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Abstract. Suppose gi,01j <n- 1, and ä areentirefunctionsandthatforsome /c,

0<&<n-l,theorderofgp doesnotexceed I anddoesexceedtheorderofä andtheorder
of all other cj . It is shown that then every solution of the differential equation

f@ +T,c,to) = 7,

j=o

is either a polynomial or an entire function of infinite order. This generalizes a previous result of
the authors for second order equations.

1. Introduction

Let p(g) denote the order of an entire function g. In [10], the authors proved
the following

Theorem A. Suppose h and 92 are entire functions with p(g2) < o!r) I | .

Then arry nonconstant (necessarily entire) solution f of

f" +grf'*gzf:o
must have infinite order.

It is elementary that the conclusion of Theorem A holds if p(sr) < p(gz) for
ary ektz). Easy examples [10] show that the conclusion may fail if p(gr) : a(g2)
for a^ny value of p(gz). Elementary examples also show that the conclusion of
Theorem A may fail if p(g2) < p(gr) : 1. The possibility of nonconstant solutions
of finite order remains open if p(gz) < p(s1) € (å,1).

The purpose of this paper is to generalize Theorem A to nth order equations
and to remove the restriction that the equation be homogeneous. We prove the
following
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Theorem 1. Consider the differential equation

(1.1)

where g j, 0 S j
sucå that

(1.2)

Iogdens E - lim

n-L
y@)+»nyu)-h,

' j:o

i*k

Every solution of (1.1) is either a polynomial or art entire function of infinite order.

It is trivial that every polynomial of degree less than & is a solution of (1.1)
for an appropriate choice of ä.

The conclusion of rheorem L also holds if p* < t Qk) ( |, where p(gr) it
the lower order of 91. (See [10, Section V].) For ease of exposition we confine
ourselves to the situation considered in the theorem.

Theorem 1 should be compared to recent results of Langley [11, Theorem 2
and Theorem 3] on the exponent of convergence of the zero sets of solutions of
homogeneous equations of the form (1.1) in the case that p(gu) < i.

Let m(D) denote the Lebesgue measure of a set .E of real numbers, and for
E cll,m),Iet

denote the logarithmic measure density of E is

s*.

mr(E)_ t dt

J, t

of E. Thelogarithmic

*r(E n [1, r])
logr )

provided this limit exists. Typically we shall denote a set of finite logarithmic
measure by .E and we reserve the notation .E(o), 0 ( a ( 1, for a set specified
to have logarithmic density o. We do not require that E and .E(o) stand for the
same set with each occurrerce.

We now give an overview of the proof of Theorem 1. We do so not only
to provide an outline of the rather intricate proof, but also to point out that
a much simplified proof is available in important special cases (for example if
s.<o@k)<+).

We suppose that (1.1) has a transcendental solution / of finite order and
obtain a contradiction by showing that there are complex numbers z (in fact of
arbitrarily large modulus) at which the j : & term of the left side of (1.1) has
modulus exceeding the sum of the moduli of all other terms in the equation.
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The proof divides naturally into two cases depending on the behavior of the
minimum modulus of. gp(rei9), 0 I 0 3 %r . For a^n entire g, let

9(r, g)- ,rlir lg@;
lzl:r

Crucial to our arguments are the facts contained in
a special case of a theorem of Drasin and Shea [3,
detail in [10, Sectiot 2].

p(g), there exists rna -» oo such that

the followit g lemma, based on
Theorem 8.1] and discussed in

t
2

( 1.3)

ot, for every p I

( 1.4)

there exists a set
I{, is an interval

( 1.5) *(K,) - 0, r€E(1), r+oo.

The easier of our two cases (Case I, discussed in Section 3) occurs if (1.3)
holds for g : gk. In this case we divide (1.1) by ;(r) (not identically zero since /
is transcendental) and consider the resulting equation

p(g) , if

K,(p) - K, : {e € 10,2r): log p(r"nt)l

^E(1) C [1, *) "f logarithmic density 1

(modulo 2n ) satisfying
sucå that for r € E(l) ,

( 1.6) #.8n,#: h
at a point Zm : rmeie- of maximum modulus of /(t) on lzl : rm for a sequence
rn ) m satisfying (t.3) for some p e (o*,p(g*)).

We note the j : & term of (1.6) is simply gp l a lower bound for the modulus
of this term at z* (and in fact on all of.lzl: r-)is given by (1.3). The modulus
of the terms of (1.6) corresponding to 0 < j < k as well as the terrrr- hf fG) can
be bounded above at z* by (1.2), the fundamental theorem of calculus, and the
maximum modulus theorem. The terms of (1.6) corresponding to k + t < j < n
as well as the term f@'11,f(e) "un 

be bounded above everywhere on lzl : r* by
elementary estimates on the logarithmic derivative (Lemma B, Section 2) provided
that r- avoids the small exceptional set .Eo of Lemma B. The combination of
these bounds at, z* yields the desired contradiction.

