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Abstract. It is well known that the Schwarzian derivative of an analytic map defined

in a domain in the plane is closely related to global univalence and quasiconformal extension.

Osgood and Stowe have recently found a generalization ofthe Schwarzian derivative for conformal
local diffeomorphisms between Riemannian manifolds in arbitrary dimension. They establish a
univalence criterion for such maps when the target is the sphere ,S' . The condition is expressed as

an inequality involving the norm of the generalized Schwarzian and quantities that depend on the
geometry of the domain manifold. From this result it is possible to recover many injectivity criteria
in the unit disc, including two classical conditions of Nehari. In connection with this work, we

employ in this paper the techniques developed by C. Epstein to construct quasiconformal reflections
in S" via hypersurfaces in hyperbolic n { L-space. Our main result shows that a strong form of
the univalence criterion of Osgood and Stowe implies the existence of an orientation-reversing
quasiconformal diffeomorphism of ,S' which fixes pointwise the boundary of the image of the map.

0. Introduction

In complex analysis, the Schwarzian derivative has played a salient role as

a means of characterizing sufficient conditions for univalence and quasiconformal
extension of analytic maps. These two phenomena are intimately related as a
remarkable behavior often arises in the study of distortion theorems. Commonly,
a stronger form of a given univalence criterion serves further as a condition that
guarantees the existence of a quasiconformal extension to the entire plane. Gehring
and Pommerenke have shown the following general result [Ge-Po]:

Let p ) 0 be a function defined in the unit disc D such that the inequality

(1)

implies the

0h" lrl,')'

(2)

univalence of the locally injective analytic rr,ap rb. Here {rh,r} :
+(b" lrlr')' is the Schwarzian derivative of rl;. If

It t,,, z\ I s p(z) all z € D

It/,z\ I S tp(r) all z € D

for some 0 <, < L, then ry' is univalent and admits a K-quasiconformalextension
to the plane. The constant K depends only on t. They show that the result holds
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on quasidiscs and also when {rlr, r} is replaced by the quantity ,b" lrb'. We remind
the reader that a quasidisc is a Jordan domain which is the image of the unit
disc under some quasiconformal map of the plane. Equivalently, a quasidisc is a
Jordan domain whose boundary is the fixed point set of an orientation-reversing
quasiconformal reflection of the extended plane.

Classical examples of (2) are [Ah 1], [A-W] and more recently, Epstein, and
Anderson and Hinkkanen have derived very general theorems of univalence a^nd

quasiconformal extension (see [Ep t] a,nd [A-H]).
In a recent paper Osgood and Stowe have introduced a notion of Schwarzian

derivative for conformal mappings of Riemannian manifolds, which generalizes the
classical operator in the plane [O-S 1]. In the subsequent paper [O-S 2], and
using their new notion, the same authors have established a sufficient condition
for a conformal local diffeomorphism r/ of a Riemannian n-manifold (M,g) to
the standard sphere ,S" to be injective (Theorem 1.1).

The criterion in [O-S 2] is classical in spirit, in the sense that it is stated as an
inequality on the (generalized) Schwarzian derivative similar to (1). It is , on the
other hand, very general in that it presents a unified approach to a vast class of
known criteria. Different versions of the theorem can be obtained just by changing
the metric A conformally. For instance, Osgood and Stowe derive as corollaries
with M : D and g alternately the euclidean and hyperbolic metric, two classical
criteria of Nehari. Some new and most of the known criteria were derived from
Theorem 1.1 in [Ch 1]. In particular, Epstein's injectivity result in [Ep 1] could
be recovered in this fashion.

The purpose of this paper is to show that a phenomenon analogous to the one
established by Gehring and Pommerenke also holds for the theorem of Osgood and
Stowe. By using Epstein's techniques for constructing reflections in hyperbolic
(n * l)-space, we will show that a strengthened version of Theorem 1.1 guaran-
tees, in addition to the unira,lence of ry', the existence of an orientation-reversing
quasiconformal diffeomorphism of ,5" which fixes pointwise the boundary of the
image ,h@). We shall follow Ahlfors in his definition of quasiconformality in
higher dimensions.

The results of this paper were part of the author's dissertation, completed at
Stanford in 1990 under the supervision of B. Osgood.

L. Prelimrnarles

In this section we will set up notation and present enough of the work in
[O-S 1] so that we can state the injectivity result in [O-S 2].

