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FINITE ORDER SOLUTIONS OF NONHOMOGENEOUS
LINEAR DIFFERENTIAL EQUATIONS

Gary G. Gundersen and Enid M. Steinbart
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Abstract. We give conditions on the coefficients of equation (1.1) below which guarantee

that every solution of (1.1) has infinite order. We also show that if the coefficients of (1.1) satisfy
certain growth conditions, then any finite order solution of (1.1) satisfies certain corresponding
growth conditions. Several examples are given to illustrate the results.

L. Introduction

In this paper we consider the nonhomogeneous linear differential equation

where Ao(r), Ar(r),---, An-t (z),and H(z) areentirefunctions, nQ)# 0,and
n) L.It is well known that every solution / of (1.1) is entire.

In (1.1), if p is the largest integer such that AoQ) is transcendental, then

[6] there can exist at most p linearly independent finite order solutions of the
corresponding homogeneous equation

( 1.1)

( 1.2)

y@) * An_1( r)f(n-L) + + Ar(r)f' * Ao(r)f - H(r)

f(") + An_r(r)f("-1) + * At(r)f' * Ao(r)f - 0.

Thusitcanbededucedthat "most"of thesolutionsof (1.1)withatleastone A*(r)
transcendental have infinite order. On the other hand, there exist equations ofthis
form that possess one or more solutions of finite order. For instance: (a) f (r) :
e-' satisfie, f" +"'f'+("'" - 1)"f : e'-1, and (b) f("): qsirlz*czcosz*e'
(where c1 and c2 arearbitraryconstants) satisfies f"'ae"ftt+f'+"'f :2e'+2e2'.

Two natural questions are:

(i) What conditions on As(z), Ar(r), ..., A,-t (z), and H(z) willguaranteethat
every solution of (1.1) has infinite order?
(ii) If (1.1) possesses a solution / of finite order, then how do the properties of
Ao(r), Ar(r), ..., An-t (z), and H(z) aftect the properties of /?
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In this paper we obtain results on these two questions. We mention that [9]
contains results on these two questions for equation (1.2) when n :2. See also

[11].
We note that if Ao(r), Ar(r), ..., An-r(z) xe polynomials and ä(z) is of

finite order, then [7, Lemma 2] every solution of (1.1) will have finite order. This
result follows by using the method of variation of parameters together with the
well-known result ([16, p. 108], [17, p. 65-68]) that if all the coefficients of (1.2)
are polynomials, then every solution of (1.2) has finite order.

Some recent papers that investigate the properties of solutions of (1.1) in the
case when Ao(r), Ar(r), ..., An-r(z) arc polynomials include [1], [5], [7], and

[12].

2. Statement of the main results

For w(z) an entire function, we let p(tu) denote the order of tu.
Our first result shows that if / is a transcendental finite order solution of

(1.1), and if the growth of one particular coefficient Ar(z) dorninates the growth
of all the other coefficients in an angle, then 1(l) *i11 satisfy a certain growth
condition in the angle.

Theorem 1. Let p,, 01, and 02 be real constants satisfying p > 0 and
h 1 02. Suppose in (1.1) that there exists a unique coefficient AoQ) such that
for aay 0 e (fu, 02) there exist real constants a: a(0) and B : P@) satisfying
0 < P 1a, so that the followingconditions hold as z -+ @ along argz:0:

(2.1)

(2.2)

for all k * q, and

lAo@l ) exp { (" * o(1)) lrlr}

ltr(r)l ( exp {(p + o(1))l,Y j

(2.3) lu(,)l ( exp {(B + o(1))lzl,'}.

