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Abstract. Until now, non-linear potential theory, the examples as well as the axiomatic
theory, has mainly been based on the Perron-Wiener-Brelot method to solve the Dirichlet problem.
In a linear context, the PWB-solution of the Dirichlet problem is sufficient to develop notions like
specific order, potential kernels, balayage of measures, etc. In non-linear theory however, these
notions present great difficulties. We will define specific order and potential kernels in a non-linear
context. One of the results is a local version of the Riesz decomposition property. We only consider
semilinear perturbations of harmonic spaces. However, our methods are axiomatic in nature and
they promise to be very fruitfull in the further development of non-linear potential theory.

1. Introduction

One of the main motivations of potential theory is to describe solutions of
differential equations L(f) = 0. The potential theory of linear operators L has
been studied extensively. For non-linear operators L however, much less is known,
especially not in axiomatic theories. Axiomatic non-linear potential theory until
now has been mainly based on the Perron-Wiener-Brelot method of solving the
Dirichlet problem. Several people have tried to maintain some weak version of
linearity (for instance scalar multiplication or addition of constants, see [1], [4],
(5], [13], [14], [15] and [16]), but all attempts in that direction have failed, until
now, to give essentially more results than described in [8] or [9], where linearity is
discarded completely. However, from examples it is clear that a lot more structure,
than described in that paper, exists.

In this text, we will use the example of semilinear perturbations of harmonic
spaces to introduce extra structure in a non-linear potential theory. Linear pertur-
bations were first considered by Walsh in [18]. After that, several people considered
linear perturbations (see [2], [3], [10], [11] and [12]) and non-linear perturbations
(see [5] and [17]). We will only consider semilinear perturbations of harmonic
spaces, similar to the perturbations defined by Maeda in [17]. However, the tools
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we will use, in particular the idea of biased hyperharmonic functions, are axiomatic
in nature and can also be applied in other examples of non-linear potential theory.

Our main motivation is the specific preorder in linear potential theory. In
linear theory we say that f - g if there is a hyperharmonic function h such that
f =g+ h. In terms of the operator L this is equivalent to L(f) > L(g). This
last characterization can also be applied to non-linear operators L and this was
the idea behind the specific preorder we will define. We will prove one of the
forms of the Riesz-decomposition property for this specific preorder. We will also
show that two potentials p and ¢ are equal if p ~ ¢ (i.e. if Lp = Lq). This will
enable us to define a potential p @ ¢ that has the property L(p ® ¢) = Lp + Lq.
Of course, in general, p @ ¢ is not the pointwise sum of p and ¢q. However, the
set of potentials, with this addition and a similar scalar multiplication, is a lower
complete prevector lattice. Furthermore, similar to the linear case, we can define
a specific multiplication.

2. Preliminaries

In this text, X will be a harmonic space with a countable base in the sense
of [6], whose notions and notations will be followed unless stated otherwise. Fur-
thermore, for any open set U

1. P(U) will be the set of continuous bounded potentials on U;

2. C(U) will be the set of continuous real functions on U;

3. LSC(U) will be the set of lower finite, lower semicontinuous numerical func-
tions on U;

4. C¢(U) will be the set of locally bounded fine continuous Borel functions on

bl

5. #(U) will be the set of (numerical) Borel functions on U.

In the next three results, U will be an open set such that U is compact and
contained in a &-set. Furthermore, Sy = I+ Ky will be a map on #(U);, where
Ky: B(U)y —» P(U) — P(U) has the following Lipschitz property:

there exists a ¢ € 2(U), ||¢|| < 1,such that for all M > 0,
there exists a p € (U),such that for all f > g¢,|f| < M,|g| < M,

we have :(f —g)-p > Ku(f) — Ku(9) > (9 — f) - ¢

Theorem 2.1. For all f, g € B(U), with Sy(f) — Su(g) € s#*(U), the

following statements are equivalent:

L. SU(f)/f\SU(g)ZO;

2. Su(f) —Su(g) 20 on 8U;
3. f-920;

4. f—g>0o0ndU.
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Furthermore, if one of those conditions is fulfilled, then

{f>g}={Su(f) >Sulg)}.

Proof. 1 < 2 and 3 = 4 are evident.

4 = 1: There are p, ¢ € #(U) such that Sy(f)—Sv(g)+p=f—9g+¢. Now
since Sy(f) —Sv(g) +p € 2*(U) and (Su(f) — Svu(g) +p) > 0 on U we have
Su(f) —Su(g) + p > 0. But since p is a potential and Sy(f) — Su(g) € H#*(U),
this implies Sy (f) — Su(g) > 0.

1 = 3: First we prove a lemma:

Lemma. Let p, g, k, 1l € P(U) and let f, g € B(U)* such that f Ag=0.
If we have f-p+g-q>k and f-q+g-p> [, then we can find p', ¢ € & with
p'<pand ¢ <qsuchthat f-p'+¢g-¢' =k and f-¢'+¢g-p' =1.

Proof of Lemma. Note that kA(f-p) < (f-p+g-q)A(f-p) = f-p. Hence there
isa f'€ B(U) with f'<1and kA (f-p)=f(f-p)=(ff)-p=F(fD).
Note that we may assume f' =0 on {f = 0}. Similarly /A (g-p) < ¢-p and hence
thereis a ¢' € Z(U)* with ¢’ <1,¢9'=0o0n {g=0} and A (g-p)=9g-(¢'-p).
Now set p' = (f'+¢')-p, then wehave p' < p, kA(f-p) = f-p' and IA(g-p) =g-p'.
In a similar way there is a ¢’ € Z(U) with ¢ < ¢ and k A (g-¢q) = g-¢ and
Il=A(f-q)=f-q¢.Butnowwehave k=k A (f-p)+kA(9-¢9)=f-p+g9-¢
andalso I=f-¢'+g-p'. D

Note that

(f=9)" p+(g—HTa=Kv(f) = Ku(g) = (9= " -p-(f-9)" ¢
for some p, ¢ € P(U) with ||g|| < 1. Now take k, [ € P(U) such that Ky(f) —
Ky(g9)=k—1and k Al =0. Then we have (f —¢g)" -p+(9— f)t ¢ >k and
(f—=9) g+ (¢g— f)T - p> 1 and hence we can find p, ¢’ € & with p' <p and
¢' < g suchthat (f—g)*-p'+(9-f)*-¢' =k and (f-g)*-¢'+(9-F)F-p'=1.
So we have Ky(f) — Kvu(g)=(f—9)-p' —(f —g)- ¢ with ||¢'|| < 1. Now we
can apply [3, Corollary 2.9] to (I + Kp — K¢ )(f —9) = Su(f) —Su(g) € 2*(U)
and we obtain the desired implication. o

Theorem 2.2. The map Sy is surjective (and hence bijective).

Proof. We use the same line of proof as in [17, Theorem 2.1].