Let M be an n-dimensional Riemannian manifold with metric A. When
M : Rn, we will denote by go the euclidean metric and 91 will stand for the
standard metric on the sphere ,5". Given a conformal metric 0 : "zeg 

ot M,
Osgood and Stowe define the Schwarzian tensor of g with respect to g as the
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symmetric, trace free (0, 2)-tensor

Bo(d: Hess(e) - dp @ de -:@e - lgradel2)e,

where the metric dependent quantities on the right hand side are computed with
respect to the metric A. When doing conformal changes of metric, the tensor

Bo@) appears as the term by which the trace free part of the Ricci tensors of g
and e2e g differ. We will make use of this later.

When r/ is a conformal local diffeomorphism of. (M,g) to another Rieman-

nian manifold (N,9'), then ,!.k') - ez"g with tp - IoglDt/1. The Schwarzian
derivative of r/ is defined by

Solh) : Br(v)'

For an analytic lcrrap 1b in the plane with g : g' - 9s, then I : log lrl'l and

computing in standard coordinates one gets

( 1.1)

where

is the classical Schwarzian derivative.
On M , the conformal metric 0 : 

"2o 
g is called Möbius with respect to g if

Bo@):0, and so a conformal local diffeomorphism ry' is said to be Möbius if
Sn(b): 0. If g arrd o are smooth functions on M, then there is an important
identity:

(1.2) Bo(p + o) : Bc(p) * Bs(o),

where 0 : "2,g. In a chain of conformal local difeomorphisms t!1: (M,g) ---+

(Nr,g') ar,d tp2: (ffr,S') t (N2,9"), equation (1.2) can be formulated as

(1.3) So(t, o r/) : So!i) + ,hi$',@,r)).

This reduces to the classical formula for the Schwarzian derivative of a composition
of analytic maps in the plane.

BV llBr(e)ll we mean the norm of the Schwarzian tensor Bo@) with respect

to g, as a bilinear form on each tangent space, that is,

llar(e)ll : max {lao@)6,,r)l : lxl : lvl : 1}.

In cases, we will need to consider the norm of Bo(g) in a metric 0: "'og 
confor-

mal to g. Then

llBo@)llo: s-Zo llar(e)ll .

With this, we nov.' present the theorem in [O-S 2].
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Theorem L.l. Let (M,g) be a Riema^nnian manifold of dimension n ) 2
and $: (M,S) - (S", gt) a conformal local diffeomorphism. Suppose that the
scaJar curvature of M is bounded above by n(n - l)K for some K € R, a,nd
that any two points in M can be joined by a geodesic of length < 6 for some
0<6<m. If

ls,(e)l s'z# - ix
then $ is injective.

with M the unit disc in the plane and g alternately the euclidean and hy-
perbolic metric, Osgood and Stowe derive from this theorem the classical criteria
of Nehari:

It t,, ,jl
7r2

2 Ito,zj I s 2

implies that r/ is univalent.
We point out that Theorem 1.L can stated replacing (S",gr) by (ft",g6)

or Hn with its metric of constant negative curvature. This follows from the
transformation law (1.2) and the fact that both 9r and the hyperbolic metric
are Möbius with respect to the euclidean metric. Finally, let scal(g) be the scalar
curvature of g. It it easy to verify that the proof given by Osgood and Stowe works
equally well only assuming that at each point in M the norm of the Schwarzian
derivative of r/ is bounded above by

2r2 scal(g)
6rw

2. Reflections on ,S'

We think of .9" as the ideal boundary of hyperbolic (n f 1)-space ä"*r . Let
E be a complete hypersurface in r/"*r , with normal unit vector field N. At p € E
we define G+(p),G-(p) € ,S" by following the geodesic through p normal to E
for infinite time, in the direction of N and -N respectively. Let ,b1 ,kz,...,lrn
denote the principal curvatures of E. Epstein has shown that if låil < 1 for all
i, then E is embedded and G1 and G- are diffeomorphisms onto open, disjoint
simply-connected sets O".- and O- in ,9". Furthermore, AO+ : AO_ :0-E, the
asymptotic boundary of E, and S" : o+ u o- u ä-E [Ep 2]. This allows one to
define the reflection Å : G- o GJL, which maps o-. onto o- and which extends
to äooD as the identity.