Assume that a(0) and B@) a,re continuous functions on 01 < 0 <-02.
Suppose that f is atranscendentalsolution of (1.1) with g(f) < m. If I > g

is an integer, then for any 0 e (fu, 02) we have

(2.4) ;/.)(,)l (exp{ - (" -0+o(r))lzlp}

as z-> oo along argz-0)wherea-o(0) and P-P(0).
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It is easy to construct examples which show that the inequality (2.4) is sharp
in the sense that we cannot replace the constant "ot- 0" by a larger constant.
For example: (i) /(z) : z2 I e-3' satisfies the equation

(z.r; ;«'l * @' +3)/(i') - e4z ft't -9"' f" + (2 -3r)f' +6f : 42 +9e' +9ze-3',

and (ii) lQ) :1. a sQ-"1' satisfies the equation

Q.a1 1{;"1+eb" r"' -(b-")'f" *(b-a)e"'f'-(b-o)'"u'f : (1+a- b)(b-a)2eb"

where a and å are constants that satisfy 0 I b < a.
We cannot switch AoQ) and H(z) in the conditions (2.1) and (2.3) since, for

example, f(r) :sinz satisfies /" * /' + 1t * sinz)/ : sin2 z * cosz.
If in Theorem 1, / is a polynomial solution of (1.1), then /(e) : 0 would

follow. We eliminate this trivial case by assuming that / is transcendental in
Theorem 1 (and in Theorem 2 below).

By combining Theorem 1, the Phragmdn-Lindelöf theorem [14, pp. 270-271],
and Liouville's theorem, we obtain the following two corollaries.

Corollary L. Let 0r,02,...,0* be afinite set of real numbers that satisfy

fåere exists in (1.1) one particular coefr.cient Ar,(z) and a corresponding constant

lti ) 0, such that for any 0 e (0;, 0;a1) there exist constants a; : a;(0) and
gt, : 0;@) satisfying 0 a Bo < di, so that the following conditions hold as z ---+ @
alongargz-0:

(2-7)

(2.8)

for all k * q;, and

(2.e) lv(,)l ( exp { (B, + o(r)) lzlp,}.

For each i : Lr2,. . . tffi- L, assume that ai(0) and B;@) are continuous functions
on0;1010;+r.

Then every transcendental solution / of (1.1) safisfies p("f) : m.
Corollary 2. Let 0r,02,...,0* be afinite set of real numbers that satisfy

coefrcient AoQ) and a corresponding constant p. > 0, sucå that for any e > 0
tåere exists a constant a : a(e) > 0 so tåat

leoQ)l ) exp { (" + o(t)) lzlp}

as z +m in d; *e < argz 10;+r - e for i :!,2r...,m-1.
If in (1.1), p(Ar) < p, for all k I Q, and p(Il) < p,, then every transcendentaJ

solution / of (1.1) safisfies p("f) : *.

lAo,@l2 exp { (o, * r(1)) 
l 
rf'}

l.qn(r)l S exp {(8, * ,(1)) 
I 
,lr'}
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By Corollary 1, all solutions of the following equations have infinite order:

(2.10) "f" + (rir, ,)f' + (sir, z)z f : cos zt

yta) * eziz ytrr * ez ftt * e-(l+i)z yr + f _ 22 * 1,(2.11)

(2.12)

If l> 4

(2.13)

fttt * ezs /.rt * (sin ,)f' * e" f - cos tfr

is an integer, then by Corollary 2 (or Corollary 1), all solutions of

y1u) * ez2 yttr + (cos ,r)f,, * e-r* f, + zf : e,

have infinite order. Furthermore, given any real number p ) 7, the Mittag-Leffier
function [3, p. 50] can be used to construct an entire function AoQ) in Corollary 2
with p(Ar): pr.

Corollary 1 shows that if for each i the growth of one particular coefficient
Ao,Q) in (1.1) dominates the growth of the other coefficients along any ray atg z :
d satisfying 0; < 0 I 9i+r, then all transcendental solutions of (1.1) have infinite
order. Theorem 2 below shows that we can weaken this hypothesis and still get
the same conclusion. More specifically, Theotem 2 shows that if we have such a
dominating coefficient Ao,Q) in at least one of the sectors 0; I arg z I 0;q1 , and
if we have certain other growth conditions in any sector 0; 1 argz I 0iq1 where
such a dominating coefficient does not exist, then all transcendental solutions of
(1.1) will have infinite order.

