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Abstract. Suppose g;, 0 < j < n—1, and h are entire functions and that for some k,

0 <k <n-—1, the order of g; does not exceed 3 and does exceed the order of h and the order

of all other g;. It is shown that then every solution of the differential equation

n-1
£ 4 zgjf(i) =h
j=0
is either a polynomial or an entire function of infinite order. This generalizes a previous result of
the authors for second order equations.

1. Introduction

Let o(g) denote the order of an entire function g. In [10], the authors proved
the following

Theorem A. Suppose ¢, and g2 are entire functions with p(g2) < 0(g1) < %
Then any nonconstant (necessarily entire) solution f of

F +af +9f=0

must have infinite order.

It is elementary that the conclusion of Theorem A holds if ¢(g1) < o(g2) for
any o(g2). Easy examples [10] show that the conclusion may fail if o(g1) = 0(9g2)
for any value of p(g;). Elementary examples also show that the conclusion of
Theorem A may fail if p(g2) < ¢(g1) = 1. The possibility of nonconstant solutions
of finite order remains open if o(g2) < o(g1) € (3,1).

The purpose of this paper is to generalize Theorem A to n'* order equations
and to remove the restriction that the equation be homogeneous. We prove the
following

1991 Mathematics Subject Classification: Primary 34A20; Secondary 30D20, 30D35.

doi:10.5186/aasfm.1992.1723


koskenoj
Typewritten text
doi:10.5186/aasfm.1992.1723


344 S. Hellerstein, J. Miles, and J. Rossi

Theorem 1. Consider the differential equation
n—1 ]
(1.1) ™+ 3 g8 = b,
7=0

where g;, 0 < j <n-—1, and h are entire. Suppose there exists k, 0 < k<n-—1,
such that

(1.2) max (g(h), | max ' o(g;)) = e” < olgk) < 3.

i#k
Every solution of (1.1) is either a polynomial or an entire function of infinite order.

It is trivial that every polynomial of degree less than k is a solution of (1.1)
for an appropriate choice of h.

The conclusion of Theorem 1 also holds if ¢* < u(gx) < 3, where p(gx) is
the lower order of gi. (See [10, Section V].) For ease of exposition we confine
ourselves to the situation considered in the theorem.

Theorem 1 should be compared to recent results of Langley [11, Theorem 2
and Theorem 3] on the exponent of convergence of the zero sets of solutions of
homogeneous equations of the form (1.1) in the case that o(gx) < %

Let m(E) denote the Lebesgue measure of a set E of real numbers, and for
E C[1,00), let
dt

me(E) = i

denote the logarithmic measure of E. The logarithmic density of E is

Enfi
logdens E = lim M
r—00 log r

provided this limit exists. Typically we shall denote a set of finite logarithmic
measure by E and we reserve the notation E(a), 0 < a < 1, for a set specified
to have logarithmic density a. We do not require that E and E(«) stand for the
same set with each occurrence.

We now give an overview of the proof of Theorem 1. We do so not only
to provide an outline of the rather intricate proof, but also to point out that
a much simplified proof is available in important special cases (for example if
0* <o(gr) < %)

We suppose that (1.1) has a transcendental solution f of finite order and
obtain a contradiction by showing that there are complex numbers z (in fact of
arbitrarily large modulus) at which the j = k term of the left side of (1.1) has
modulus exceeding the sum of the moduli of all other terms in the equation.
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The proof divides naturally into two cases depending on the behavior of the
minimum modulus of gx(re'®), 0 < 6 < 2r. For an entire g, let

Z(r,g) = lrzr|1i=r1rlg(2)|-

Crucial to our arguments are the facts contained in the following lemma, based on
a special case of a theorem of Drasin and Shea [3, Theorem 8.1] and discussed in
detail in [10, Section 2].

Lemma A. Suppose g is entire and p(g) < % Then either, for every p <
o(g), there exists rp,, — oo such that

(1.3) log Z(rm,9) >,
or, for every p < o(g), if
(1.4) K.(0) = K, = {6 € [0,27) : log |g(re*®)| < r},

there exists a set E(1) C [1,00) of logarithmic density 1 such that for r € E(1),
K, is an interval (modulo 2 ) satisfying

(1.5) m(K,;) — 0, r € E(1), r— oo.

The easier of our two cases (Case I, discussed in Section 3) occurs if (1.3)
holds for g = gx. In this case we divide (1.1) by f*) (not identically zero since f
is transcendental) and consider the resulting equation

fm = fG) h
(16) f(k) + J-Zogjm = W
at a point z, = rme’®™ of maximum modulus of f*) on |z| = r,, for a sequence
rm — oo satisfying (1.3) for some g € (o*, 0(gx))-

We note the j = k term of (1.6) is simply gx; a lower bound for the modulus
of this term at z,, (and in fact on all of |z| = r, ) is given by (1.3). The modulus
of the terms of (1.6) corresponding to 0 < j < k as well as the term h/f®*) can
be bounded above at z,, by (1.2), the fundamental theorem of calculus, and the
maximum modulus theorem. The terms of (1.6) corresponding to k +1<j5 < n
as well as the term f(™/f(¥) can be bounded above everywhere on |z| = r,, by
elementary estimates on the logarithmic derivative (Lemma B, Section 2) provided
that r, avoids the small exceptional set E, of Lemma B. The combination of
these bounds at z,, yields the desired contradiction.