- .For our purposes, E will arise as the envelope of a family of horospheres

{n(e,p(A))}, parametrized by the points g on a given domain O c ,S" and a
support function p. The horosphere H(0, p) is tangent to,s' at d and is uniquely
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determined by p, the (signed) distance between the horosphrere and a fixed origin
r9 in ä'*1 (d ties inside H(0,,p) precisely when p < 0).

According to [Ep 2],

(2.1) 
^(o) 

:ffi+t.#?
where dp stands for the spherical gradient of. p, ldpl for its length in the spherical
metric. It is then easy to see that

(2.2) on:ffi
where . is the euclidean inner product (points on ,S' are considered as being in
En+1).

We want to express dp in terms of the stereographic coordinat'e r : S(d) and
the reflection 

w : so Ä o.s-1.

Let X; be the vector field on ,5" defined by ,5.(X;) : Q. Then

dp(X;) - dp.X, : L',I' 
-. .r-1-(A.r)'

We now use the equations

Åo,S-1 :,S-1 oLt): (r +;.;,)-'(r*r,...,2r!)n,lrrll'- r)

and

x ; : 2(7 + l*l')-' ( - 2x1r ;,. . ., 1 * l*l' - 2r?, . . ., -2r nt ;,2x ;)

to obtain

(2.s) dp(x;): #fu +2ff:d,

We define

(2.4) f -s o,S-1 - log (t + lrl'),

and so (2.3) yields

grad f -2,* 
- *,-

"l* - *12
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(2.5) u) : r+ z, 8tt9{= 
.

lgrad /12 
'

Here grad/ stands for the euclidean gradient of /. We want to derive an expres-
sion for the quasiconformal distortion of to in terms of /. We follow Ahlfors in
his definition of quasiconformality [Ah 2]: let Dw be the differential of ur, and
consider the eigenvalues )1 > )2 > ..'), ) 0 of the (positive) symmetric matrix
(Dw)t(Du). The map u is said to be K-quasiconformal if Å1);1 < K2 .

We therefore need to find upper and.lower bounds for lOw(y) l', *h"r" y e R
is a unit tangent vector at the point where the differential Dw is being considered.
From (2.5),

(2.6) Dw: I +2DJ(srad/) oIr(/)

where J(a): rllrl' is the inversion in .B". Its differential at the point r is given
by

DJ : lrl-a (lxl2 r _ zQ@));

here Q(c) isthesymmetricmatrixwith i,j-component r;zy. Note that Q2(x):
l*l'Q@) and thus DJ is a conformal matrix such that lDJl: lrl-, .Also, ä(/)
stands for the Hessian of /, and in (2.6) DJ is evaluated at r: grad/.

So we have
D.(y) : y + 2D J (grad f) (u (f)(y)).

We use ( ) for the standard inner product in .R" and compute:

lo.(il\' : 1 * 4lgrad/l-a lnn@l' *  (Dr(srad ,f)(rr(/X il),y)
- i + 4l grad/l-a lnj)@l' + 4(H (f)@), DJ(grad f)(il\.

The Schwarzian tensor of / with respect to the euclidean metric is defined so
that the matrix B(/) representing it, is given by

B(f): H(f) - Q(grad f) - oI,

where a:l(Af -lgrad/12). Thus

@U)@),y) : (B(f)@),vl + (Q(srad f)(D,yl + a

and

lu(il@l': la(/Xy)l'+ lg(s,"a/Xy)l' + az +z(a(fl@),e(grad f)(il)
+ 2048 (f )(a), v) + 2a(Q @rad f)(0, v)
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and

(r(/Xy), Q(grad /Xy)) : (r(/Xy), Q(grad/)(y))
* | grad/12(Q(s."a il@),,u) + "(Q(srad /)(y), v).

With this we obtain

lo*(il|' : 1 + 4l grad /l -' I 
B(/X ill' +41 grad /l -a 

I Q(s."a il@)l'
* al grad/l -n (zo+ | grad/12) (a(/Xy), v) + +olgrad/l-2

+ 4o2 lgrad /l-a - 4l grad fl-' (QGr"d /Xy), y)

: (r + 2olgrad/l-')' + +lgrad/l-a (lrtfltrll' + 0(a1,111r1,r7)

+algrad/l-n (lQ{*'"d f)(il|' - lgrad/12(Q(g,ua/Xu),u)) ,

where

0:2o,* lgrad 7Y :?q - (+)lgrad/12.
Using the fact that

lQ(s."a /)(v)l' : (Q(srad/)(v), Q(srad /Xv))
: (Q2(s.ud/Xy), y) : I e'"d/|'?(Q(grad/)(v),v),

this finally yields:

Proposition 2.L. With the notation as before, the differential of the refl.ec-

tion w satis/ies

lo.(il]' : 4lgrad.f l-nlt(y)l'
where A is the matrix given by

A: +pr + B.