Theorem 2. Let 0r,02r...,0* be a finite set of real numbers that satisfy

i : L,2, . . . ,m-l , either condition (a) or condition (b) be.low å olds for the interval
(0t, 0;+t), and suppose also that condition (a) holds for at least one interva):

(a) There exists one particular coefficient Ar,(z) and a corresponding constarfi
pi ) 0, such that for any 0 e (0;, 0;a,1) there exist constants a; - ai(0) and
0;: 9;e) satisfying 0 < 0n ( o;, so that (2.7), (2.8), and (2.9) hold as z ___+ @
along argz : 0. Assume that a;(0) and Bi(0) arc continuous functions on 0; I
0 10;+r.

(b) Condition (b) consisfs of when (2.14) and (2.t6) below both hold for the
interval (0;,0;+r). Forany u satisfying0 <. u 1n-1. andfor any 0 e(0;,0;+r),
we have

(2.14) zn-' Ar(r) + 0



Finite order solutions of nonhomogeneous finear differential equations 331

as z -q a along argz:0. To describe (2.16) wefirst set p, - rr;.axpi where
this maximum is f aken over those values of j such that condition (a) holds for the
interval (0i, ?i+r). Then set

(2.15) ":?:p{o*(d) -Ao@)\

where this supremum is ta,ken over all 0 e (0p,, 0ea1) and all k such that condition
(a) åolds tor the interval (0*,, 0*+r) with p,y : 1t. Then the second part of
condition (b) is tåat tåere exjsfs a constant ), that satisfies 0 < .\ < r , such that
for any 0 e (0;, 0;q1) we have

(2.16) lH (r)l ( exp { (Å * o(1)) l rf }

asz+aalongargz:0.
Then every transcendental solution / of (1.1) satis/fes p("f) : o".

By Theorem 2, all solutions of the equation

f"' * "' t" + e3' f' + e2" f : e' +1

have infinite order. In this example condition (a) holds for the interval (-r 12,r 12),
while condition (b) holds for the interval Qr 12,3r 12) with p : 7, r : 1, and
.\:0.

We can generalize this example. The next result is an immediate corollary of
Theorem 2.

Corollary 3. Let Ps(z), Pt(r), . . ., Pn-r(z), and P(z) be polynomials
in z with n ) I and P(z) f 0, and suppose that there exisfs one particular
integer q satisfying 0 < g I n - 1 sucå that deg(Po) > deg(P1) for aJI k * q,
deg(Pr) > deg(P), and P1(0):0 for aJl k:0,1,.. .,n-L. If l> 1 is a positive
intege4 then every transcendental solution f of the equation

"f(") + pn-r("";1(n-t) +... + pr("")f' + po(e"'yy : r1"l )

safislles p("f) : m.

Another illustration of Theorem 2 is ihat every solution of

f" + (e1- 
])' 

t' * 7{-))' t : "'
has infinite order. Of course, the earlier examples (2.10), (2.11), (2.12), and (2.13)
for Corollary 1 are also examples of Theorem 2 since Corollary 1 is a corollary of
both Theorem 2 and Theorem 1.
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Regarding condition (b) in Theorem 2, the examples in (2.5) and (2.6) itlus-
trate that if condition (a) holds for some of the intervals (0;., 0;+r) but not all of
the intervals, then in order to obtain the conclusion of Theorem 2 we must have
some kind of condition(s) on the coefficients in (1.1) for the intervals (d;, 0;..1)
where condition (a) does not hold.

Condition (a) in Theorem 2 is sharp in the sense that if condition (a) holds for
every interval (0;, 0;a1), i : 1,2,. . . ,m-7, then we cannot replace the condition
"0 a B, 1oti" with'(0 I 0; I a;". Consider, for example, that f(r):,in,
satisfies f" - (sinz).f' + (cos z)f : - sinz.