Results of Barry ([1, p. 294] and [2, Theorem 4]) give conditions sufficient
to guarantee that ge satisfies (1.3) for a sequence rm 1 m disjoint from the
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exceptional set .Eo of Lemma B. These conditions include p(Sk) < | and p(gk) <
O@k) < |. ttus if g;, satisfies either of these conditions, a very short proof of
Theorem 1 is available based on Barry's results, the elementary Lemma B, and
the brief argument at the beginning of Section 3 ending with (3.8). Full details in
Case I (including the fact that if (1.3) holds for some rm 1oo, then (1.3) holds
for a sequence sm --+ oo where s* is not in the exceptional set Eo of Lemma B)
appear in Section 3.

Our argument is much more complicated if S - g& satisfies (1.5). The com-
plication in Case II results from the fact that no lower bound for the j : le term
of (1.1) is available at points of the form reie, for p, e Kr. Our approach is to
select p e (o*, p(gx)) and to show for a set of r-values of logarithmic density 1

contained in the set E(1) of Lemma A and disjoint from the sets .Eo obtained
by applying Lemma B to /, f' ,. . ., 7@-t) that there exists ,lr, e (0,2") - K,(p)
such that if z, : ,"i'1" , thet

( 1.7)

( 1.8)
n-L

+»
J:0

l/tore)l ,lffil 1

h

f

In Case II we divide (1.1) by f to obtain

and find from (1.2), (1.7), and Lemma B that the j : & term of (1.8), evaluated
at zr, dominates all other terms in the equation, giving the desired contradiction.
Note the significance ,f .lr, ( K, is that (1.4) provides a lower bound t", lO*Q,)|.

Our proof of the existence of z, satisfying (1.7) is rather complicated. We in
fact produce, for r in a set of logarithmic density 1, a sequence of nonempty sets
P(r, j),11j ( n, satisfying

(0,2r) - R, ) P(r, 1) ) P(r,Z) f

f 
(n)

f

;/(i-1)(reio) 1_ 1
l Tti-2)(reio)l ' r'

f 
(i)

sj f

0 € P(r, j),

f P(r,n),

2S j 1r,

( 1.9)

( 1.10)

and

( 1.11) It?"n') I ,1, 0 € P(r, 1).

It is elementary from (1.9), (1.10), and (1.11) that (1.7) holds at any point z, :
rei*, for tb, € P(r,e + 1).
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We establish the existence of the sets P(r,i) by appealing to a theorem of
Radon comparing the total variation, as a point traverses a smooth closed curve,

of the argument of the tangent vector to the curve and the total variation of the
argument of the point traversing the curve. This comparison is used in conjunction
with famitiar expressions for these quantities for the curve 1$) Qeie), 0 ( 0 I 2r ,

in terms of the logarithmic derivatives of /u) and 1u+t) ' A second ingredient in
the argument producing the sets P(r,,i) is an upper bound given in Lemma 4 for

*[.1".ffi1*
for entire functions / of finite order. Lemma 4 is an improvement of bounds
obtained in [10, Section 4] and may be of independent interest.

The proof of Case II appears in Section 4. It depends on a sizable collection
of known or elementary results, all collected in Section 2.

2. Preliminaries

We shall find it convenient to use the Ahlfors-shimizu characteristic ?6(r, /)
of a meromorphic function, defined by

"o(r,/) 
_ 

lo'orril or,

where A(t, f) is the area on the Riemann sphere D of the image of lzl < t under

/, with due regard to multiplicity. Since

(2.1) lzttr,f) -r(',/)l - o(1),

the Nevanlinna and Ahlfors-Shimizu characteristics are interchangeable for many
purposes. It is elementary that A(t, f) is a bounded function of t if and only if /
is rational. If we denote the length on E of the curve {f (r"ie): 0 ( 0 < 2r\ by
L(r, f), it follows [6, p. 144] from the Schwarz inequality for any e > 0 that we

have

(2.2) L(r, f) I A(r, f)'l'+", r ( E,

for some set .E with m{E) < m.
Crucial to our argument in both Case I and Case II is the following upper

bound for l.f' Q)lf @l for entire / of finite order [10, Lemma 4].

Lemma B. Suppose f

(2.3) *(8,
sucå that if lrl - r # Eo,

(2.4)

is a nonconstant entire function of finite order. If
C [1, *) satisfying

n

then

l#l -"",
In particular Eo has finite Lebesgue rneasure and hence finite logarithmic measure.
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There are many upper estimates for lf ' (z) / f(z) | outside of small exceptional
sets, certainly including those with much smaller upper bounds than (2.4). (See
for example [5], [13], and [14].) We choose the formulation in Lemma B because
the very strong information on the intersection of Eo with intervals of logarithmic
length 2 contained in (2.3) is convenient for our purposes. (See Lemma 6.)

Only Lemma B from this section is needed for the proof of Case I. 'We now
collect several known results which are needed in our proof of Case IL We begin
with the following lemma. which follows immediately upon combining Theorem 4
of [9] and Theorem 3 of [8].

