b. We can also define T(f ,r) : ,f" /f'
to be the logarithmic derivative and a norm on it by

llrrlla: 
:åX 116,

By a similar argument as in Section 1, we see that ll4lla : ll"r-'llr,or.
Hence if we define another constant O(,4) :: ll"llla :llTTllrtrl *h"re f : A--+

A is conformal. Again, this is a well defined constant for it is independent of the
choices of /. The following results are known:

(i) for all simply connected domains A, we have Q(A) < 6 [13];
(ii) if A is a convex domain, tåen O(A) < 4 (W.K. Hayman, see Ahlfors [2, p' 5]);
(iii) if A is close-to-convexof order B domain, tåen Q(.4) < 4+ 2B (Chiang [5,

p. 361, Koepf [8]);
(iv) if A is strongly-starlikeof order a (<7) domain, tåen (.)(A) < 6o (Chiang

[5, p. 33]).

All the above estimates are sharp. Also by a well-known result of J. Becker

[4], if O(,4) < & < 1, then A is a K-quasidisc where K : (1 + k)l!- &). We

also ask the similar question here as in Section 2.

z)ln e(r)-'

origin, suclt that

and A(e) is nof a starlike domain (let ilone a convex domain).

6. Proof of Theorem 2

We simply consider the function /(z) constructed in the proof of Theorem 1,

then E : filz : zl(L - ,')^ and l.\l < €13. It has been shown that we can

make (1 -lrl')'lS(/,r)l arbitrarily small and it is not difficult to show that
(t - lrl') lf U,4l can also be made arbitrarily small. Since

G(,):- +- (1 -,')^

2),22
then

7-zZ
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I.[ow

(r- kl'\+l
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- (r- l,lr) l(1 - ),zz+ ^Q--7)24- .)-11*rl\rrlffi

- (r lrlr) l)1'l,= + 2lÅl -)t-lrl'
') + 2lÅl

lÄr'l +z;,1; S Zpt{€.

Note that the above inequality follows since we can choose l.\l so small that
the coefficients in the series expansion have modulus less than l)l as in the proof
of Theorem 1. Hence /(z) satisfies Becker's criterion and so it must be conformal
yet it fails to be a starlike function. o

Remark. Note that E: zl(1-z)Ä can be choseninstead of E: zl\-22)^
in the above proof and it is still suffi.cient to construct, by the same argument as
in the proof of Theorem 1, a counter-example f (z) for Theorem 2. But it fails to
become a counter-example for Theorem 1.

Note added a.fter the proof. It can be shown that the domain ,4.(e) constructed
in Theorem 1 is not starlike with respect to any of its interior points, provided e
is chosen sufficiently small.
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