The inequality (2.16) in condition (b) of Theorem 2 is sharp in the sense that
we cannot replace the condition "0 S ) < r" with "0 < ) < r" by the following
example: Foranyreal constant c satisfying 0 < c<-1, f(r): e-", satisfies the
equation

In this example condition (a) holds for the interval (-n 12, r l2) , (2.14) holds for
the interval Qr12,3rl2), but (2.16) does not hold for the interval Qr12,}tr12)
since,\ : r :c (with p : 7).

We do not know whether the exponents "n - u" in (2.14) are sharp or not.
Regarding this question, we mention that f (r) : e-' satisfies the following two
equations:

f,, + ({a)' ,, * (=)'f - ,,"-", - ce-"" (=)' * "-", (=)'

(i)

(ii )

We next consider the particular case where the orders of the coefficients
(1.1) are all less than 712. We have the following result.

Theorem B. Supposein (1.1) that rnax {p(Ar), p(Az),. . . , Q(An-t), p(tt)}
p(Ao) < Il2. Then every solution of (1.1) åas infinite order.

In contrast to Theorem 3, there exist equations of the form (1.1) where

0 < k(n -1 
*

ln

which possess a solution of finite order (see Section 7).
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3. Lemmas

we shall use the lemmas in this section in the proofs of our results.

Lemma 1 [8]. Xet w(z) be a transcendental entire function of finite order
p,Iet I = {(&r,i),(k2,ir1,...,(k*,i^)} denote afinite set of distinct paits of
integers that satisfy le; > i; ) 0 for i : 1,2,...,m, and let e > 0 be a given

constarfi. Then the following two statements hold:

(i) ?åere exists a set E1 c [0,22r.) that has linear measure zero, such that if
g e [0,2") - 81, then there is a constant R : R(0) ) 0 such that for all z
satisfying d,tgz : 0 and lrl> R, and for ill (k,i) €1, we have

(ii) ?åere exists a set E2 C [0, m) that has finite linear meaaure such that for a]l

z satisfying lrl / E, and for ill (k, i) e I , we have

r-G)( r\ rlffil< 12;(*-i){a+')'

The next result can be deduced by using standard reasoning with the classical

Phragm6n-Lindelöf theorem (see, e.g., [13, p. a9]).

Lemma 2. Suppose that w(z) is a,n entire function where p(trr) < q. Let
p, 0r, and 0z be real constants satisfying pt > 0 and 01 I 02, and let )'(0) be a

continuous function on 01 I 0 1 0z where X0) > 0 for all 0. Suppose that there
exists a set E C R, tllat has linearmeasure zero such that for any 0 e (0rrgr) - D
we have

(3.1)

a,s z -, a along argz :0, where Å : Å(d).
Thenfor every 0 € (0r,02), (3.L) holds as z'-+ @ along argz :0, where

I : Å(0).

The next lemma is a generalization of Lemma 1 in [10].

Lemma 3. Let 0 and
theray {z:argz-0 and
function on the interval ^Bo

(3.2) G(r) lu(r) (reio ) |

,to)
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If G(r) is unbounded as r --+ *oo , then tåere exists an infrnite sequence {ri}
satisfying Rs 1ri ( oo and r1 + {oo , such that as rj --+ +oo we have both

(3.3) G(r;) --+ -Poe

and

(84) lffi#l -f,+o(r))".h

The exponent I - & on the right side of (3.a) is sharp by consideration of the
functions hQ) : QQ) + e' (when ,tlz < 0 < 3rl2) arrd f2(z) : QQ) where
QQ) is a non-constant polynomial, with q(r) = 1 in (3.2).

Prcof of Lemma 3. Since G(r) is unbounded as r --+ oo, it follows that there
exists an infinite sequence {ri} where Rs l ri ( oo and rj --+ oo, such that
G(r1) - oo as rj -+ m and

(3.5) G(r) < G(r1)

for all r satisfying rB6 ( r ( ri. Thus (3.3) holds, and so it remains to show that
(3.4) holds.