The scalar curvature of the metric 0 : "'l go is given by

scal(g) : -n(n - 7)e-2t B,

and the norm of the tensor Bn,U) in the metric f is given by s-zf llB(/)llr..
Therefore, if

llB,.(/)llr=åH+
for some 0 <, < 1, then

(2.7) (1 - ,)lBl lgrad/l-2 < lo.(il|< (1 + *)lBl lgradJl-'z.

Hence for lBllgrad/l f 0, the reflection ur will be I(-quasiconformal with K:
(1+r)/(1-r).
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3. The main theorem

Let rl:: (M,S) * (S",9r) be a conformal local diffeomorphism. If

llsr(,i)ll . -! scal(g)

2n(n-t)

for some 0 <, < 1, then tlt is aglobal difieomorphism and with / : $-r, we carl
define the metric gz: e2Qgt: ö-(g) on O: ,!@). We regard p as a support
function defined on O and study the associated reflection Ä. The domain O will
be simply-connected, a consequence of the following version of Theorem 1.1 [Ch 2]:

Theorem 3.L. Let (M,s) be a complete Riemannian manifold of dimension
n ) 2 and rl.t: (M,S) - (S", 9r) a conformal Locil diffeomorphism. If

llsr(/)ll =-'s:al(g)Zn(n - 7)

then M is simply-connected.

With the aid of (1.3) we will translate the inequality

(3.1) llsr(,i)ll = -. 
s:al(g)

2n(n - 7)

to Q. Since /*(9) : e28gr, then

Bn,k): so,(ö): _ö* (sr('/))

and therefore

llsr(,i)ll : llBc,(o)llr, .

Hence (3.1) is equivalent to

(3.2) llBo,k)lln,=-w
We use stereographic projection to pull back to the corresponding domain in

euclidean space the conformal metric gz: e28gr that is defined on $(M). Let
this new metric be written as f : 

"21go 
. Then / and p are related to each other

as in (2.4). Recall that when scal(f)lgrad/l 10, the quasiconformal distortion
of the reflection Å is bounded by (1 + t)l$ - t), where

,_Zn(n-7\':5ffillB"(/)ll''
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By construction, the metrics f and 92 are isometric under the stereographic pro-
jection ,9, and furthermore we claim that

llBr.(/)llo : llBr'(e)llr,'

This follows from the addition formula, as:

o: Bgo(f - f) : Bo"ff) * B.,r oo(-f).

But

Thus
B o,U) : (,t-t)* (Ar, (p))

and our claim is established.
On the other ha^nd, in [Ep 1] it is shown that the distortion of Ä is given by

rårt(=*xH+)t,
where lq,.,.,lcn are the principal curvatures at the corresponding point p -
Gi'Q) on E.

We want to conclude that lk;l ( L for all i. For this we need to assume that
scal(g2) ( 0, which will replace the apparently awkward condition lBl I grad /l I 0.
We shall show that the assumption on scal(g2) together with the inequality

B.zte, (-/) - (S-r )* (B 
",Q 

sl(-p)) - -(S-'). (Br, (p)) .

(3.e)

for some 0 < , < 1 , imply the sought estimate of the principal curvatures of E.
Our first claim is that the metric A2 is actually negatively curved. Indeed, since
it is conformally flat, the Weyl tensor vanishes and hence the sectional curvatures
are completely determined by the scalar curvature and the trace free part of the
Ricci tensor. To be precise, for X, Y orthonormal tangent vectors, the sectional
curvature K(X,Y) of 92 is given by

K(x,Y): Bo,(pXx, x) + Bs,(pXr, Y) + #S
(see [O-S Ll, p. 24 for a classical decomposition of the curvature tensor we have
used here). It follows that

n\n - L)
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Let E, be the hypersurface parallel to E at distance s. The hyperbolic metric
g, on E", suitably normalized, converges as s ---) oo to the metric gz on O [Ep 2].
The normalized sectional curvatures tend to (k;k1- 1)(1 - b;)-t(1 - &i)-1, and
therefore (k;ki - 1X1 - e;)(1 - ki) < O. Hence k; * 1 for all i. Since the principal
directions of E and !, are mapped to each other under the parallel flow, this
enables one to compute the differential of Ä. In particular, its determinant is
given by