Lemma C. Suppose K > 7, e ) 0, and g/t) ate nondecreasing, nonnegative
functions defined on [1, m) witå

l,' 
,y o, s l,' 

,* o,+ o(1)

for aJI r > L. Thenthere exists aset E(1,1K) with logdens E(1,11{):llK such
that

?{t) 1(e + e)Ke2(t)
forilttdE(LlK).

Our first application of Lemma C is

Lemma 2. Suppose f is a transcendental entire function of frnite order,
e ) 0, and j is a positive integer. If

h/z) : " f(i) Q)l fo-t) Q),

then there exists a set E1(0) C [1, oo) of logarithmic density 0 such that

L(r,h) 1A(r,f)'/'*", r ( E1Q).

Proof. By the lemma on the logarithmic derivative, for r ) r0 we have

T(r,h1) : m(r,h) + N(r,äi) < log r * em(r,,f) + lr(r, 0, 1(i-t);
< (1 + e)m(r, f) + r7,ltj-tl; < e + ze)T(r, f).

From Lemma C and (2.1) we conclude for any K > 1 that

for some set B/|lK) with logdensBj(llK):71K. Since.4(r,/) --+ m, we
conclude from (2.2) that

L(r,h) 1A(r,hr10+e)12 1AQ,f)'/'*", r ( Ei(+),

for a set EiOIK) with log dens Ei(l/K) : llK . Since K ) 1 is arbitrary, the
lemma is proved.
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use we note that one consequence of Lemma C and (2.1) is that
entire f and e >0 theinequality

holds for r ( E(llK) where log dens E(11 K) : LIK .

Our analysis in Case II depends heavily on a comparison between the total
variation of the argument of the tangent vector to a smooth closed curve and
the total variation of the argument of a point traversing the curve. We need

the following lemma, apparently first discovered Ly Radon [12]. (See also [7,
Lemma 4].)

Lemma D. Suppose l(0), a < 0 < b, is a closed analytic curve with IQ) +
Po andl'(0)+0. At Pe I,let 9 and$ bethea,rtglesrespectivelywhich PoP
and the tangent vector to I at P make with the positive rcaJ axis. Then

ldel ld,rbl.

We remark that an examination of the proof shows that the assumption of
analyticity may be relaxed to the condition fhat pt(0) : 0 for only a finite number
of distinct points 0.

Suppose / isentire. Forany r>0 with f'(rei0)f(re")*O for 0( 012r,
let g,@) be a continuous argument of f(r"") and let r!,@) be,a continuous
argument of the tangent vector to the 

"rr'rr" {/(r"") , 0 < 0 < 2zr'}. Recall that

For future
for nonconstant

(2.5)

(2.6)

and

(2.7)

t,

Consider l",dl clO,2n). We join the endpointr of {/(""'a) : c ( d < d} with
a straight line segment (appropriately smoothed near the endpoints in accordance
with the remark following Lemma D) to obtain a closed curve and observe that
in so doing we increase the total variation of the argument of the tangent vector
by at most 2r (in fact by at most zr at each endpoint). Applying Lemma D, we
obtain

l,'ln"Wlaesl"'
s l"'

R"(1 +W)pt*2n

".ffilot *2n+ ( d-,)-

Inequality (2.7) plays a crucial role in the proof in Case II.
We require the followit g
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Lemma E. -Fbr a nonconstartt entire function f and for m : \r2, let

§^(r) : * lr'" 
n(r,meie , f) ds

be the mean covering number of the circle lzl: m under the map f restricted to
lrl<r.There exisfs aset E with m2(E) < m suchthat

,:- PryOL -.'lllll 
-å* o('"f) '

for m:1r2.
The proof for m : 1 appears in [10, Lemma 1], and the m : 2 case is

identical. Lemma E also follows from Ahlfors's covering surface theory ([6, Theo-
rem 5.21).

We note that if

(2.8) B(r,m): {0 e (0,2tr):toglf(reie)l , -},
then from (2.6) and the argument principle it follows that

(2.s) o*u): * I,n,*,o"(\fff)ot.
Our final objective in Section 2 is to prove Lemma 4, referred to briefly at the

end of Section 1. we begin by establishing the following routine lemma.

Lemma 3. Suppose n(r) is a nondecreasing function of frnite order. Suppose
6(r) -+ 0 a"s r --+ oo. Then there exisfs E(0) c [1,*) havinglogarithmic density
0 such that

n(re6(')1 -n(re-6(')) :r("(r)) , r eEQ).
Proof. Let 6 ) 0 and e ) 0. Let

86," : {" > 1 : n(re6) - n(re-6) > en(r)}.