Results of Barry ([1, p. 294] and [2, Theorem 4]) give conditions sufficient
to guarantee that g satisfies (1.3) for a sequence r, — oo disjoint from the
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exceptional set Eq of Lemma B. These conditions include o(gx) < 3 and u(gx) <
o(gx) < % Thus if gi satisfies either of these conditions, a very short proof of
Theorem 1 is available based on Barry’s results, the elementary Lemma B, and
the brief argument at the beginning of Section 3 ending with (3.8). Full details in
Case I (including the fact that if (1.3) holds for some r,, — oo, then (1.3) holds
for a sequence s,, — oo where s,, is not in the exceptional set E, of Lemma B)
appear in Section 3.

Our argument is much more complicated if g = g satisfies (1.5). The com-
plication in Case II results from the fact that no lower bound for the j = k term
of (1.1) is available at points of the form re!#r for ¢, € K,. Our approach is to
select o € (9*, g(gk)) and to show for a set of r-values of logarithmic density 1
contained in the set E(1) of Lemma A and disjoint from the sets E, obtained
by applying Lemma B to f, f',..., f(®=1 that there exists ¥, € (0,27) — K.(o)
such that if z, = re'¥r | then

(k)
k f (Zr)
(1.7) |F®(z,)| > 7 —
In Case II we divide (1.1) by f to obtain
(n) i (J) h

and find from (1.2), (1.7), and Lemma B that the j = k term of (1.8), evaluated
at zr, dominates all other terms in the equation, giving the desired contradiction.
Note the significance of v, ¢ K, is that (1.4) provides a lower bound for |gk(z,)|

Our proof of the existence of z, satisfying (1.7) is rather complicated. We in
fact produce, for r in a set of logarithmic density 1, a sequence of nonempty sets
P(r,j), 1 <j < n, satisfying

(1.9) (0,27) — K, D P(r,1) D P(r,2) D --- D P(r,n),
fG-D re"’) . _

(1.10) | > 5 BEPnd)  2<isn,

and

(1.11) |f(re’®)| >1,  6€ P(r1).

It is elementary from (1.9), (1.10), and (1.11) that (1.7) holds at any point z, =
re'¥r for ¢, € P(r,k +1).
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We establish the existence of the sets P(r,j) by appealing to a theorem of
Radon comparing the total variation, as a point traverses a smooth closed curve,
of the argument of the tangent vector to the curve and the total variation of the
argument of the point traversing the curve. This comparison is used in conjunction
with familiar expressions for these quantities for the curve fU(re®), 0 <6< 2m,
in terms of the logarithmic derivatives of () and fU+1). A second ingredient in
the argument producing the sets P(r,j) is an upper bound given in Lemma 4 for

1 y re'd f!(re'?)

f(re®)
for entire functions f of finite order. Lemma 4 is an improvement of bounds
obtained in [10, Section 4] and may be of independent interest.

The proof of Case II appears in Section 4. It depends on a sizable collection
of known or elementary results, all collected in Section 2.

— dé
27[' K,

2. Preliminaries

We shall find it convenient to use the Ahlfors—Shimizu characteristic To(r, f)
of a meromorphic function, defined by

A(t

nef) = [ 2l a,

where A(%, f) is the area on the Riemann sphere ¥ of the image of |z| < ¢t under
f, with due regard to multiplicity. Since

(2.1) |To(r, £) = T(r, f)| = O(1),

the Nevanlinna and Ahlfors—Shimizu characteristics are interchangeable for many
purposes. It is elementary that A(t, f) is a bounded function of ¢ if and only if f
is rational. If we denote the length on T of the curve {f(re?®):0<6 <2r} by
L(r, f), it follows [6, p. 144] from the Schwarz inequality for any ¢ > 0 that we
have

(22) L(T‘, f) < A(T‘, f)1/2+€a r ¢ E7

for some set E with m(F) < oo.

Crucial to our argument in both Case I and Case II is the following upper
bound for |f (z)/f(z)‘ for entire f of finite order [10, Lemma 4].

Lemma B. Suppose f is a nonconstant entire function of finite order. If
a > 0, there exists a set E4 C [1,00) satisfying

(2.3) m(Eq N[r/e,er]) < e, r > ro(f),
such that if |z| =r ¢ E,, then

(2.4) ,;/((;))1 <™ r>r(f).