Set, zi : rjeiq, set (6 : Roei9, and let lio, zil denote the line segment joining
(s and zi. We claim that for b:0,1,.. .,1-7, we have

lurtr)1211 . ltll(u)((o)l + ;r;1tut0*')((r)l(3.6) '! \ /

+ '.. + lzlt-*-r lutt-tl16o;; + lrl'-rl.(')Q)l
for all 1.,€ l$,21. We will then obtain (3.a) by setting z : Zj in (3.0) and noting
tnut .rt)(zi) - oo as j ---+ oo, which follows from (3.3) and (8.2). we now show
that (3.6) holds for each & : 0, 1, . . . ,l - 1.

Using (3.5) and (3.2), we first note that for z e l(s,zil:

ltutr-r)1zyl : l,«,-,r160 )* Ir',.,(,)(Od(l s l,t,-')((o)l * l:',t 
G(r)rt1)dr

< ltott-tr16o)l + (lrl - ,Bo) G(r)rt|) < lu{t-tl16r)l + ;r;1wut1z.1l.

Thus (3.6) holds for k : I - 7.
For the induction step, we next suppose that rn is any fixed integer satisfying

1 1m < I - 1 and that (3.6) holds for fr : rn. we will show that (3.6) holds for
k:m-1. Since(3.6)holdsfor k: m)wehavefor ze l(s,zi:

(s.z) lw@Q)l S l'(-)((o)l + l'llurt-+tl16o;;
+ ... + lzlt-n-r lu,tt-tl16o;; + lrlt-*@atp.1l.
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Using (3.7) and (3.5 obtain

-r) ((o )

-1)((o)

"+lz

l.( 
rr,-r) (r) I _

This yields (3.6) for k : m - l.
Hence we have now proven by induction that (3'6) holds for each k :

0, 1,... ,l - 1, and the proof of Lemma 3 is now complete.

Lemma 4 below is used in the proof of Theorem 3, while Lemma 5 below is
used in the proof of the example in Section 7'

Lemma A l2l. Let w be a,n entire function of order p where 0 < p < 112,
andlet e > 0 beagivenconstant. Thenthere exists aset S C [0,oo) thathas
upper density at least I - 2o sueh that l.@l ) exp (lrln-") for aJI z satis{ying

lzl e S.

For a definition of "upper density", see, for example, [2, p. 679].

Lemma 5 [4]. If ur is an entire function with lower order \ > 0, then there
exisfs a curve I that goes from a finite point to oo for which

s

for z € [(o, rÅ,

* 
lr',*(m) 

(() d(l

| + (lrl- ^Ro){l *Qn) ((o)l + I 
,ll*(**')((o)l

l,-*-1 | 
u)Q-1)((, ) I + lrl,-*l*(r)( dl]1 .

), we

l*'*
l*(*

+.

(4.1)

In ln l*Q)l,I*l#'H ) min(å'Å)'

4. Proof of Theorem 1

From ( 1.1),

.''L#*:#T+ +W+
, 1 , f(q-L) Ao-t f aol H+1+TT+...+,lail- 

Ao.

FromLemma 1(i) it follows that there exist a constant c > 0 and aset E C R with
linearmeasurezero, suchthatif 0 eB-E thenforany & satisfying q llc 1n-l
we have

(4.2)

as z-> oo along argz:0.

lo3:,r,rel 
:o(1 )t't
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We now let {.t e (0r,02) - E, and we assume that f(-q)12) is unbounded
on arg z : ,b. Then from Lemma 3, there exists an infinite sequence of points
zj : riei* where rj - oo, such that

(4.3) fk)(z)-- @

and

(4.4) lffil s(r+o(1 ))t'ilo-o

as zj ---+ oo, for all & satisfying 0 ( k < q-7.
. . Combining (4.2), (4.4), (2.1), (2.2), and (2.3) together with (a.1) yields

f@Q) -+ 0 as zj - a. This contradicts (4.8). Henc. jfdpl must be bounded
on arg z: rb.