Let f € #(U),, then we want to find u € ZB(U), such that S(u) = f.
First we reduce the problem to a more simple one. Take p; € Z(U) such that
p1 = Ku(f) = —p1 and set po = (I — K;)"(p1). Then po € Z(U) and py —
po-q > Ku(f) > po-q—po. Now define Ki;(9) = Ku((=po) V (po A g) + f)
for all g € 2(U) — #(U). Now suppose we have v € P(U) — P(U) such that
v + K{;(v) = 0. Define v' = v — pg, then

v'=v—py=—Ky(v) = po < =Ky (v') + (v = v') - ¢ — po
= —Ky(v) +po- ¢ —po < —Ky(v') + Ku(f) = —=Ky(v') + Ky(0).
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Now using Theorem 2.1 on K{; we get that v’ < 0 and hence v < py. Dually we
get v > —po and hence Sy(v+ f) = v+ f+ Ky (v) = f. So it is sufficient to prove
that Sy(v) =0 has a solution for any Ky: Z(U)y — P(U) — #(U) such that:

1. There exists an r € P(U), such that for all f we have: r > Ky(f) > —r;
2. There exists a p € P(U), such that for all f > g we have:

(f—9)-p> Ku(f) —Ku(g) > (9 - f)p.
Define v; = r and vn41 = (I + K,) 7} (Kp(vn) — Ku(vs)). Since
(I+K,)(v2 —v1)=—Ky(v1)—v; = —Ky(r) —r <0
we get vy < v;. Now suppose v, < v,_1, then
(I + Kp)(vn+1 — vn) = Ku(va-1) — Ku(vs) = (vp-1 —va) -p < 0

and hence v,4+1 < vn. So by induction we get that (v,) is specifically decreasing.
Furthermore, note that v; = —r and suppose we have v, = —r, then

I+ Kp)(vng1+7)=7r—Ky(vn)+ (va+71)-p>r—Ky(va) =0

and hence v,4; > —r. So again by induction we get that (v, ) is specifically lower
bounded by —r. Hence v = inf,, v,, exists and r > v = —r. Since

|Ku(v) = Ku(va)| < [o = va| -p— 0
and since vp41 4+ Vnt1:p = Vn-p— Ky(vn) we get v+v-p=v-p— Ky(v). Hence
v is the function we were looking for. o

Proposition 2.3. Let F C #(U), be upper directed such that F < f for
some f € B(U)y. Then we have Ky(VF) = limyer Ky(w).

Proof. Note that we may assume that F is bounded Take ke p € P(U) and

take a decreasing sequence F' C F' such that 1nf( f—F)=inf ( f—F'"). Then we
have A((f — F')-p) = (inf(f — F')) - p and since { A (f — F') <inf(f — F')} is
semipolar and inf(f — F') bounded, we get

MU =F)p) SA((f-F)p)=(A-F))p=(A(f-F)-p=<(f-F)-p.
Hence A((f —F)-p)=(A(f—F))-p. Now

mw-p=f-p-ln(f-w)-p=Ff-p-ANf-F) p=VF-p.
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Now for all w € F we have (VF —w)-p = Ky(VF) — Ky(w) > (w = VF) - q.
Since the left and right side of this inequality go to 0 if w — VF we get that
limyer Ku(w) = Ku(VF). u]

Now let 8 be a covering of X with Z-sets and let % be the collection of
all U with U compact and contained in some W € 6. By the notation V & U
we mean that V € % and V C U. A semilinear perturbation is defined as map
U — Sy =I+Ky on %, where for every U € % , Ky: Z(U)y » P(U)—- Z(U)
has the previously mentioned Lipschitz property:
(LL) There exists a ¢ € 2(U), ||q|| £ 1, such that for all M >0,

there exists a p € P(U), such that forall f > g, |f| <M, |g| <M,
we have: (f —¢)-p> Ku(f) - Ku(9) > (9-f) ¢

Furthermore, we must have:
(SH) V e U = Ku(f) = H(V, Ku(f)) + Kv(f).

We will say that a semilinear perturbation is linear if Ky is linear for all
U € % . We will say that a semilinear perturbation is isotone if (LL) is satisfied
with ¢ = 0 for all U € % . It is easy to check that the linear perturbations
coincide with the perturbations defined in [3] and [12]. In the appendix we will
show that the isotone perturbations coincide with the perturbations defined in
[17]. Furthermore, we will have by Theorem 3.8, that any semilinear perturbation
can be obtained by a (negative) linear perturbation, followed by a (non-linear)
isotone perturbation.

Standard example. As an example, consider the classical harmonic space,
i.e. the harmonic space describing the solutions of the Laplace equation Ah =0
on and let p be a smooth potential on X with Ap = —1. Now take a Lipschitz
continuous function ¢ on XxR and define Kx(f)(z) = ¢(z, f(z))-p and Ky(f) =
Kx(f)-H(U, Kx(f)). Then we have a semilinear perturbation and the perturbed
harmonic space will describe the solutions of the equation Ah—g(-,h) = 0. At the
end of the next section, we will refer to this example to get a better understanding
of the definitions and results in that section. Note that all remarks we will make
about this standard example are heuristic, so we will not worry about technicalities
like differentiability.

3. Biased semilinear hyperharmonic functions

In the rest of this text, S will be a fixed perturbation.

In linear theory, specific order plays an important role. It enables us to get the
same results on ‘hyperharmonic functions relative to a hyperharmonic function f”,
as on ‘hyperharmonic functions relative to the harmonic function 0’. The proof
of such results is usually ad hoc, but an analysis of such proofs reveals that the
essential steps are as follows:

1. subtract a hyperharmonic function f;
2. prove the result relative to the harmonic function 0;
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3. add the hyperharmonic function f again.

What we will do is formalize this technique. The most essential notion in
this formalization is the idea of a bias. This bias should be seen as the function
one wants to compare with (the function f above). In this section, we will define
hyper- and hypoharmonic functions with respect to a bias, and we will show that
these functions have similar properties as hyper- and hypoharmonic functions on
the original harmonic space. In the next sections, we will apply these biased hyper-
and hypoharmonic functions to prove some nice results on specific order.

An application of these ideas to linear harmonic spaces gives:

1. g is hyperharmonic with respect to a bias f if ¢ — f € J#*;
2. g is hypoharmonic with respect to a bias f if ¢ — f € J&;
3. the harmonic operator with respect to a bias f is ¢ — H(g — f) + f.

Note that also continuity must be seen relative to the bias f. This implies
that the boundary conditions for upper and lower functions with respect to a bias
f become more complicated if f is not continuous. Furthermore, for technical
reasons, the bias is not always a function, but it is locally a function.

Semilinear biases. A map ¢ that assigns to every U € % a function
@(U) € Cg(U)p such that V € U implies Sy (¢(V)) — Su(p(U)) € (V) is
called a (semilinear) bias. Evidently, every f € C¢(X) is a bias. Let ¢ and ¢’ be
two biases and A a real number. We define a bias ¢ F ¢’ by Su(e +¢'(U)) =
Su(e(U)) + Su(¢'(U)). In a similar way we define ¢ = ¢' and A~¢p. Note that
this defines a linear structure on the set of biases with a 0-element 0 defined by

0(U) = S;%(0).