In particular E, has finite Lebesgue measure and hence finite logarithmic measure.
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There are many upper estimates for lf’(z)/f(z)‘ outside of small exceptional
sets, certainly including those with much smaller upper bounds than (2.4). (See
for example [5], [13], and [14].) We choose the formulation in Lemma B because
the very strong information on the intersection of E, with intervals of logarithmic
length 2 contained in (2.3) is convenient for our purposes. (See Lemma 6.)

Only Lemma B from this section is needed for the proof of Case I. We now
collect several known results which are needed in our proof of Case II. We begin
with the following lemma. which follows immediately upon combining Theorem 4

of [9] and Theorem 3 of [8].

Lemma C. Suppose K > 1, ¢ > 0, and ¢;(t) are nondecreasing, nonnegative
functions defined on [1,00) with

/IT‘P‘T(t)dtg/lr"’?T(t)dHO(l)

for all r > 1. Then there exists a set E(1/K) with logdens E(1/K) = 1/K such
that

p1(t) < (e +¢)Kpa(t)
forallt ¢ E(1/K).
Our first application of Lemma C is

Lemma 2. Suppose f is a transcendental entire function of finite order,
€ >0, and j is a positive integer. If

hi(z) =z fP(2)/f97V(2),
then there exists a set E;(0) C [1,00) of logarithmic density 0 such that
L(r,hj) < A(r, f)'/**e,  r ¢ E;(0).
Proof. By the lemma on the logarithmic derivative, for r > ry we have
T(T’ h]) = m(r, h]) + N(T, h]) <logr + 5m(r)f) + N(T,Oaf(j_l))
< (1 +e)m(r, f) + T(r, f97V) < (24 26)T(r, ).
From Lemma C and (2.1) we conclude for any K > 1 that
1
Alr,hy) < eK(2+3)AnS), ¢ B;(),
for some set B;(1/K) with logdens B;(1/K) = 1/K. Since A(r,f) — oo, we
conclude from (2.2) that
L(ryhy) < Al )2 < ar )12, rg By (%)),
for a set E;(1/K) with logdens E;(1/K)=1/K. Since K > 1 is arbitrary, the

lemma is proved.
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For future use we note that one consequence of Lemma C and (2.1) is that
for nonconstant entire f and € > 0 the inequality

(2.5) n(r,0, f) < (e +e)KA(r, f)

holds for r ¢ E(1/K) where logdens E(1/K)=1/K.

Our analysis in Case II depends heavily on a comparison between the total
variation of the argument of the tangent vector to a smooth closed curve and
the total variation of the argument of a point traversing the curve. We need
the following lemma, apparently first discovered Ly Radon [12]. (See also (7,
Lemma 4].)

Lemma D. Suppose I'(6), a < § < b, is a closed analytic curve with I'(8) #
Py and T'(0) # 0. At P €T, let ¢ and 1 be the angles respectively which Py P

and the tangent vector to I' at P make with the positive real axis. Then

J1ael < [ 1aui

We remark that an examination of the proof shows that the assumption of
analyticity may be relaxed to the condition that ¢'(6) = 0 for only a finite number
of distinct points 6.

Suppose f is entire. For any r > 0 with f'(re?®)f(rei®) # 0 for 0 < 6 < 2,
let ¢.(f) be a continuous argument of f(re'®) and let 1,(6) be a continuous
argument of the tangent vector to the curve {f(re'?):0< 6 < 2r}. Recall that

Teiof'(reie)

(2.6) #1(6) = Re "

and 18 1 ‘0)
'(8) = R (1 __f<_>
d)r( ) € + f/(rele)
Consider [c,d] C [0,27). We join the endpoints of {f(reia) 1c<0< d} with
a straight line segment (appropriately smoothed near the endpoints in accordance
with the remark following Lemma D) to obtain a closed curve and observe that
in so doing we increase the total variation of the argument of the tangent vector

by at most 27 (in fact by at most 7 at each endpoint). Applying Lemma D, we
obtain

. /Cd Re%‘dog d e(1+T_e‘_e_f(,_"_ﬁj’f’_))1d‘9+27r
S/d Re%'dG—*—Qﬂ.}_(d_C)

Inequality (2.7) plays a crucial role in the proof in Case II.
We require the following
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Lemma E. For a nonconstant entire function f and for m = 1,2, let

27 )
Bnlr) = 5= [ ntrimei®, f)a

be the mean covering number of the circle |z2| = m under the map f restricted to
|z| < r. There exists a set E with my(E) < co such that

Bm(r) _

lim =
ner A )

for m =1,2.

The proof for m = 1 appears in [10, Lemma 1], and the m = 2 case is
identical. Lemma E also follows from Ahlfors’s covering surface theory ([6, Theo-
rem 5.2]).

We note that if
(2.8) B(r,m) = {6 € (0,2r) : log ]f(reie)’ >m},

then from (2.6) and the argument principle it follows that

Our final objective in Section 2 is to prove Lemma 4, referred to briefly at the
end of Section 1. We begin by establishing the following routine lemma.