It easily follows that for all /c satisfying 0 < lc I q - l,

(4.5)

as z+ ooalongargz:?h.
Now from (1.1) we have

l/«or @l- o(lrl'-n)

(4.6)

Combining (2.1), (2.2), (2.3), (4.2),, (4.5), and (4.0) we find that

(4.7) l/tor(r) I <exp{ (a-0+o(1))lrlr}

as z ---+ oo along ?trgz: ry', where q: a($) and B: g(li.
Since ry' e (h, gr) - E was arbitrarily chosen, we have thus shown that for

ury 0 e (h,P,r)-8, (4.7) holds as z - q.along argz:0, with a : a(0)

""d 9:0@). By combiningthis with p(/(c)) < m and Lemma2,we obtain
that for uny 0 e (0r,02), (4.7) holds as z --+ @ along arg z:0, with a : o(0)
*rd f : 0(0). This proves (2.4) for l: Q.we ca^n then use the fact that (2.a)
holds for I : Q together with the Phragmdn-Lindelöf theorem [14, p. 214] and
the Cauchy integral formula to deduce that (2.4) holds for all I > q. This proves
Theorem 1.
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5. Proof of Theorem 2

Let / be a transcendental solution of equation (1.1). we make the assumption

p(/) < m.
Now suppose that p is a value such that condition (a) holds for (0p,9p+r)
pp: F and such that the constant r in (2.15) satisfies

{oo(e) - gp(0)}.

Then from Theorem 1,

(5.2) lr(

as z -+ oc along arl z

[15, p. 273) we obtain

(5.3)

Now let ( be a constant

(5.4)

For fixed real values of 0 we

(5.5)

€ (00,?p+r),

* ,(1)) 
I 
,|\

and 0o - 0r(

T- sup
0e(0p,0oqt)

we obtain that

") e)l S exp {

:0, where dp

for any 0

(oo - 0p

: oo@) 0). From (5.2) and

that satisfies

will consider the quantity

lf(") ?"io)l
exP (("')

as r -) oo. Below we shall use the Phragmdn-Lindelöf theory (i.e., the classical

Phragmdn-Lindelöf theorem and related results); see, for example, [3], [13], and

[14].
We will now show that there must exist a real number ry' satisfyin1 ,1, * 0;

for i = L,2,...,m, and h <tb 10* - il*2r, such that for rh:0 the quantity
(5.5) is unbounded as r ---+ co. We will prove this by contradiction. Suppose

that this were not true. Since p(/) : p(/(a)) ( c'o, we can then deduce from
the Phragm6n-Lindelöf theory that p(/(n)) 3 p. Then from (5.3), n17@)) : p,.

Furthermore, it follows from the above assumption and the Phragmdn-Lindelöf
theory that the type o of /(") satisfies

(5.6)

h(0)-,,HJr'W(5.7)

Now let
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denote the Phragm6n-Lindelöf indicator function of. f(") (see, e.g., [B], [18], and
[1a]). Since o < oo , h(0) is a continuous function for all d (see, e.g., [L4, p. 272
and p. 275]). Thus from (5.1), (5.2), (5.4), and (b.z) it follows that there musr
exist a real constant / e (0p, 1p+r) such that

(5.8)

(5.e)

Hence from (5.8) and the theory of the indicator function h(0) lL4, p.276-277), we
deduce that o > lh(d)l > (. This contradicts (5.6). Hence'tire above..rrr*ptiol
must be false, and so there must exist a real number ry' satisfyin g $ * 0; for
i:1,2r...,rn, and h < rh g-0,-: h *2r, such that

Now if j is any value where condition (a) holds for (0i,0j+r), then from
Theorem L we obtain that for aty 0 e (0i,|i+r), 7{")Q) * 0 as z ---+ oo along
ar\z : d. Hence from (5.9) it follows that (2.1a) and (2.16) must both hold as
z --+ @ along arg , : rlr.

Now from (1.1),

(5.10)

Because of (5.9), we can apply Lemma
exp((rp ). Then from (5.9) and Lemma g it
r j --+ oc such that

limsup lf''9:'!-- oo.
t*oo' exP (€rr)

r H(r)Åo(r)fu-'ftr.