Lemma 3.1. For any bias ¢, there is a ¢ € %#(X) such that for all U € %
we have p(U) — 3 € C(U).

Proof. Since X has a countable base, there is a countable covering (U,) C %
of X. Furthermore, there are V,, € % such that U, € V,, for all n. Define
U" = UL U, and V" = UX,V,,. We will define a sequence 1, of bounded
functions such that ¢, is defined on V™ for all n, ¥, — (Vi) € C(V"NV;) for all
n and all 7 and ¥n41 =9, on U™ for all n. First set 1), = ¢(Vi) on V} = V1,
Now suppose we have 1, with the desired properties. Then there is a continuous
function f on X such that f =1, —¢(Voy1) on Ur N U,4;. Now we can define
Ynt1 to be ©(Voy1) — f on Vopy and to be ¢, on V™ \ V. It is easy to
check that 1 satisfies the desired properties. Now we define 9(z) = ¥,(z) if
zeU,.no

In the rest of this section ¢ will be a fixed bias and 3 will be a fixed Borel
function on X such that for all U € % we have ¢(U) — ¢ € C(U). Note that
for any ¢’ with the same property we have 1 — ¢’ € C(X). It is easy to check
that 1 € C¢(X) and that all definitions and results stated in this section will be
independent of the particular choice of .
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Biased semilinear Dirichlet problem. Let U € % and ¢ a numerical
function on AU . If g is upper bounded we define

I*(¢; U, g) = inf { f € Z(U)s|Su(f) — Su(e(U)) € 2*(U)s,
F—9>g—1¢ondU).

If g is lower bounded, I,(¢;U,g) is defined dually and if I*(¢; U, g) = Li(¢; U, g)
for some bounded ¢, then we denote the common value by I(¢; U, g).

Proposition 3.2. If U € W € % and g is a bounded numerical function on
oU, then

*(¢;U, ) < Sg' (H(U, 9 — Sw(p(W))) + Sw(p(W)).
Proof. Take V €U and f € #*(U,g — SW(c,o(W)))b and define:

(W, ¢;U,9) = S5 (H(U,g — Sw(e(W))) + Sw (¢(W)))
F =S5 (f + Swle(W)))
h=f'+(I - K™ (Ku(f') Y 0)v).

Now, since (Ku(f')Y0),, > 0 we get Su(h) >~ f+Sw(e(W)) and hence Sy(h)—
Sw (¢(W)) € #*(U)s. Furthermore, on U\ V we have

h2> '+ (Ku(f)Y0), > f'+ Ku(f)v = f + Sw(e(W)).

This implies h/-\1,b > g — v on OU. So we have the following inequalities:

I*(¢;U,9) —h <0
h—f' =1~ K)  ((Ku(f)YO0)v)
f=1W,0;U,g9) <(I-Ky) ' (f —H(U,9 = Sw(p(W))))-

Now we can use the following lemma and the boundedness of (I—K,)™!, to choose
f and V such that the right hand sides of these equations become arbitrary small.

Lemma. Let ¢ € #(U) with ||q|| < 1. Thenforall V €U and ¢ > 0 there
isa WU suchthat (I - Ky) ' (U\W)<eonV.

Proof. Note that for all V € U and all ¢ > 0 there isa W &€ U with
K U\ W) < ¢ on V. By induction we get the same property for K. Now fix
V €U and € > 0. There is a N such that Y -\ |lg|" < 3¢. Forany n < N
there is a W, € U such that KX(U \ W,) < ¢/2N on V. Set W = U W,.
Then (I - K)"'(U\W) =Y K}(U\W)<eon V.o

Hence we get I*(p;U,g) <I(W,¢;U,g). o
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Proposition 3.3. Let U € %, then we have:

1. If g is a bounded function on OU , then I*(¢; U, g) > L(¢; U, g);
2. If g€ B(OU), and W € % with U € W, then

I*(¢; U, 9) = L(¢; U, 9) = S5' (H(U, g — Sw(e(W))) + Sw (¢(W));

3. If f,g € B(OU), with f— g € LSC(8U)* and z € U, then I(p;U, f)(z) =

I(p; U, g)(z) if and only if f = g on the support of H(U,-)(z);

4. If F € #(0U)y is upper directed such that f = supF € £(0U), and

supH(U, F) = H(Uaf)’ then sup I(‘Pa U3F) = I(‘P; U, f):

5. If f € B(X)p is fine L.s.c. in x, then liminfy_.. I(¢; V, f)(z) > f(z);
6. Let ¢ € OU be regular and f € #(0U), with f — 1 continuous in z, then
limy_..(I(¢; U, f) = ¥)(y) = f(z) — ¥(z).

Proof. Claim 1 follows from 2.1, 2 from 1 and 3.2, 3 and 4 from 2.1.

5: Take a neighbourhood W € % of z and h, g with S(h) — Sw(p(W)) €
#*(W) and Sw(e(W)) — S(g) € #*(W), and h > f > g. Set M = |||V |g]|
and let p, ¢ € (W) be as in property (LL). Then for all V € W we have
h > 1(e;V, f) > g and hence

(h—g)-(p—H(V,p)) = Kv(I(¢; V. f)) — Kv(g) = (¢ — h) - (¢ — H(V,q)).

Now if V' — z, then ((h—g)-(p—H(V,p)))(z) — 0, ((9—r)-(¢—H(V,q)))(z) — 0
and Kv(g)(z) = Kw(g)(z) — H(V,Kw(g))(z) — 0. So we must have

Kv(I(e; V, ) (z) = H(V, f —Sw (p(W))(2) + Sw (2(W))(z) = I(¢; V, f) = 0

in . Now if f is fine l.s.c. in = then sois f — Sw(go(W)) and hence
liminf H(V, f — Sw (#(W))) () 2 (f = Sw (#(W)))(2)

and hence we must have liminfy_.. I(¢; V, f)(z) > f(z).

6: Take M = ||I(p;U,f)||, W € % with U € W and p € £(W) such
that p = Kw(h) > —p for all h with ||h|| < M. Set p' = p — H(U,p), then
p' = Ky(h) = —p' for all h with ||h|| < M and limy_,; p'(y) = 0. In particular
limy_.; Ky(h)(y) =0 for all h with ||h|| < M. Now

Ku (16U, ) = H(U, f = Sw (#(W))) + Sw (o(W)) — 13 T, f)

and since

lim H(U, f = Sw (¢(W)))(y) = (f = Sw (¢(W))) (=)
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we also have
lim (I(p; U, f) = Sw (¢(W)) (v) = f(2) = Sw (¢(W))(2). ©

Lemma 3.4. Let U € % and f,g € #(U) such that:
Su(9) = Su(e(U)) € H4(U)s;
f—g€LSC(U);
f/—\g >0 on OU;
For all z € U, there is a neighbourhood V, € U of z such that f(z) >
I*(SO; VZ> f)(x) .
Then f > g.