Lemma 3. Suppose n(r) is a nondecreasing function of finite order. Suppose
6(r) = 0 as r — co. Then there exists E(0) C [1,00) having logarithmic density
0 such that

n(reé(r)) - n(re_é(r)) = o(n(r)), r ¢ E(0).
Proof. Let § >0 and ¢ > 0. Let

Ese={r>1:n(re’) —n(re”®) > en(r)}.

Let rp, =e™, n=0,1,2,..., and let I, = [TnyTnt1). Let Jy be the number of
n < N such that I, N Es. # ¢. Since

n(re®) —n(re”%) > en(r)

implies
logn(re’) —logn(re™%) > log(1 + €),
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we conclude for large N that
J
[-:%] log(1 +¢) <logn(rny) < (¢ +1)logry = (o + 1)N§,

where p is the order of n(r). Thus Es. is contained in a set of logarithmic density

at most T 3( 4 1)5
li A .
VP NG S Tog(1+€)

We may choose € = ¢Y® — 1 to conclude that
n(re’) — n(re=%) < Vén(r)

off a set of logarithmic density at most 3(o + 1)v/6. Since § > 0 is arbitrary, the
lemma is established.

Our proof of Lemma 4 requires the following slight strengthening of Lemma 5
of [10]. The strengthening involves obtaining information on a set of large logarith-
mic density (at least for K large) rather than just on a set of positive logarithmic
density. This improvement can easily be achieved by appealing to Theorem 3 of
[8] in the very short proof of Lemma 5 in [10].

Lemma F. Let f be an entire function of finite order \'. Let ¢ > 0, K > 2,
and A > \'. Then there exists E(1—2/K) C [1,00) of logarithmic density 1-2/K
with the property that for r € E(1 — 2/K) there exists h = h, > 0 such that if
R' =re", then

(2.10) To(R', f) < hK (e +e)A(r, f)
and
(2.11) To(R', f) < REK?*X(e + €)A(r, f).

We are now ready to state

Lemma 4. Let f be entire of finite order and let K, C [0,27) be any
measurable set with m(K,;) — 0 as r — oo. Then there exists E(1) C [1,00)
with logarithmic density 1 such that

rei® f!(rei
(2.12) /K lRe f(fr—cg"))i dé = o(A(r, f)), r € E(1).

Obvious modifications of our proof of Lemma 4 show that the conclusion
holds for all meromorphic functions of finite order. Since our application is to
entire functions, we restrict ourselves to that case for ease of exposition.
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Lemma 4 should be compared to an estimate [4, (17)] for meromorphic func-
tions obtained by Fuchs for the quantity
reiof'(reie)

(2.13) /J Flrei)

in terms of the measure of the set J and certain functionals related to f. While
the integral (2.13) is larger than the quantity being estimated in (2.12), the bound
for (2.13) obtained in [4] appears to be too large for our purposes.

Since by Lemma E and (2.9) we have for entire f that

}de

+ 6 £10 i
o> L Re ¢S (re”)
27 JB(r,1) f(re)

> (1 - o(l))A(r, f), r¢ E, my(E) < oo,

27 10 g1 i
1 re*? f'(re )) 40

5 ), (R

we notice in passing that if K, = [0,27) — K,, Lemma 4 implies for entire f of
finite order that

1 re'® fl(rei®)\+

é; z. (RCW)—> dé > (1—0(1))A(T‘,f), T EE(].)—E
Proof of Lemma 4. We apply the differentiated Poisson-Jensen formula [6,

p. 22] to f. For é(r) > 0 and R > r to be specified presently, we have with the

zeros of f denoted by a, for |z| =r that

zf'(2) 1 /2" ; 2z Re'?
= — 1 Re"¥)|———d
f(z) 27 Jo o8 |f(Re )|(Re'“‘° —2z)? 4
z An2
+ Z —an + R?2 —a,z

lan|<re—4(r)

(2.14) n ) Z___GnZ

z—a R? —a,z
re=%(r)<|a,|<res(r) n n

z anz
+ Z + R?2 —a,z

zZ—a
ref(")<|an|<R n

= f1(2) + fa(2) + fa(2) + fa(2).

We collect the following observations. Certainly for |a| < R we have

Re ( re'? are'? ) d R(re’ — a)

; — = —-arg —————>
ret® —a R? — grei d6 & R? — Gret®
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and hence
1 [%" retf are'®
. — R ( . 4 ) 9 < 1.
(2.15) 27 Jo “\rei? —q + R2? — Gret? -
If |a] < re=®" orif re’(M < |a| < R, then
216 retf are'? efM 41
( . ) 7.61'0 —a R2 — arei0 - 66(7') -1 ’

We now specify our choices of §(r) and R > r in (2.14). We first choose
€ >0 and K > 3. We next choose §(r) — 0 as r — oo satisfying

efM 41
We apply Lemma F with our given choices of ¢ and K, and, for r in the set
E(1 -2/K) of Lemma F, we choose R = VrR' = reh/?.