3 to f (r) with ,b _ 0 and ,lU) _
follows that there exists a sequence

(5.11)

aS f i -» OO, and

(5.12)

as rj -+ oo, for u : 0r1,..., n - 1.
Now bv combining (5.4), (5.11), (5.12), (2.14), and (2.16), it can be deduced

that (5.10) will yield the contradiction 1 :0 as ri -+ oo. This contradiction
implies that our original assumption that p(/) ( oo must be false. This proves
Theorem 2.
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6. Proof of Theorem 3

Suppose that / is a solution of (1.1) with p(/) < oo. Then from Lemma
I"(ii), there exist a constant c > 0 and a set E C [0,m) of finite linear measure,
such that

(6.1) 1/«*)(z)l < l,l"I f(r) l-t't

for all z satisfying lrl / E and for all & : L,2,...,n. Let a and B be any fixed
positive constants that satisfy

(6.2) m"* {e(,4r), p(Az),..., Q(An-r), p(a)} < P < a < o(Ao).

Flom Lemma 4 there exists a set ,S C [0, oo) that has upper density at least
7-zp(As) )0 suchthat

(6.3) lAo(,)l ) exp {1,1"}

for all z satisfying lzl e S. From (6.2) we obtain that there exists a constant
B > 0 such that the following conditions hold for lzl > .R:

(6.4) le*e)l ( exp {l4P}

(6.5) ln@l ( exp {l,lq}.
Since .E has finite linear measure and ,S has positive upper density, there

exists an infinite sequence rj -+ oo such that

(6.6) rie{r:r>R}O,9 and rj/E

for all j.
From (1.1) we have

' r(') 1 - Jr(n-t) A,-r(r) r... r f' Ar(r) - rl - 
H(r)(6'7) tllÄoe)' f Ao(,) I f Ao(,)+11 

:Ta
Then from (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), and (6.7), we deduce that for all
z satisfying lrl: ri we have

(6.8) f (r) - 0 as ri --) oo.

Relation (6.8) and the maximum modulus principle imply that / : 0. But "f = 0
contradicts that / satisfies (1.1). This contradiction proves Theorem 3.
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7. An example

In contrast to Theorem 3, we will now show that there exist entire functions
Ao, Ar, H, ar,d / with *""{o(/o),p(/r)} < p(H) < t/2 and p(/) ( m such
that f" * h(z)f' + As(z)f : H(z).

Let An(z) be any entire function such that 0 < p(,40) < 712 and where the
lower order of :4.6 equals s(Ao). Then let ,4.1 and / be any transcendental entire
functions that satisfy

(7.1) p(Ar) < p(Ao) < p(/) < 712.

Let H(z) be defined by the equation

(7.2) f" + Ar1r1f' + no1r17 : H(z).

From (7.2) and (7.1), H(z) is entire and

(7.3) p(u) s p(f).

Now let o and B be any fixed constants that satisfy

(7.4) p(Ar)<P < p(Ao) < d< p(f)<112.
From Lemma 4 there exists a set ,S c [0, oo) with positive upper density such that
(z.b) lf{,11, "r,r
for all z satisfying lzl e S. Since the lower order of A6 equals p(,46), we deduce
from Lemma 5 and (7.a) that there exists a curve I that goes from a finite point
to m such that

(7.6) lAo(")l s 
"t'tP

for all z €1.
we also know from Lemma 1(ii) that there exist a constant c > 0 and a set

E C [0, m) of finite linear measure, such that

l#l s vt and l#l s vt'
for all z satisfying l"l / E.

Now there exist arbitrarily large points zs that satisfy

(7.8) l"ole S - e and zo c-t.
For such points zo,,we deduce from (7.2), (7.4), (T.b), (7.6), (7.2), and (7.8)

that as zo + 6:

lnQil:|f("o)Aoarl|#%-m*,l,exp{(1+o(r))|,ol.}.
Thus p(II) 2 o. Since s can be arbitrarily close t" p(/) in (7.4), p(ff) > p(/).
Then from (7.3), p(r/) : aff). Hence from (7.1), *u* {e(,40), p(/r)} < p(r/) <
7f2, and the assertion is now proved.

(7.7)
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