Proof. Take a bounded strict potential p on a neighbourhood of U and define
9o =9 — (I — K;)"'(ap). Forall V. € U we have H(V,Su(g) — Su(e(U))) >
Su(g) — Su(e(U)). Since Su(g) — Su(ga) = ap and since p is strict, this implies
H(V,Su(ga) — Su(¢(U))) > Su(ga) — Su(p(U)) . Using (SH) this is equivalent to

H(V, g0 — Su(#(U))) + Su(¢(U)) > Sv(ga)

and using 2.1 we get I(p;V,ga) > ga-
Now suppose f(y) < ¢g(y) for some y € U. Now there is an a > 0 such that
f 2 ga and f(z) = ga(z) for some z € U. So we have the contradiction

f(z) 2 Lp; Ve, f)(z) 2 1(p; Vi, ga)(z) > galz) = f(z). 0

Biased semilinear hyperharmonic functions. For each open U C X we
define the set of -semilinear hyperharmonic functions by

SH#*(p;U) = {fIf —¢ € LSC(U), and for all V € U : Li(¢; V, f) < f}

Again S5 (p;U) is defined dually and we set S52(p;U) = Ss#*(p;U) N
SH#.(p;U). Now for all numerical functions g on U we define

oW N

SH#*(p;U,g) = {f € 35*(;U)|f lower bounded and f/;\z/; >g—1ondU}

and SH(p;U,g9) = infSs#*(p;U,g). Dually we define SH#(p;U,g) and
SH(p;U,g). If SH(p;U,g) = SH(p;U,g), then we denote the common value by
SH(y; U, 9).
Proposition 3.5. Let U € %, then:

1. Sy(h)—Su(p(U)) € #(U)s if and only if h € S5 (p; U)y;

2. If Sy(h) — Su(p(U)) € H*(U)s, then h € SH#*(p;U)s;

3. For any upper bounded numerical function g on 8U we have SH(p;U,g) =
*(p;U,9); _
For any numerical function g on dU we have SH(yp;U,g) > SH(p;U, g);
5. If F C 35 (p;U)s is upper directed and bounded, then sup F € S5 (¢p; U)y.

-
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Proof. Claim 1: From (SH) and 2.1 we get: I(V,h) = h is equivalent to
H(V,h) +Su(e(U)) — H(V,Su(¢(U))) = Sv(k) which is equivalent to

H(V,Su(k)) +Su(¢(U)) —  (V;Su(¢(1))) = Su(h).

2: From (SH) and 2.1 we get: H(V,Su(h)—Su(¢(V))) < Su(h)—Su(e(V)) is
equivalent to H(V,h—Sy(¢(U))) +Su(¢(U)) < Sv(h) and this implies I(¢; V, h)
<h.

3: It is clear that SH(p;U,g) < I*(p; U, g). Now take any f € S5#*(p;U,g).
Then there is a h € #(0U ), h > g such that f/—\d) >h—1 on OU. By 3.4 we
get that f > L(p;U,h) = I*(¢; U, k) > I*(p; U, g) and hence also SH(p;U,g) >
I*(¢;U, 9).

4: Take any f; € So#*(¢;U,g) and any f, € SH(p;U,g). Then there is a
h € B(0U); such that also f; € SH#*(p;U, k) and f, € SH(p; U, h). Hence we
have f; > SH(p;U,h) = I(p;U,h) = SH(p;U,h) > f» and hence SH(yp;U,g) >
SH(p; U, 9g).

5: Since F C S5 (p;U)s we have that Sy(F) — Su(¢(U)) € #(U),. Fur-
thermore, since F is upper directed, by 2.1 also Sy(F) — SU(ga(U)) is upper
directed and we have that Sy(sup F') — Sy (¢(U)) = sup (Su(F) — Su(¢(U))). So
by the Bauer convergence principle Sy(sup F) — Sy (¢(U)) € H#(U)s and hence
supF € S (p;U)y. O

We say that a numerical function f on an open set U is nearly ¢-semilinear
hyperharmonic on U if f is locally lower bounded and for all z € U there is
a neighbourhoodbase 7, C % such that for all V € 7, we have V €@ U and

SH(g; V. f)(z) < f(2).
Theorem 3.6. Let f be nearly ¢ -semilinear hyperharmonic on U and let g
be the fine l.s.c. regularization of f, then g € S5¢*(p;U).

Proof. It is easy to check that
H(p;U,9) = L(#;U,g) = sup {I(¢; U, h) | g S h € B(OV)s }
and hence SH(p;V, f) — ¥ € LSC(V). In particular SH(p;V, f) is fine ls.c., and

so also ¢ is nearly -semilinear hyperharmonic on U. Note also that from 3.3 we
get liminfy_,, SH(yp;V,g)(z) > g(z). Hence for any neighbourhood W € % of =z
we have
g-%(@) 2 lim (PH(p;Ve,9) = ¥)(2) 2 g(2) —v(x) 2 g — $(2).

So g—1 € LSC(U) and now for any V € U we can apply 3.4 to show L.(p;V, g) <
g.o

Note that this result immediately implies that S3#* is a sheaf. Note also that
X, endowed with S5#*(¢)—1 and S5 (p)—1 satisfies all the assumptions made
in [8] and [9]. Hence all the results and notions from those papers can be applied.
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Theorem 3.7. If the perturbation is linear, then (X, S.ﬁf*(a)) is a harmonic
space and we have Sy (35#*(0; U))=*(U) forall U € % .

Proof. It is easy to check that SJ# *(6; U) is a convex cone and from the
previous results it is clear that X with S5#*(0) satisfies all axioms of a harmonic
space. Since we have Sv(s.ﬁf(ﬁ; U)) = H#(V), and SV(S.%”*(G; U)) D (V)
we can use 2.1 to show that S;;'(p) is an 0-semilinear potential for any p € 2(U).
Hence Sal o Ky is a difference of potential kernels and so SEI =1— Sal o Ky

defines a perturbation on the 0-semilinear harmonic space that returns our original
harmonic space. Hence we must have Sy (55£*(0;U);) = o*(V),. o

Theorem 3.8. Any semilinear perturbation can be obtained by a (negative)
linear perturbation followed by a (non-linear) isotone perturbation.

Proof. Forany U € % , let ¢[U] be the smallest ¢ € Z(U) for which property
(LL) holds on the set U. Take V € U and f,g € B(U), with f > g. Using (SH)
we get that Kv(f) — Kv(g) 2 (9 — f) - q[U]. Since K, — H(V,K,) = K,_nv,)
this implies ¢[V] < q[U] —H(V, ¢[U]). Again using (SH) we get Ku(f)— Kuv(g) =5
(9 — f) - q[V]. Now take ¢ = ¢[U] on U\ V and ¢ = ¢[U] A (h+¢[V]) on V, for
some h € s*(V,q)NC(V). Then ¢ € P(U) and ¢ = ¢q[U] Y ¢[V] on V. Hence
Ky(f) — Ku(g) = (9 — f) - ¢ and so ¢ > q[U]. Hence h + ¢q[V] > ¢[U] for all
h & *(V, q) andso g[V] > g[U]~H(V,q[U]). Sowe have g[V] = g[U}+H(V, q[U])
and hence the K[y} form a linear perturbation.