We now estimate (1/27) fKr |Refj(rei0)‘ df for r € E(1 —2/K) and j =

1,2,3,4. We have from (2.11) that

(2.17)

1 ; (4T(R, f) + O(1))e*/?m(K,)
2—7F/Kr|Ref1(T‘e G)ldGS (eh/2 _1)2

ﬂi(l—?—f)m(ffr) = o(A(r, f)), re E(1-2/K).

From (2.5), (2.16), and (2.17), we see that there exists a set Ei(1/K) of
logarithmic density 1/K such that
efM 41

1 16
Lr |Ref2(7‘6 )[d9 S m

(2.19) 27
= o(n(r,0,f)) = o(A(r,f)),  r ¢ Ei(1/K).
Letting E(0) be the exceptional set of Lemma 3 for n(r) = n(r,0, f), we see from
(2.15) that
1

(2.20) 27

(2.18)

m(Kr)n(re_‘s(T) ,0, f)

/K lRe f3(7‘€i0)| de < n(reé(r),O, f) - n(re_é(r),O,f) = o(n(r,O,f))

= o(A(r, f)), r ¢ E(0)U Ey(1/K).
For r € E(1 — 2/K), we have from (2.10), (2.16), and (2.17) that

. 66(r)
2%_ . | Re fa(re'®)| d8 < n(R,0, f)eT(T)j_im(K’)
2.21 N(R'.0.
(2:21) = o(n(R,0, f)) = o(_(_h_f))

=o(T(R, f)/h) = o(A(r, f)).
Combining (2.18), (2.19), (2.20), and (2.21), we obtain (2.12) for r € E(1-2/K)—
(E(0)U E1(1/K)), a set of logarithmic density at least 1 —3/K. Since K >3 is

arbitrary, Lemma 4 is proved.
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3. Case I

We consider the case where (1.3) holds with g = g for every o < o(g#). For
simplicity of notation we denote g(gx) by gx throughout this section. We suppose
(1.1) has a transcendental solution f of finite order and seek a contradiction. We
choose £ > 0 with 17e < g — p*. Setting o = 7¢, we apply Lemma B to each of
the functions f(¥) f(k+1) = = £(r=1) {5 conclude there exists a set E satisfying

6¢

(3.1) m(EN[r/eer]) <e ™, r > Ry,
and if |z|=r ¢ E,

) .
(3.2) %k)%{m“ ., k+1<j<n, r>R,.

We show below (Lemma 6) that there exists s,, — o0, s,, ¢ E for which
(3.3) log % (sm,gk) > s ~2¢, sm ¢ E.
We recall that Barry ([1], [2]) has given conditions sufficient to guarantee (3.3).

Temporarily granting (3.3), we can complete the proof quite quickly.
For convenience we write g,(z) =1 and rearrange (1.1) to obtain

LI O N = S [ I 3
(3.4) gk=—( Z ng'F;gjﬁ—m)‘

j=k+1

Of course if k = 0 we omit the second sum on the right. Since s,, ¢ E, for all
|z| = sm we have by (3.2) that

(3.5)

0 ot
g](z)f(k)(z) <(n—k)exp(s,® + 5219, m > myg.
j=k+1

Let 2, = rme’?™ be such that
M (om J9) = 1) (smeiem)

where M(r, f) denotes the maximum of |f(z)| on |z| = r. We note from the
fundamental theorem of calculus and the maximum modulus theorem for 0 < j <

k —1 that o
N zm .
‘——;(k)gzmg < (14 0(1))sk~7.
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Hence

(3.6) i(zm) j:((:))( 3‘ < exp(s& %), m > mg.
Since

(3.7 %}3‘ < exp(sf’,:“), m > my,

we conclude from (3.4), (3.5), (3.6), and (3.7) that
(3.8) [gk zm)| < exp (s&7%), m > my,

contradicting (3.3). Thus the proof in Case I will be finished once we prove
Lemma 6.

It should be mentioned that a detailed analysis of the proof of Theorem 8.1
of [3] shows that if for any ¢ < g(g) < 3 condition (1.5) does not hold, then there
is a set B of infinite measure such that

(3.9) log Z(r,g) > r®

for all r € B. Applying this fact with g = gx and observing that the set E where
(3.2) may fail has finite measure, we conclude that in fact (3.9) holds with g = g
and each p < p(gx) for an unbounded set of r-values disjoint from E. With this
observation, the above argument (ending with (3.8)) may be applied to prove the
theorem in Case I.

Because of the intricate nature of the proof of Theorem 8.1 of [3], we prefer
to give a self-contained argument (Lemma 6) that (3.9) holds with ¢ = ¢; for an
unbounded set disjoint from E. We begin with some elementary facts concerning
Mobius transformations.