Let rr. : sn6, D:0, 1r2r..., and let .I, :lrn,,rn+r). Let fi,, be the number of
n (.1[ such that Inf)85," I /. Since

n(re') - n(r"-o)>en(r)

log n(re') - log n(re-6) > tog(1 + e ),

implies
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rJrut.
L?l arft *e) < logn(r7v) < (s+ 1)logrry : (s+ 1)N6,

where p is the order of n(r) . Thus E.6," is contained in a set of logarithmic density
at most

,: __ _--_ Jx6 - 3(p + 1)d

",fj:P N6 : LTAGTA

We may choose e : efi - L to conclude that

n(re6)-n(re-6)3J6nQ)

off a set of logarithmic density at most 3(p + t).,6. Since 6 > 0 is arbitrary, the
lemma is established.

Our proof of Lemma 4 requires the following slight strengthening of Lemma 5

of [10]. The strengthening involves obtaining information on a set of large logarith-
mic density (at least for K large) rather than just on a set of positive logarithmic
density. This improvement can easily be achieved by appealing to Theorem 3 of

[8] in the very short proof of Lemma 5 in [10].

Lemma F.Let f be anentirefunctionof frnite order Ä'. Let e > 0, K > 2,
and Ä > Å'. ?åen fåere exists E(1-2lK) C [1, oo) of logaÅthmic density L-zlK
withtheproperty that for r € E(l-zlK) there exists h: h, ) 0 sucå that if
R':rehrthen

(2.10)

and

(2.11)

We are now ready to state

Lemma 4. Let f be entire of finite order and let K, C 10,2r) be a,rry

measurable set with *(K,) ---+ 0 as r --+ oo . Then therc exists E(1) C [1, *)
with logarithmic density I such that

(2.12) I*.lo.ffilot: o(t1r,.j1), r € E(1).

Obvious modifications of our proof of Lemma 4 show that the conclusion
holds for all meromorphic functions of finite order. Since our application is to
entire functions, we restrict ourselves to that case for ease of exposition.
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Lemma 4 should be
tions obtained by Fuchs

(2.13) l,lffilo'
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compared to an estimate 14, (17)] for meromorphic func-
for the quantity

in terms of the measure of the set "I and certain functionals related to /. While
the integral (2.13) is larger than the quantity being estimated in (2.12), the bound
for (2.13) obtained in [4] appears to be too large for our purposes.

Since by Lemma E and (2.9) we have for entire / that

we notice in passing thai if K" : [0, 2") - K", Lemma 4 implies for entire f of
ffnite order that

*1,(.,1)o'ffiot

z anz

z-an R2-anz

Proof of Lemma 4. We upply the differentiated Poisson-Jensen formula [6,
p.221to /. For 6(r) > 0 and R> r to be specified presently, we have with the
zeros of / denoted by on for lzl: r that

(2.r4)

+

+

1"" I 1re- 6(')

re-6(")Slor!1re6(r)

z anz

z-an R2-anz

+ » _ft*hre6(,)Slo,l(E

= ft(r) + fr(z) + /r( z) + fn(r).

Wecollectthefo1lowi''gobservations.Certain1yforl"|<

n_ ( reio areie \ d R(reio-a)*" (, 
t"eie - a T ffi ) - d0 

u'8 ffi
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and hence

(2.15)

If l"l I re-6(')

(2.16)

/ ,"io areio \R"(reio4Tffi)1 fzn
2" J,

d0 s 1.

We now specify our choices of 6(r) and -R ) r in (2.14). We first choose

e>0 and K>3' Wenextchoose 6(r)---,0 as r--+m satisfying

I ,eio areio I e6(r) + 1
| 

- 

) 

-l 

'

lr"io-a' Rz-areielj e6(') -1'

(2.r7)

we apply Lemma F with our given choices of e and K, and, for r in the set

E(t - 2lK) of Lemma F, we choose p : ,@ : ,ehl2 .

We now estimate (tl2tr).[r, lR" fi?"")ld| for r € E(7-2lI() and j :
7,2,3,4. We have from (2.11) that

(2.18)

(+r(R, f) + o(1)) ehtz*(K,)

\' 
hz

@n tz - 7),

- o(at ,, f)), r € E(l - 2lK).

see that there exists a set E{l I K) ofFrom (2.5), (2.16), and (2.L7),, we

logarithmic density 1l K such that

! t ln 121,"i0110t 
= ffi!m(K,)n(re-or'),0,.f)(2'19) 2T J x'' 
: o(n(r,0, /)) : o(.n1r, y1), r ( E1(rlK).

Letting E(0) be the exceptional set of Lemma 3 for n(r) : n(r,O, /), we see from
(2.15) that

(2.20) * I.,l 
R" 131'"i'; I 

ae < n(re6(')' 0' 'f ) - n(re-6(')' 0' 'f) : o(n(r' 0' /))

- o(ttr, f)), r e EQ) u t' (tlK).
), we have from (2.10), (2.16), and (2.L7) that

ln" fn(reio)lde sn(R,o,/) #*(K;
(2.2L)

Combining (2.18), (2.19), (2.20), and (2.21), we obtain (2.L2) for r € E(l-2lK)-
(.E(O) UEr(LlK)), aset of logarithmic density at least 1-31K. Since If > 3 is
arbitrary, Lemma 4 is proved.