Now define Ky, = (I — Kyu)) ™' (Ku + Kgu)). Then for all f > g we have
(I-Kyqu) " ((f—9) - (p+4q) = K,(f) — K;(g9) = 0. Furthermore, for all
f and V C U we have that Ky(f) — K{,(f) is ‘(-q)-harmonic’ on V. Hence
K' defines an isotone perturbation on the ‘(-q)-harmonic’ space. Furthermore,
(I = K)o (I + Kyy) = (I + Ku). o

Proposition 3.9. Let U € %, then:

1. Su(h) —Su(p(U)) € #*(U)s if and only if h € S5*(p;U)s;
2. The fine topology is the coarsest topology, finer than the original topology,

for which all ¢ -semilinear hyperharmonic functions are continuous.

Proof. 1: First suppose the perturbation is isotone. Then from (SH) and 2.1
we get

H(V,Su(h) — Su(e(U))) < Su(h) — Su(e())
is equivalent to
H(V. h = Su (1)) + Su(¢(D)) < Sv(h)

and this is equivalent to I(¢;V,h) < h. Now suppose the perturbation is linear.
Then the statement follows from 3.7. In the general case we can combine these
two results using 3.8.
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2: Let o be the fine topology generated by S5#*y(p). Take U open, f €
SH#*(p;U) and z € U. If f(z) = oo, then since f — 1) is lower semicontinuous,
it is continuous and hence o-continuous in z. If f(z) < oo, then there is a
neighbourhood V of z and a g € S5#*(p; V), such that g(z) > f(z). Since
g A f €55*(p;VNU) we have that g A f is o-continuous on VN U. Since also
g is o-continuous on V NU and g(z) > (¢ A f)(z) we have that ¢ > gA f ona
o-neighbourhood W of z. Hence g A f = f on W and so f is o-continuous on
W and in particular in z. So any f € S5#*(p) is o-continuous and hence o is
the fine topology generated by S2#*(p). Similarly, the fine topologies generated
by J* and J* coincide.

Now take U € % and f € S5#*(¢;U),. Then g = Su(f) — Su(e(U)) €
2#*(U)y and hence f =g — Ku(f) + ¢(U) + Ku(¢(U)) € C#(U). So o is finer
than the fine topology.

Now take U € % and g € S£*(U),. Then f = S;'(g + Su(e(U))) €
S#*(p;U)s and hence ¢ = f + Ku(f) — ¢(U) — Ku(¢(U)) is o-continuous.
(f,¢(U) € 55£*(p;U) and Ku(f),Ku(¢(U)) € C(U).) So o is coarser than the
fine topology. o

Standard example. Now let us go back to our standard example. The first
thing we should note is that the definition of the semilinear bias ¢ is such that
for all U, V € % we have Ap(V) —g(-,¢(V)) = Ap(U) — g(,¢(U)) on UNV.
This implies that Ap —g(+, ) is a well defined expression. Now we can see the ¢-
semilinear hyperharmonic functions as those functions f such that Af —g(-, f) <
Ay — g(+,¢). Similar expressions hold for the ¢-semilinear hypoharmonic and
the ¢-semilinear harmonic functions. Furthermore, it is easy to check that the
specific preorder f >s h defined in the next section is equivalent to Af —g(-, f) <
Ah — g(', h) .

4. Specific order

For U open and f, g € C¢(U) wesay f s g on U if forall V € U we have
Sv(f) —Sv(g) € o*(V). If both f s g and f > g on U then wesay f >s g
on U. If both f s g and g s f on U then we say f ~ g on U. Obviously Zs
is a preorder, »~g is an order and ~ is an equivalence relation on Cs. Note that
f s g on U implies f —g € LSC(U) and that if U € % and f, g € C¢(U)s,
then f =g g on U if and only if Sy(f) — Su(g) € #*(U). The next theorem
is the main reason for introducing biased semilinear hyperharmonic functions. It
will enable us to prove the other results on specific order.

Theorem 4.1. If U isopen and f, g € C¢(U), then the following statements
are equivalent:
L fZsy;
2. fedH*(g;U);
3. ge€SHA(/;U).
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The proof follows from 3.9. o

Theorem 4.2. If C¢(U) 5> f =s F C C4(U), F locally upper bounded, then
the supremum VF of F in C¢(U) exists, it is equal to the fine upper semicontin-
uous regularization of sup F' and we have VF Zs f.

Proof. sup F is nearly f-semilinear hypoharmonic. o

Theorem 4.3. If C4(U) > f >=s F C Cy(U), then the semilinear specific
supremum YsF of F in C4(U) exists and for all V € U and h € C¢(V) with
h s F on V, we have h 2Zs YsF on V.

Proof. Set k =A{g| g >s F}. From 4.2 we have k s F'. Now take W € V
and g € S5#*(h;W,k) and define ¢ =kAgon W and ¢ =k on U\W. Itis
easy to check that g € So#*(f; W, k) for all f € F and hence that ¢’ >s f for all
feF. So g >k and thus ¢ > k on W. So now we have SH(h; W, k) > k and
hence h s k. This implies {g | g >s F} =s k s F' and hence k = YsF'. o

Similar to the linear case, we define reduced functions by SR*(¢;U,g) =
inf{f € SH#*(p;U) | f 2> g}. Note that SR*(p;U,g) is nearly ¢-semilinear
hyperharmonic. So if g € Cf(U), then SR*(¢; U, g) € S#*(p;U).

Theorem 4.4. Suppose V C U, ¢ a bias, g € C¢(U) and h € C;(V) with
heSH#*(¢;V) and g 35 h on V. If SR*(¢; U, g) is locally bounded on V', then
SR*(p;U,9) s hon V.

Proof. Take W € V and u € So#*(h;W,5R*(¢;U,g)) and define v’ =
SR*(p;U,g) on U\ W and u' = SR*(¢;U,g) Au on W. Now we have u —¢ >
(u—h)+ (h—) > (SR (#;U,g) — h) + (A — %) = SR*(¢;U,g) — ¢ on W and
hence u' — 3 € LSC(U). So we get u' € S#*(¢;U). Furthermore, we have
u € S5#*(h;W,g) and hence u > SH(h;W,g) > g. So g < u' € SH#*(p;U) and
hence u' > SR*(p;U,g). Since u was arbitrary we get SH(h; W,5R*(¢; U, g)) >
SR*(¢;U,g). Now, since W was arbitrary we get SR*(¢;U,g) € SH4(h; V). 0

Note that this result implies that, for h € S5#*(p;U) with h s g on U, we
have h =5 SR*(p;U,g) on U. In linear theories, this is equivalent to the Riesz
decomposition property.

Lemma 4.5. Let U € % and let F C C#(U) be bounded. Then the

following statements are equivalent:

1. Thereis a g € #*(U)y with g1 > F;
2. Thereis a g; € #*(U)y with g, 2 F';
3. Thereisa g3 € S%’*(ﬁ; U)y with g3 >s F;
4. Thereisa g4 € 5%*(6; U)y with g4 225 F.