Lemma 5. Suppose 0 <r < s. Let

T@) = 7=
Set a = Re'®. We have
(i) If RS VFs, then min [T(Re®)| = 217
and
(ii) if R > +\/rs, then Oggi&"lT(Reioﬂ = |;:_§‘



356 S. Hellerstein, J. Miles, and J. Rossi

Proof. Since T maps |a| = R onto a line or circle intersecting the real axis
perpendicularly, it is clear that ming<g<ar 1T(Re'9)| occurs either at § = 0 or
6 = 7. Note that

s+ R
T(-R)= - >0,
s—R
T(R) = r—R’
rs — R?
T(R) +T(-R) = 25—,
and
r—s
T(—R)-T(R) = 2Rr2 @

We first prove (i). If r < R < \/rs, then T(R) < 0 and T(R) + T(—R) <
0. Thus T(—R) < |T(R)|, establishing (i). If R < r, then T(R) > 0 and
T(-R)—-T(R) < 0, again implying T(—R) < T(R). If R = r, certainly T(—R) <
T(R) = oo.

We next prove (ii). If \/rs < R < s, then T(R) < 0 and T(R)+ T(—R) > 0.
Thus |T(R)| < T(—R), yielding (ii). If R > s, then T(R) > 0 and T(—R) —
T(R) > 0, again implying T(R) < T(—R) and establishing (ii). If R = s, (ii) is
trivial.

We now state

Lemma 6. Suppose g =[[,(1 —z/a,) is entire of order A <1 and 0 < ¢ <
min(A/2, 1 — X). Suppose there exists an unbounded set of r-values such that

(3.10) log Z(r,g) > r*~=.
Suppose also that E C [1,00) satisfies

(3.11) m(EN[r/e,er]) < e, r > Ry.
Then there are arbitrarily large s ¢ E such that

(3.12) log Z(s,g) > s*7%¢.

As previously indicated, Lemma 6 may be applied with ¢ = gx, A = o(g&),
and E as in (3.1) to produce s, ¢ E, s, — oo satisfying (3.3).

Proof of Lemma 6. Suppose r satisfies (3.10) and that n(¢,0,g) < t**te,
t > r. Define r; by

ri=r(1+2exp(-r*)), 0<;<Q,
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where Q = [r*¢/log2]. Let A; denote the annulus
A,-={z:rj_1<|z|§r,-}, 1<;<Q.

Note that

Q
{z:r(1+exp(—r®)) <|z| < 3r} C U A
=1

C{z:r(1+exp(—r")) < 2] < 2r}.
Let nj be the number of zeros of g in A;. We have

Q
an < (2r)Me < A2 r > Ry.
i=1

4e A—2¢

Since
A—2¢

Consequently there are at most r*® values of j for which n; > r
Q > r5¢, we conclude there exist [r®] consecutive values of j for which n; <r
From this point on we let j denote the first member of such an interval of integers.

Thus

(3.13) njpp <72, 0<p<[r] -1
Let
Ty —Ti-1
(3.14) a; I

~ (L4 nj+njp+ e +njys)

Let D, be the disk of radius a; centered at the zero a, of g in A; U A4, U
Ajt2 U Ajis. Note the sum of the diameters of all the D, ’s is

2aj(nj + nj41 + njte +njys) < 2(rj —rjo1).
From (3.11) and the fact that
itz —rj41 = 4(rj —rj=1) > 2exp ( — r°%),

we conclude there exists s ¢ E such that the circle |z| = s lies in Aj;, and does
not intersect any D,. We note explicitly that

(3.15) [law| = 5| > a;

for all a, in A]' U Aj+1 U A]‘+2 U Aj+3 .
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It is sufficient to show log |g(s)| > s*72¢ . We write ¢ = G1G,G3G4 where

= I (1-2),
o < Vs Y

Ge= I (-3)

Vrs<|a, |[<rjts3
Z
Ge= I (1-3)
ri+s<|ay|<rq v

and

Giz)= [] (1—aiy).

ro<lay|

We estimate log ’g(s)l —log ’g(r)l . Certainly for any «,,

log|1—-i —logll—L = log 2T
a, ay T —ay
Applying Lemma 5 we conclude
S+ |y,
(3.16) log lGl(s)l —log]Gl(r)[ > Z s+ law| > 0.
ariers 1ol

Now suppose G3(a,) = 0. Thus
loy| > rs > \frrpr =r(1+ oI +1 exp(—rse))l/2 >rio
and hence o, € AjUAj11 UAjp, U Ajps. Since
lay| —r <rjps—r= 2*3r exp(—r*?) = 16(r;j —rj-1),

we conclude from (3.14), (3.15), and Lemma 5(ii) that

s T s — |ay| a;
lo Il————lo 1-—(>1o > log —————
8 o, & a, | = 8l e, |1 = ©16(r; —r-1)
1
:10g .
16(1 +n;+n41 +nj40 + nj+3)

Thus from (3.13) we have
log |G2(3)| — log |G2(7‘)| > (nj + N1+ nj42 + nj+3)><
1
16(1 +nj;+n41 + Nj+2 + nj+3)
> —4r =2 og (128 4+ (A — 2¢)logr).