For r e E(I-2lK

*1..
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3. Case I
We consider the case where (1.3) holds with g - gp for every g < g(ge). For

simplicity of notation we denote p(g*) bv p1 throughout this section. We suppose
(1.1) has a transcendental solution / of finite order and seek a contradiction. We
choose e ) 0 with 77e < Qx- Q*. Setting a:7€, we apply LemmaB to each of
the functions /(r) , ;(tc+t; , . . ., f(n-t) to conclude there exists a set E satisfying

(3.1) m(nn[rle,erl)<"-'"'1 r>Ao,

and if lrl: r 4 E,

(8.2) l+341 <",'"', tc+1<jln,r).R0.
t f\k)(z)t - -

We show below (Lemma 6) that there exists sm J oo, s,?x $ E for which

(3.3)

(3.5)

log 9(tm, gx) ) s få-" , sm 4 E.

We recall that Barry ([1], [2]) has given conditions sufficient to guarantee (3.8).
Temporarily granting (3.3), we can complete the proof quite quickly.

For convenience we write gr(z): 1 and rearrange (1.1) to obtain

(3.4) e*- /\a^.f{il-s^./t" 12\: -(,ä, "fu*D,;'fr- N)
of course if & : 0 we omit the second sum on the right. Since s- ( E, for all
l"l: "* we have by (3.2) that

Let z* :7*si9^ be such that

M ("*,;(*)) : lf(k) ("*";r^11

where M(r,,f) denotes the maximum "f l/(r)l on lzl : r. We note from the
fundamental theorem of calculus and the maximum modulus theorem for 0 ( j <
&-1that

lWls (r+o(r))s[-;'
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Hence

(3.6)

Since

(a.7) l#*l < "*p1"S+"), m) mn,

we conclude from (3.4), (3.5), (3.6), and (3.7) that

(3.8) b*Q*11( exp ("fi-"), rn > Tnot

contradicting (3.3). Thus the proof in Case I will be finished once we prove
Lemma 6.

It should be mentioned that a detailed analysis of the proof of Theorem 8.1
of [3] shows that if for any p < pk) < ] condition (1.5) does not hold, then there
is a set B of infinite measure such that

log -? (r, g) ) ra

m)mg.

s+.R
r+R

(3.9)

for all r e B. Applying this fact with 9 - 9p and observing that the set E where
(3.2) may fail has finite measure, we conclude that in fact (3.9) holds with g : gk
and each p < e!k) for an unbounded set of r-values disjoint from E. With this
observation, the above argument (ending with (3.8)) may be applied to prove the
theorem in Case I.

Because of the intricate nature of the proof of rheorem 8.L of [3], we prefer
to give a self-contained argument (Lemma 6) that (3.9) holds with 9 :91, for an
unbounded set disjoint from .8. We begin with some elementary facts concerning
Möbius transformations.

Lemma 5. Suppose 0 < r < s. Let

r@)_ s-a
T-A

Set

(i)

and

(ii )

e7 : Reie . We have

If R < tfr, then min
O<012r

if n > \fr, then min
o10S2r lr(ae") I - ls-.Btl_l

l, - ^Bl'
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Prcof. Since 7 maps lol : E onto a line or circle intersecting the real axis
perpendicularly, it is clear that min6<4r"lT(A"id)l occurs either at 0:0 or
0 : r. Note that

"(-E): ffi , r,

r(R):1=-r-R'

"(.8) 
+ r(-R):r3=#,

and

r(-R)-r(R):2R#.
We first prove (i). If r < R< t/u, then 7(E) ( 0 and 7(A) +7(-E) <

0. Thus ?(-R) < l"(A)1, establishins (i). If .R < r, then 
"(E) 

> 0 and

"(-E) -f@) < 0, again implying T(-R) < f@). If .R : r, certainly 
"(-n) 

<
7(R) : oo.

We next prove (ii). lf t/u < .B < s, then 7(n) < 0 and 
"(J?) 

+ 
"(-.8) 

> 0.
Thus lr(R)l < r(-n), yielding (ii). If .B > s, then 

"(E) 
> 0 and T(-R)-

"(E) 
> 0, again implying 

"(E) 
< T(-R) and establishing (ii). If r?: s, (ii) is

trivial.
We now state

Lemma 6. Suppose S :ll,(L - zla") is entire of order ,\ < 1 and 0 < e <
mir(\12, 1 - )) . Suppose there exists an unbounded set of r -values such that

(3.10) logg(r, s) > ,^-' .

Suppose also that E C ll,oo) satisfies

(3.11)

Then there are arbitrartly large s ( E such that

(3.12) log 9 (t, g) ) s 
\-2e 

.

As previously indicated, Lemma 6 may be applied with g :7kt ): p(gt),
and E as in (3.1) to produce s* ( E t sm ) m satisfying (3.3).