Furthermore, if we can choose one of the g to be continuous, then we can also
choose the other g continuous.
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Proof. 1=>3: Take k € P(U) with k > Ky(F) and set g3 = S;*(g1 + k).

3=4: Set g4 =g3.

4 = 2: Take k € £(U) with Ky(F) > —k and set g2 = Sy(g4) + k.

2=1: Take k € #*(U)y NC(U) with k > F — g, and set g; =g, + k. O

For all open U, define Z(U) = {f € C4(U) | for all V € U there exists
a g €5a*0;V)y NC(U),h € SH(0;V), NCU) : g &=s f &=s h onV}. From
4.5 it is clear that & is the sheaf of functions that can locally be expressed as
difference of bounded continuous hyperharmonic functions. So &% is independent
of the perturbation.

5. Potentials and their linear structure

Let U be an open set and ¢ a bias. We define the set of (-semilinear
superharmonic functions on U by 5.#*(¢;U) = {f € 55*(p;U) | for all V CC
U :SH(p;V, f) € 5(p; V)} Now for any h € Cf(U) we say that f is an upper
h-semilinear potential on U if f € S#*(h;U) and h is the greatest h-semilinear
hypoharmonic minorant of f. We denote the set of h-semilinear potentials on U
by S&*(h;U). It is easy to check that if p € S#*(h,U) and p>q>s h on U,
then we have g € S#*(h;U). Furthermore, if f € S #*(g; U) and g € S&*(h;U),
then f € SP*(h;U). The set SP,(h;U) of lower h-semilinear potentials on U
is defined dually.

In the rest of this section we will assume U € % and h € Cf(U), and we
will only consider bounded potentials. These restrictions are necessary in 5.1, 5.2
and 5.5. All other results can, except for their dependence on Theorems 5.2 and
5.5, be proved for U open, h € C¢(U) and potentials in Cy(U).

Proposition 5.1. We have Sy (5 2*(h;U)y) — Su(h) = P*(U)s.

Proof. Take p € S#*(h;U)s, then evidently Sy(p) — Su(h) € 2*(U)}.
Now if g € 4 (U)t, g < Su(p) — Su(h), then we have g + Sy(h) < Sy(p) and
g+ Su(h) j SU(h). Hence Sal(g + Su(h)) <s p and Sal(g + Su(h)) Zs h.
Now since we had p € 2*(h;U), this implies S;* (g + Su(h)) <s h and hence
g +Su(h) < Sy(h). So g <0 and hence Sy(p) — Su(k) € Z*(U)s.

Now take a p € #*(U);. Then evidently p' = S;;'(p + Su(h)) >=s h and
p' is bounded. Now if ¢ X5 h and g < p', then we have g <5 p' and hence
Su(g) 3 Su(k) and Su(g) X p+Su(h). So Su(g) — Su(h) € Hi(h) and Su(g) -
Su(h) < p. Hence Sy(g) — Su(h) < 0 and so Sy(g) < Su(h). So g <s h and
hence p' € S#*(h;U),. o

Theorem 5.2. If p, ¢ € S#*(h;U)y and p ~ q, then p = q.

Proof. Take f the smallest p-semilinear hyperharmonic majorant of A. Then
f~p~gqand f <p,g and hence also f € SP*(h;U)y. So without loss of
generality we may suppose p > q.
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Now set h' = S;*(Su(h) + Su(p) — Su(q)). Then A’ ~ h and by 2.1 we
have h < k' < p. So since p € SP*(h;U), we get h' = h. But this implies
Su(p) = Su(q) and hence, again by 2.1, we get p =gq. o

Let p, ¢ € SP*(h;U) and A > 0.

1. Ifthereisa feSH#(pF qg h; g) NSZ*(h;U)s, then we write f =p®q.

2. If thereis a f € S (A7 (p=h) + h) NS P*(h;U)s, then we write f =A@ p.
Note that by 5.2, these definitions are unique and that it is not evident that
p@®q and X\ © p always exist. Note also that these definitions depend on U and
h. It is easy to check that p®qg=q¢®p, (p P Pk=pD(¢DEk), pDh =p,
A0(p®g) = (AOP)®(A0q), (A +7)0p =(A0p)8(vOP), (A1)Op = AO(YOP)
and 1®p = p. Furthermore, in all these equations, the left part exists if and only
if the right part exists.

Proposition 5.3. Let p, ¢ € S%*(h;U)s, then the following statements are
equivalent:

L. p>sgq;

PZs 4

There is a k € SP*(h;U)y with p=q® k;

q €5 Zu(p; U)s;

peESPH(gGU)s.

If either of these is true, then the k mentioned in the third statement is unique
and will be denoted by k=pSq.

Ok N

Proof. 4,5 = 1= 2 is evident.

2= 3: It is easy to check that p e S#*(p ¥+ h=q;U) and h € SH(p T h =
q;U). Now let k be the greatest (p F h = ¢)-semilinear hypoharmonic minorant
of p. Then k€ S (pFh=¢q;U) and p s k >=s k, hence k € SP*(h;U),. Since
keSx#(p¥hZqU) is equivalent to p € SH# (¢ + k= h;U) we get p =g D k.
Now take a general k' € SZ*(h;U), with p = ¢ @ k'. Then we must have
k' €S (p¥ h=gq;U) and hence k' ~ k and so k' = k.

3= 2: Since p € S (q¥k=h;U) wehaveforall V € U that Sy (p)—Sv(q)—
Sv(k)+Sv(h) € (V). Sincealsoforall V€ U we have Sy (k)—Sv(h) € 2*(V)
we get Sy(p) —Sv(q) € #*(V) for all V € U and hence p Zs g.

2 = 1: Let f be the greatest g-semilinear hypoharmonic minorant of p.
Then p> f > h and f ~ g >s h. So f € SP*(h;U); and hence f = q. Hence
q<p.

1 = 4: Let f be the smallest p-semilinear hyperharmonic majorant of q.
Then p> f>h and f ~p>s h. So f € SP*(h;U) and hence f = p. Hence
g €S Pu(p; U

1 = 5: Let f be the greatest g-semilinear hypoharmonic minorant of p.
Then p> f > h and f ~ g >s h. So f € SP*(h;U); and hence f = q. Hence
pESF (U o
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Now it is easy to check that u v = u®w implies v = w and that p@g="h
implies p = ¢ = h.

Lemma 5.4. Let A > 0 and p € S#*(h;U);. Now if A ® p exists, then for
all v with 0 <y < A\ we have that v p exists.

Proof. Take v with 0 < v < X and define the bias ¢ =y~ (p = h) ¥ h. It
is easy to check that A ® p € S#*(p;U) and h € S54(p;U). Now let k be the

greatest (-semilinear hypoharmonic minorant of A®p. Then k € S5 (p;U) and
AOp>s ks h,hence k € SP*(h;U). o

Theorem 5.5. For all p, ¢ € S2*(h;U)y, p® q exists.
Proof. p® ¢ = Sy'(Su(p) + Su(g) — Su(h)). o

Theorem 5.6. The set S #*(h;U);, equipped with @, © is a lower complete
prevector lattice with O-element h and specific order >s.