(3.17) X log



On the growth of solutions of linear differential equations 359

Now suppose G3(a,) = 0. Noting

ST Ti+2 T _ 1
ol =7 St
we apply Lemma 5(ii) to conclude
— log _|a,,| —°
(3.18) ol =7
. 1 (1 S—T7T ) S 9 S —7Tr
=10 —_— - .
& |avl -r |aV| -r
Thus
Q-J s—r
log|G3(s)‘—log |G3(T)| > =2 Z { Z | — r}
P=4 ‘0, E€Apyj '
Tijt2 —T
> -2 Mpg;—
Z r+ rp+] 1—7T
2742 exp(—r®¢)
= ——2 j—
Q—j
= -2 E Tlp+j23_p
r=4
[r*]-1
=-2 ) np2°P -2 Z np4i257P
p=4 p=[re]
> —orr~2 _ gopt2e—r] 5 _gpA-2e r > Ry,

where in the last step we have used (3.13) and the fact that n,; < r**2¢ for all
p<Q—j.
To analyze the contribution from G4, we first define annuli
By={z:2"rg < |2| < 2%rq}
for ¢ =1,2,3,.... If m,; denotes the number of zeros of G4 in By, then certainly
(3.20) mg < (29rg) e < (29F1r)M e,

Since by our choice of j we have j + [r¢] — 1 < @, we conclude

rittreo1 = (14 274" exp(—r®)) <or,
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and hence
(3.21) 27 exp(—r®) < 21711,

If G4(ay) =0, we have as in (3.18) that

~logll— —|> 22T

ay

S
lo ’1—— .
& o, lay| =7

Suppose a, € B,. From (3.21) we have

5 2742y exp(—r5¢)

> 292y

e — > —g8=al]

ay

(3.22)  log |1 - ai

From (3.20), (3.22), and the fact that A + ¢ < 1, we conclude

log |G4(s)] — log ‘G4(7~)I > - Z mq26—q—[re]
g=1
(3.23) _
> _1287‘A+€2—[r‘] Z 2q(X+€—l) — 0(1).
g=1

Combining (3.10), (3.16), (3.17), (3.19), and (3.23), we have

log Ig(s)l > log |g(r)| — 4r* =2 Jog (128 + (A — 2¢)logr) — 3r*~2¢ — O(1)

A—2¢
)

> S8 8 > Sg.

Thus s satisfies (3.12) and the lemma is proved.

4. Case I1I

We suppose (1.1) has a transcendental solution f of finite order, ¢ > 0 sat-
isfies 5¢ < o(gx) — 0*, and that the set

K. (o(gx) —€) = K, = {6 € [0,2) : log | gx(re'®)| < r"(g")"s}

is an interval (modulo 27) satisfying m(K,) — 0 as r — oo, r € E(1) for some
set E(1) of logarithmic density 1. We seek a contradiction. By applying Lemma B
with a = ¢ to each of the functions f(™ 0 <m < n — 1, we may also presume
that

3e

<e, 1<5<n,

() (5
(4.1) |—ff(z())
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for |z| =r € E(1).
Recalling definition (2.8), we let

Y(r,m) = B(r,m) — K,.

Appealing to (2.9), Lemma E, and Lemma 4, we may also presume E(1) to be
such that for m = 1,2 we have

ZLW Y (r,m) ( © %&%ﬁ)“}e = 2L7r B(r.m) Re % d6 — o(A(r, f))
(4.2) > 2—17; 02" n(r,me'®, f) dp — o( A(r, f))
> (1-o(1))A(r, f), reE1).
We write

ar
-K. =1,
Jj=1
where the I; are disjoint open intervals. Let

D(r)={j:1<j<o,and I; N B(r,2) # ¢},

P(r,1) = UI

JED(r)
We note that P(r,1) satisfies (1.9) and (1.11). Since

and let

P(T‘, 1) D B(T‘,2) _FT = Y(T‘,Q),

we conclude from (4.2) that

i reief’(reio) + —]—._ 7,eiefl(reié’) +
(43) 27 /1‘:(7.’1) (Re f(T'Cio) ) da Z 2T Y (r,2) (Re f(TCie) ) d6

> (1-o(1)A(r, f), € E(Q)

Either a, = 1 or else, for each j € D(r), I; has an endpoint in §B(r,1)
and hence the total length on ¥ of the curve {f(re'®) : § € I;} is at least the

spherical distance from 1 to 2, namely 1/1/10. By (2.2), the number of elements
of D(r) is at most 10A(r, f)!/2*¢ for r € E(1), r > Ry. We denote those I;
with j € D(r) by U;, 1 <j < al, where

(4.4) o) <V10A(r, /)V?**¢,  re EQ1), r > Ro.
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For m = 1,2 we now define

re'l ! (re‘e)‘ S }

(4.5) C(r,m) = {0 €(0,2m) : f(rei®)

and write

C(r,1)N P(r,1) = UH],

where the H; are disjoint open intervals. Let
Q(r)={j:1<j <Brand H;NC(r,2) # 0}.