Proof of Lemma 6. Suppose r satisfies (3.10) and that n(t,O,g) < t^+",
t ) r. Define r; by

rj:r(r{2rexp(-"u")), o< j <e,
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where Q : lru" llog 2] . Let Ai denote the annulus

Ai: {z:ri-r <-lrlsri}, L < j SQ.

Note that

a

j:L

Let n j be the number of zeros of g in Ai . We have

a

D"t <(2r)^+" <r\*", r)Eo.
,=1

Consequently there are at most r4" values of j for which nj > ,\-'". Since

Q > ,u", we conclude there exist [r'] consecutive values of j for which ni < r^-2' .

From this point on we let j denote the first member of such an interval of integers.
Thus

(3.13) nj+p<-r\-2e, 0(p([r'] -1.

Let

(3.14) o, :"r (1 * n; * nj+r + nj+2 * ri+s)'

Let D, be the disk of radius @j centered at the zero olv of g in Ai U Aial l)
Ai+z U Ai*, . Note the sum of the diameters of all the D,'s is

From (3.11) and the fact that

ri+z -r3*1 : 4(,i -ri-r) > 2exP ( - tu'),

we conclude there exists 
" e E such that the circle lrl: " lies in A;.u2 and does

not intersect any D,. We note explicitly that

(3.15) llo,l - "l > oi

for all a, in Ai U Aial U Ai*, U 1j*, .
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and

cJ.

It is sufficient to show

We estimate

Thus from

(3.17)

Hellerstein, J.

Ios lg(r)l ) sÄ

, änd J.

We writ

z\
*),

Miles

,-2e.

(t
\

Rossi

e g-GtGzGsG+ where

l*, l<'fr

Gr(r): II
,F<lo, l(r;1s

Gr(r)- II

rj +s ( lo, l(

Gn(r)-

(r-;),

(r- *),
rQ

(r *)re Slo, I

Jo(t)l . Certainly for any du t

-r"slr;l-rosliffil
Applyirrg Lemma

(3.16) log

lo, lS'fr
Now suppose Gz(or) - 0. Thus

lo,,l > t G; > rfi-r r p 1 : 
" 

( t + 2r+ 1 

"*p( -, 
s' 

11r 
/ z > r j - l

and hence a, e Ai U Aj*, U Ai*, U A11s . Since

lo,l - r 1 riqt - r :2j+3""xp(-ru") : 16(ri - ri-r),

we conclude from (3.14), (3.15), and Lemma 5(ii) that

roslr-;l-r.slr *l )rogl#l 
=ros

loE

;l
de

,gl

U

rd

)g

-l(

Q.u

cluc

- loe

los lg(r) I

ros 
lr

5 we con(

lc,(r)l r + la"l

have

x log

ai
16(ri - ri-, )

1

16(1 + nj + nj+r * nj+z* r;+r)'

* nj+3)x
1

- Iog

(3.13) we

los lcr(')l

16(1 + ni + nj+t * ni+z * ri+r)
-2e log (tza + (Å - 2u) log r) .



On the growth of so/utions of linear differential equations

Now suppose Gs(o") - 0. Noting

lorl -r rr+s -r
we apply Lemma 5(ii) to conclude

359

,)
z

(3.18)
tos lr -' l - tos lr -' l ) log l""l -'I Avt t d,ut ldrl -r

Thus

rog lc3(s)l- rog lca(r)l . -fI,.;., ffi )
a-j

>-zlno+iJfl
n-=a 

'rP*.i-t - r

_ _rts' ^ . . 2i+2rexp(-r5")

(3.19) ' u'"0*' zi+P-rr exP(-rs')

a-i
: -2DnP+j2,-P

P=4

["]-r Q-i
: -2 D nP+iz,-P -z \ n.+jzs-P

p=4 p=[".]

, _2r\-2c _g2r\*2cz-[rc] , _3r]-2c, r ).R6,

where in the last step we have used (3.13) a"nd the fact that np*j l rl*2" for all
p<Q-j.

To analyze the contribution from G4, we first define annuli

B, : {z :2q-rre < lrl < 2,re}

for g : 1r2,,3r. . .. If rno denotes the number of zeros of Ga in Bo, then certainly

(3.20) mo < (Zqre;Å+e a (2c+tr;r+'.

Since by our choice of j we have 7 * [r"] - L < Q, we conclude

rj+1'.1-r : t(t + 2i*lr'l-t exp(-r5")) < 2r,
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and hence

(3.21) 2i.*p(-ru") < 2t-[""1.

lf. Ga(a,): 0, we have as in (3.18) that

toglr -' l -toglt- al, -2-!-'_."l drl "l arl lorl-,
Suppose a, € Br. From (3.21) we have

(8.22) r"s 
lr - *l -., l, - ;1, -r''*";f-r?"") > -26-c-1,\.