Proof. From 5.4 and 5.5 we get that S27*(h;U), is a convex cone with 0-
element h. From 5.3 we get that the specific order on S&*(h;U); is 5. From
4.3 we get that S*(h;U), is lower complete. The other properties are easy to
check. o

For any numerical function f and any bias ¢, SC(y; f) denotes the smallest
closed set K such that f is ¢-semilinear harmonic outside K. Since S2#(y) is
a sheaf, it is clear that SC(p; f) always exists.

Theorem 5.7. The map SC(k;.) is an abstract carrier on (S 2*(h; U, U).

Proof. Evidently SC(h;p) = 0 if and only if p = h. Also evidently p<sq
implies SC(k;p) C SC(k;q). Now let p € SP*(h;U)y and let F; and F, be two
closed subsets of U with F} U F, = U. Define

pr=Y{f €3P*(WU)s | f <s p,°C(h; f) C F1}.

By 4.3 we have SC(h;pl) C Fi. Furthermore, p >s p; >s h and hence p; €
S#*(h;U)s and there is a p; € SP*(h;U)y with p = p; @ p;. Define ¢ =
inf{f | f >s h and f > p, on X\ Fi}. Then h <s ¢ < p; and hence ¢q €
SP*(h;U)y. Define f = SR*(h;U,p2 © (p2 As g)). Since p; = ¢ on X\ F} we
have p; ©(pz2 Asq) ~ h on X\ F; and hence f ~ h on X\ F;. Furthermore, since
P29 (p2 Asq) <s p2 we have h <5 f <s py. So now we have p; @ f <s p1®p2 = p
and SC(h;p1 @ f) C F;. Hence by definition of p; we get p1 ® f <s p1 and hence
f="h. Hence h <5 p2©(p2 Asq) < h and so p; = q. Hence SC(h;py) CX\ F; C
Fg . a

So, asin [6, p. 189], we can define the specific multiplication f®p of a positive
bounded continuous function f with p € SP*(h;U),.
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6. Polar and semipolar sets

For simplicity, we will prove the results in this section only in the isotone
case. However, using 3.8, it is easy to check that all results concerning polar sets,
thinness and semipolar sets also hold in the general case.

Balayage. Let U C X be an open set. For any A C X, any f € C¢(U) and
any g € SH*(f;U) with g > f we define SBA(U, f;9) = A{h € 3*(f;U) | h >
g on A,k > f}. Furthermore, for any A C X and any g € s#*(U)* we define
BA(U;9) = A{h€ #*(U)* |h>g on A}.

Lemma 6.1. Let U C X be open, ¢ a bias, f € S#*(¢,U) and g €
H#*(U)*t, then f+ g € So#*(p;U). Furthermore, if f € 5#*(p,U) and g €
F*(U)*t, then f+g € 55*(f;U).

Proof. Take Ve W €U, fo=(f—¢¥)An+1 and g, = g An. Then

SH(@; V, fa + gn) = H(V, fa + gn — Sw(e(W)))
+Sw(p(W)) — Kv (PH(#; V, fn + gn))
<H(V,gx) + H(V,9n — Sw(¢(W)))
+Sw (p(W)) = Kv(*H(@; V, fn + gn))
=H(V,gn) + SH(p; V, fn) < H(V,9) + SH(#; V, f).
Since fp + gn — ¥ € LSC(V) we get

SH(e;V, f + g) = supSH(; V, fn + 92) < H(V,9) + SH(p; V, f). ©

Lemma 6.2. If U C X is open, f € Cf;(U) and g € s#*(U)*t, then
BA(Us;9) + f 2 5BA(U, f; f +9).
Proof. We have by 6.1 that
BAU;9)+ f=A{h+flheH#*(U)",h>gon A}
>AN{heSH*(f;U)|h>f+gon A k> f}
=°BA(U, f; f +9). 0

Lemma 6.3. Let U € %, f € C4(U)y and g € 5#*(U);, then
Su(®BA(U, f; f +9)) > BA(U; ¢) + Su(/).

Proof. Define F = {h € S5*(f;U)y |h> f+g on Ak Zf} Now for any
h € F we have both Sy(kh) > Sy(f) and Sy(h) = h + Ky(h) > h+ Ky(f) >
g+ f+ Ku(f) = g +Su(f) on A. Hence Sy(k) — Su(f) > BA(U;g) and hence
Su(F) = BA(U;g) + Su(f). Now by 2.3 we get Su(*B(U, f; f +9)) = Su(AF) =
ASu(F) 2 B4(U;9) + Su(f). o
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Lemma 6.4. Let U € % and f,g € C¢(U), with f <s g, then

B4(U;Su(g) - Su(f)) < °BA(U, f;9) + Ku(g) — Su(f).

Proof. Take h € C¢(U) with f <s h < g and h =g on A. Then
h+ Ku(g) — Su(f) = Su(h) — Su(f) + Ku(g) — Ku(h) = Su(h) —Su(f) » 0

and h+ Ku(g) — Su(f) = Su(g) — Su(f) on A. Hence BA(U Su(g) — SU(f)) <
h + Kuy(g) — Su(f) and since h was arbitrary we get BA(U Su(g) — SU(f)) <
SBA(U, f;9) + Ku(g) — Su(f). o

Polar sets. As in [6], we say that a set A C X is polar if there is a covering
of X with open sets U such that BA(U;00) = 0. Note that this is only one of
several equivalent definitions of polarity. As we will see, many of these equivalent
definitions have their semilinear counterpart.

Proposition 6.5. The following statements are equivalent:

1. A is a polar set;

For all U € % and f € C¢(U) we have SBA(U, f;00) = f;

3. There is a covering of sets U such that for all U there are f € C¢(U) and
g € SH*(f;U) with g > f and SBA(U, f;g) =

Proof. 1 =2: By 6.2 we get f = BA(U;00) + f > SBA(U,f;oo) >f.
2 = 3 is evident.

3 = 1: Take z € X and a neighbourhood V of z with V &€ U for some
U in the covering. Now ¢ > f 4+ ¢ on V for some ¢ > 0 and we can take a
h € %*(V): with € > h > 0. Furthermore, f is bounded on V. Now evidently
f=5BAU,f;9) 25BA(V, f;9) 2 SB(V, f; f + k) > f. So by 6.3 we get

I

Sv(f) =Sv(*B(V, f; f + h)) 2 BA(V;h) + Sy (f)

and hence BA(V;h) =0. o

Proposition 6.6. If A is polar and f € Cy(U), then there is a g €
SF#*(f;U) with ¢ > f and A C {g = o}.