For j € Q(r), either H; is some U,, 1 < p < al., or, since one endpoint of H; lies
in 6C(r,1), the curve {re’®f'(re’®)/f(re*) : 6 € H;} has length on T at least
1/4/10. We denote those H; with j € Q(r) by V;, 1 < j < ., and from (4.4)
and Lemma 2 (applied to zf'(z)/f(z)) note that

(4.6) B <ol 4+ VI0A(r, )Y+ < 2V10A(r, ), re EQ1), r > Ro.

We write
Bl
(4.7) P(r,2)=JV;
=1

and let C(r,2) = (0,27) — C(r,2). Clearly we have

P(r,1) = C(r,2) C P(r,2) C P(r,1)NC(r,1).
Certainly P(r,2) satisfies (1.9) and (1.10). Since
1 \re'ef ret?
27 C(r,2) f(relo
we deduce from (4.3) that

Tei@ ! ,,.eie
(4.8) % . (Re —]?{;C(io—)))+d9 > (1- o) A(r, f), reE(Q)

{d9<2

For 1 <5< ,Blr, we join the endpoints of {f(reio) : 0 € V]} with a line
segment (smoothed at the endpoints), apply (2.7), and sum from j =1 to j = 3]
to obtain

rei® f'(ret?) ret? f'(ret?)
4.9 / Re ——— d9</ Re —————=|df + 27 + 27f3,.
(£9) P(r,2) 1 f(re®?) ’ P(r,2) ‘ fi(ret®) ’ ™t 2nh,
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From (4.6), (4.8), and (4.9) we deduce

1 re“’f”(re“’)
(4.10) '2; /1;(1_,2) l Re —W—’ dé > (1 - 0(1)) A(T‘,f), T e E(l)

We note for emphasis that our analysis requires control (3} = o(A(r, f))) of the
number of disjoint open intervals comprising P(r,2) in order to deduce (4.10) from
(4.9). We also note that the fact that f is transcendental (and hence A(r, f) — o)
is used in obtaining (4.10).

Crucial to our argument is that P(r,2) satisfies (1.10), (4.6), (4.7), and (4.10).
We now repeat the above reasoning to produce P(r,3) C P(r,2) satisfying appro-
priate analogues of these inequalities. We begin at stage (4.5) by defining

C*(r,m) = {96 (0,27) : ‘%} > m}

for m = 1,2. We proceed from (4.5) as before, now replacing f by f', P(r,1)
by P(r,2), o. by B., (4.4) by (4.6), and (4.3) by (4.10). Our argument requires
an application of Lemma 2 to the function zf"(z)/f'(z), and at an appropriate
stage we join the endpoints of intervals of the form {f’(rew) S V]*} with
line segments. We ultimately obtain a set P(r,3) C P(r,2) N C*(r,1) satisfying
analogues of (1.10), (4.6), (4.7), and (4.10). Explicitly, P(r,3) is expressible as a
disjoint union of at most 3V10A(r, f)1/?*¢ open intervals and satisfies

o oo | 02 G- r € 0)

and : 4
rezefu(rezo)
fi(re?®)
Continuing the iteration, we obtain for r € E(1) sets P(r,j), 1 < j <

n, expressible as a disjoint union of at most jVI0A(r, f)1/?*¢ open intervals,
satisfying

’ >1, 6 € P(r,3).

(4.11) P(r,n) C P(r,n—1)C--- C P(r,2) C P(r,1) C B(r,1) - K,
1 ret® f0)(reif)
o G |02 (- <j<
27 Jp(r,5) ‘ ) fU=D(re®) ld 2 (1= o(1)A(r f), l<jsn,
and
0 £(j—1) (yetf
(4.12) Ve fUT(re )‘>1, ¢ P(r,j), 2<j<n.

FG=2)(reif)
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Note that the sets P(r,j) satisfy (1.9), (1.10), and (1.11).
We rearrange (1.1) to obtain

(4.13) =

For 6y € P(r,k + 1) it follows from (4.11) and (4.12) that

i k+1 i—1)(,..i8
PO 1Y o D)
(414) ‘ (re’ok = ’r‘_k 27‘6 f(JT(Te’ek) > ;‘T’ S E(].)
]=

Since 6 € B(r,1), we also have
|f(k)(7.ei0k)| > T‘_k, re E(l)

Since ) ¢ K, for z = re'®* we conclude by our choice of ¢ > 0 that for large
r € E(1)

(4.15)

h(z
gk(Z)(m — 1)‘ > %|gk(2)| > %exp (ré’(yk)-'e).

For |z| = r, we have from (4.1) for large r € E(1) that

(4.16) 6 | 3 ai 2L (])(Z

f(z < exp (r""*’e + r4€).
J#k

The combination of (4.13), (4.14), (4.15), and (4.16) with 2z = re'®, 6; €
P(r,k + 1), implies for all large r € E(1) that

r k<2 e)cp(r‘"+€ + i — rg(g’“)_s),

which is the desired contradiction.
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