From (3.20), (3.22), and the fact that l + e < 1 , we conclude

tog lca(s)l - los lGa(r)l > - I rno26-c-["1

(3.23) q:t 
rc

) _12gr)+,2-1,.) ! Zc(r+"-r) : o(1).
q:I

Combining (3.10), (3.16), (3.17), (3.19), and (3.23), we have

log le(s)l > log le(r)l - 4r\-2e log (tzs + () - 2e)log r) -Br^-2" - O(1)

>rl-", s)s6.

Thus s satisfies (3.12) and the lemma is proved.

4. Case II
We suppose (1.1) has a transcendental solution / of finite order, e > 0 sat-

isfies 5e < p(Sk) - p', and that the set

K,(pk) - e) : Kr : {0 € [0,2?r) : log le7,(reia)l < re(c,l-"1

is an interval (modulo 2zr)satisfying rn(I{,") ---+ 0 as r ---+ oo, r e E(1) for some
set .E(1) of logarithmic density 1. We seek a contradiction. By applying Lemma B
with a : € to each of the functions /(-), 0 I m 1 n -1, we may also presume
ihat

(4.1) l#&l . """', 1 <j ln,
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for lzl :reE(1).
Recalling definition (2.8), we let

Y(r,m): B(r,r") -K,.
Appealing to (2.9), Lemma E, and Lemma 4, we may also presume E(1) to be
such that for m:1,2 we have

* l,u,*,1".ffi)* o, . * l,u,*,*+#P d0 - o(A(r, r))

(4.2) a * l, n(r,meie, f) de - o(,e,Q, fl)
> (r- o(t))A(r,f), reE(t).

We write q,

B(r,7) -R,: U fr,
j:t

where the 1; are disjoint open intervals. Let

D(r): i1 f < jIo, and.IifiB(r,2)*ö),

and let
P(r,1) : U Ii.

ieD(r)

We note that P(r,1) satisfies (1.9) and (1.11). Since

P(r, i) ) B(r,2) -R,:Y(r,2),
we conclude from (a.2) that

(4.8) *- |,u,r1""flff)* ot, * L,.,r(n"\ff). ae

> (t -o(t))a(r,1), r e E(t).

Either ar : L or else, for each j e D(r), Ii has an endpoint in 68(r,1)
and hence the total length on E of the curve {f(r"ie) : 0 e Ii} is at least the
spherical distance from 1 to 2, namely tlt/t}. By (2.2), the number of elements
of D(r) is at most ,/tO.l.1r,f)tl2+€ for r € E(1), r ) Rs. We denote those I;
with j e D(r) by Ui, I < j 4 o',,where

(4.4) o',<r,FloA(r,f)'/'+", r€E(1),r)Be.
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For rn :1r2 we now define

(4.5) C(r,m): {r. (o,2tr),lffil , -},
and write 

§,
C(r,L)fiP(r,l): Uäj,

j=t

where lhe Hi are disjoint open intervals. Let

QU) : {j' t < j < B,and }I; nC(r,z) + 0}.

For j € Q(r), either Il; is some [/r, 1 S p 1o'., or, since one endpoint of äi lies

in 6C(r,1), the curve {red'f'(reie)/f(reie) :0 e Hi} has length on E at least

Lltfr. We denote those äi with j e QU) by Vi,11i < P',, andfrom (4.4)
and Lemma 2 (applied ro zft(z)l f(z) ) note that

(4.6) g',So',+t/-to.l.1r,|1rlz+e <zt/-tol.(r,f)tl'*', r e E(1,), r ) Rs.

We write

(4.7)

p',

P(r,Z)- U V1

j:L

and let C(r,2): (0,2tr) - C(r,2). Clearly we have

P(r,1) - Öo,2) c P(r,2) c P(r,1) n C(r,1).

Certainly P(r,2) satisfies (1.9) and (1.10). Since

*Iun,l\##l*<2,
we deduce from (4.3) that

(4.8) * I,n,r1""ffip)* ot.(r - o(r))a 0,f), r e E(1).

For L < j < 0,,wejointheendpoints of {f(r"i9):0 e Vi} withaline
segment (smoothed at the endpoints), apply (2.7), and sum from J : 1 to j : 0'"
to obtain

(4.9)l,n,,,|".ffilo,=|"u,,,1".flffi|ae+zo+%rB,,.
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From (4.6), (a.8), and (4.9) we deduce

(4.10)*I,u,,|""W|ae>1r_o(r))A(r,/),r€E(1).

ln"Wlot.(r-o(1))A( r,f), r€ E(L),

We note for emphasis that our analysis requires control (B', : o(A(r,/))) of the

number of disjoint open intervals comprisin E P(r,2) in order to deduce (+.tO) from
(a.9). We also note that the fact that / is transcendental (and hence A(r, f) - * )
is used in obtaining (a.10).

Crucial to our argument is that P(r,2) satisfies (1.10), (4-6), (4.7), and (a.10).