-g(H),
where (L + kt)lG - k;) is the eigenvalue of dÅ corresponding to the principal
direction i. Because Ä reverses orientation, we conclude that

il,t- k?)>0.
i:1

We claim that this inequality is strict. If this is not the case, then we must have
lci : -\ for some i since we have already excluded the possibility k; : 1. Because
h; * 1, DÅ does not have an infinite eigenvalue and therefore lgrad f I I O in
(2.6). Hence the distortion is finite and we see from Epstein's formula that lci : -l
for some j + i.This contradicts the fact that (k;ki - 1X1- erXl -,t;) < 0. This
proves the claim, which now implies that #{;: lk;l > 1} is even. If this number
is not zero, then say l&11,1årl > 1. But then (&1&2 - 1X1 - erXi - kz) > 0, again
a contradiction. Therefore l,t;l ( 1 for all i, and so all the sectional curvatures of
E are negative.

Lemma 3.2. rf p(0.) - oo for any sequence {0"} in {l converging (in the
spherical metric) to a point jn äO , then E is complete.

Proof. Suppose 7(t) is a unit speed curve in E defined on [0,1) which cannot
be extended continuously io t : 1 in E. Then the curve G+ (:, (t)) in e will have
to tend to äo, hence p --+ oo along it. But then by construction of E as the
envelope of the horospheres H(0,p(a)),we will have 7(t) of infinite length, a
contradiction.

We state now our main result.

Theorem 3.3. Let (M, g) be a complete Riemannia.n n -manifold of negative
scalar curuature, and let ,b, (M,g) - (,S", g) be a conformal local diffeomorphism
such that for some, € [0, 1)

llsr(,i)ll < -! ''""1(g)' .
2 n(n - t)'

Then rl: is univalent and M diffeomorphic to R . Furthermore, there exisfs a
(1 + r)/(1 - l)-quasiconforutal diffeomorphism A of S" onto itself, which takes
the topological hemisphere o : ,b@) to sn \ 0 and which fixes 0e pointwise.
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Proof. The univalence of ry' follows from Theorem 1.1 and Theorem 3.1 implies
that M, and thus O, are simply-connected. As seen before, the condition on .9r(r/)
corresponds to

llBr,(p)llr, =--i#3.,
and so !2 ari g are negatively curved. The remaining conclusions follow from
the Cartan-Hadamard theorem and the previous considerations on Å.

We give the following application of this theorem. In [Ch 1] we derived a
sufficient condition for univalence on an arbitrary simply-connectd domain Dr in
the plane. It states that if

(B.z) 1t1",,1- 
l*g,,11<!Np,z1

for all z € Dr, then ry' is injective. The kernels K and I can be derived from the
Green's function hQ,e) as follows:

KQ,e): -? =u'^=hQ,e)7t OzOC

and

tQ,o:+c+.?&^Q,c)
K is the Bergman kernel and the connection between these reproducing kernels
and the theory of conformal mappings were extensively studied by Bergman and
Schiffer [B-S]. The condition (3.7) appears as a corollary of Theorem 1.1 with
M : Dr and g the Bergman metric rK(z,z)gs. We have therefore:

Corollary 3.4. Let D1 be a simply-connected domain in the plane and let
r! be analytic and locally injective in Dr. If

1t1,,,1 - *g,,11 < f,x 
p, z1

for aJl z e Dr and some r, 0 S t 11, tåen O:rb(Dt) is aquasidisc.

Note that we cannot claim that ry' admits a quasiconformal extension unless
D1 is itself a quasidisc.

FinallS the results presented here yield the following sufficient condition for
a planar domain to be a quasidisc:

Corollary 3.5. Let O C .82 be a domain and let g : ezl go be a complete
metric of negative Gaussian curvature h(g) on O. If for some t € [0, 1)

(3.8) llB,.(/)ll, 
= -*r@,

tåenOisaguasidisc.
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The inequality (3.8) can be written more simply in the form

lf ,, - f?l <tf ,,.

This theorem is implicit in the work of Epstein, but was never stated in this
intrinsic form.
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