We now repeat the above reasoning to produce P(r,3) C P(r,2) satisfying appro-

priate analogues of these inequalities. We begin at stage (a.5) by defining

c*(r,m): {r. (0,»r),1+#l , -}
for m : !,2. We proceed from (4.5) as before, now replacitg ,f by "f', P(r,1)
by P(r,2), o',by g',,(4.4) by (a.6), and (4.3) by (a.10). Ourargument requires

an application of Lemma 2 to the function zf"(z)lf'Q), and at an appropriate
stage we join the endpoints of intervals of the form {/'(reie) : 0 e Vrr} with
Iine segments. We ultimately obtain a set P(r,3) c P(r,2) n C*(r,l) satisfying
analogues of (1.10), (4.6), (4.7), and (a.10). Explicitly, P(r,3) is expressible as a

disjoint union of at most St/tO,+(r,11r/z+c open intervals and satisfies

363

I reio |rt (r"n') I . {lffil '1' o€P(r'3)'

disjoint union of at most jtfrl(r, f1t/z+e open intervals,

C P(r,n- 1) C . .' C P(r,Z) C P(r, t) C B(r,l) - R,,

reio f 
(i) 

?"nt ) 1S j (n,

and

Continuing the
n ) expressible as a
satisfyit g

(4.11) P(r,, n)

1f I
2n J ,G,r)

1f I
2r J ri,i) ln" f(i-1) (r",r)

and

(4.72)
reio f(i-l) ?"rr)

f u-2) (r"nr)
I

l, 1, 0 e P(r,j), 2 Si <-r1,.
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Note that the sets P(r, j)
We rearrange (1.1) to

(4.13)

For 0* €

(4.14)

Hellerstein, J. Miles, and J. Rossi

satisfy (1.9), (1.10), and (1.11).
obtain

f(") - .- ^.f(i)y@ f *ksi f
r no(fu_1)

P(r,k + 1) it follows frorn (4.11) and (4.L2) that

l/(rr?""-)l:ålE,"i*ffil , i, r€ E(t)tp
Since 03 e B(r,1), we also have

lyt)1r"ier)l tr-*, r € E(1).

Since 91 ( Kr, for z : ,etiqr we conclude by our choice of e ) 0 that for large
r e .E(1)

l,-,4(ffi-1)(4.15)

For lrl: r, w€ have from (4.1) for large r € E(1) that

(4.16) lW*D,*nsi(4ffil .exp (,n.*"+ ,n,).

The
P(r, k +

which is

combination of (4.13), (4.1,4), (4.15), and (4.16) with z : rei0h , 0x e
1), implies for all large r e E(1) that

,-k < 2 exp(ro'*" +14'-rek*)-e1,

the desired contradiction.



On the growth of so/utions of linear differential 
"quations

365

References

tl] BlRRy, P.: On a theorem of Besicovitch. - Quart. J. Math. Oxford (2) 14, 1963, 293-302'

121 BnRRy, P.: Some theorems related to the coszrp theorem. - Proc. London Math. Soc. (3)
2t, t970,334-360.

t3] DusrN, D., and D. Suo^a.: Pölya peaks and the oscillation of positive functions. - Proc.
Amer. Math. Soc. 34, 1972,403-4LL.

t4l FucHs, W.: Proof of a conjecture of G. P6lya concerning gap series. - Ill. J. Math. 7, 1963,

661-667.

[5. GuNDEnsuN, G.: Estimates for the logarithmic derivative of a meromorphic function plus
similar estimates. - J. London Math. Soc. (2) 37, 1988, 88-104.

t6] HlYMlN, W.: Meromorphic functions. - Clarendon Press, Oxford, 1964.

t7] HnyulN,'W., and J. Mrr,ss: On the growth of a meromorphic function and its derivatives.
- Complex Variables Theory Appl. 12, 1989, 245-260.

t8] HayMAN, W., and J. Rossl: Characteristic, maximum modulus, and value distribution.
- Ttans. Amer. Math. Soc. 284, 1984,651-664.

tgl HAvMAN, W., and F. SrBwnRt: Real inequalities with applications to function theory. -
Proc. Cambridge Philos. Soc. 50, 1954,250-260.

t10l Hcr.r,pnstetN,S., J.MILEs, and J. RossI: Onthegrowthof solutions of f" +gf'+hf =
0. - Tlans. Amer. Math. Soc. 324, 1991, 693-706.

t11] LaNcr,oy, J.: Some oscillation theorems for higher order linear differential equations with
entire coefficients of small growth. - Results in Math. 20, 1991, 517-529.

t12l RlDoN, J.: iiber die Randwertaufgaben beim logarithmischen Potential. - Sitzungsber.
Akad. Wiss. Wien 128, 1919, 1123-1167.

[13] SrRoutz, S.: Upper bounds for the logarithmic derivative of a meromorphic function and
the existence of maximal growth solutions of linear differential equations. - Preprint.

[14] VALtnou, G.: Lectures on the general theory of integral functions. - Chelsea, New York,
1949.

Received 2 December 1991