Proof. From 6.1 we get that for all ¢ € #*(U)* there is a h € S#*(f;U)
with {g = 00} = {h=00}. O

Proposition 6.7. Let A be a closed polar set, U C X open, ¢ a bias
and f € So#*(p;U \ A) such that f is lower finite on U. Then there is a
g €55*(p;U) with g=f on U\ A.
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Proof. Define g = (f/—\’t/J) + ¢ and take V € U and v € s£*(V)* with
v=o00 on A. Define h =00 on A and h=00A(f+v)=f+von V\A. Then

—_—

h—1 € LSC(V) and hence h € S5#*(p; V). Furthermore h—¢ > g—1 > g—1
on AV and hence h € SH#*(p;V,g). Since inf {v € H#*(V)* |v =100 on A} =0
on V\ A weget f>5H(p;V,g) >5H(p;V,g) on V\ A. Since SH(p;V,g9)— 9 €
LSC(V) this implies ¢ > SH(¢;V,g) on V. o

Proposition 6.8. Let A be a closed polar set, U C X open, ¢ a bias and
f €52(p;U \ A) such that f is lower finite and f is upper finite on U. Then
there is a g € SH#(p;U) with g= f on U \ A.

Proof. Define g* = (]‘/—\7,1)) + 1 and g, dually. For any V € U we have by
6.7,
SH(p; V,9*) < ¢ < g4 < SH(p; V, 94).

But since ¢* and g, are bounded functions on 9V, equal on (0V)\ A we have
H(V,g*) = H(V, g+) and hence SH(yp;V,¢*) = SH(p;V,g4). O

Thinness and semipolar sets. As in [6], we say that a set A C X is thin
at z € X if there are two open neighbourhoods U, V of z and a u € s£*(U)*
such that V C U and BA"Y(U;u)(z) < u(z). Furthermore, A is called totally
thin if it is thin at every z € X and it is called semipolar if it is a countable union
of totally thin sets. As with polarity, there are several equivalent definitions of
thinness and semipolarity.

Proposition 6.9. The following statements are equivalent:

1. A is thin at z;

2. For all neighbourhoods U € % of z, all f € C;(U) and all g € S5#*(f;U)
with f < g and g — f continuous and strictly positive in z, there is a
neighbourhood V C U of z such that SBA"V (U, f;¢)(z) < g(z);

3. For all neighbourhoods U € % of z and all f € C¢(U), there is a finite
g € SP*(f;U) with g — f continuous and SC(f;g) compact, such that
SBA(U, f;9)(z) < g(z);

4. There are neighbourhoods U, V of z, V C U, f € C¢(U) and g €
So*(f;U) with f < g, such that SBAYV(U, f; g)(z) < ¢(z).

Proof. 1 = 2: There is a v € J*(U)* N C(U) with BA(U;v)(z) < v(z).
Take 8 > 0 such that SBA(U;v)(z) < (f — ¢)(z) < Bv(z) and take a neighbour-
hood V C U of z such that f — g < fv on V. Then by 6.2 we get

SBAY(U, £;9)(z) < SBAY(U, £ f + ) < f(z) + BBAY (U3 v)(2) < g(2).
1= 3: Thereisa v € #*(U)* N C(U) with BA(U;v)(z) < v(z). Hence

SBAU, f; f +v)(z) < BAU;v)(2) + f < (f +v)(z).
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Take g € S 2*(f;U) such that g— f is continuous, SC(f;g) is compact, g < f+v
and SBA(U, f; f + v)(z) < g(z). Now we have

SBAU, f;9)(z) < SBA(u, f; f +v)(z) < g(z).

2,3 = 4 is evident.
4 = 1: Take a neighbourhood W @ U NV of z and note

"BAW, f9)(2) <SBAV(U, f,9)(x) < g(2).
Furthermore f bounded on W and there is a ¢’ € SS#*(f; W), with ¢ > ¢' > f

and g(z) > ¢'(z) > SBA(U, f; 9)(z). Hence ¢'(z) > SBA(W, f;¢')(z) and so by
6.4 we get

BA(W;Sw(g') — Sw(f)(2) < SBAW, f;9')(2) + Kw(g')(z) — Sw(f)(z)
<Sw(g')(z) = Sw(f)(z). o

Proposition 6.10. The following statements are equivalent:

—

A is a semipolar set;

2. For all U € % and all f € C¢(U), there is a locally lower bounded F C
SH*(f;U) with ANU = {AF < inf F};

3. There is a covering of open sets U such that for all U there is a bias ¢ and

a F C So8*(¢;U) locally lower bounded with ANU = {AF < inf F}.

Proof. 1= 2: Let U € % and f € C¢(U). Thereis a F C s#*(U)* with
ANU = {AF <inf F}. By 6.1 we have that F + f € So£*(f;U).

2 = 3 is evident.

3 = 1: Take z € X and a neighbourhood V @ U for some U in the
covering. Let ¢ be the bias corresponding to U. Take V € U and h € 5#*(V),
with h > 1. Define f, = S"}l(nh + Sv(cp(V))) and F, = FA f, on V. Then
Gn =Sv(Fn)—Sv(g) C #*(V) is and hence {AG, < inf G,} is semipolar. But
by 2.3 we have AG, = AF, + Ky(AF,) and inf G, = infF, + Ky(AF,) and
hence {AG, < infGn} = {AF, < inf F,}. So {AF < inf F,} and hence also
ANV = {AF < inf F} = Up{AF < inf F,,} is semipolar. So for every z € X,
there is a neighbourhood V, € % of z with ANV, semipolar. But there is a
countable covering of such V, and hence A is semipolar. o

Proposition 6.11. Let ¢ be a bias and f, g € S5#*(¢;X). If f and ¢
coincide outside a semipolar set, then f =g.

Proof. A semipolar set is of the first category in the fine topology, the fine
topology is a Baire space and f and g are fine continuous. o
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7. Appendix: Isotone perturbations

In this section % is the collection of all relatively compact sets for which the
closure is contained in a Z?-set.

Lemma 7.1. Let U,V € % and let (f,) C #&(U U V), be a bounded
increasing sequence with sup,, f» = f. For W € {U,V}, suppose that:

1. Z(W) is a sublattice of #(W )y containing the constants;
2. (fn) CZ(W);
3. Kw: ZW) —» P(W)— P(W) is a map with the following property:
(%) for all M > 0, there exist p,q € P(W),
such that for all f > g, |fI|< M, |g| <M,
we have: (f —g)-p> Kw(h) — Kw(g) > (g —h)-q.
Then there exist unique extensions of Kw that have the same property on the

sublattice of B(W ), generated by Z(W) and f. The p and q needed for the

extensions are the same as for the original map. Furthermore, if
(%) Ky(h) — Ky(h) € 22(UNV) for all h € Z(U) NZ(V),

then the extensions have the same property.

Proof. Let W € {U,V}. Let h be in the sublattice of (W), generated by
Z(W) and f.

If h=f,thenset hn = fo V (—|Al]l).

If he Z W), then set hy, = h.

If h=fVg for some g € Z(U), then set h, = (fn Vg)V (—|A]|).

If h=fAg for some g € Z(U), then set hn = (fn Ag)V (—|Al])-

Since Z(W), is distributive, one of these four cases is always true. Note that

hn Th and [|ha|| < |[R]]-

(Uniqueness) Take any extension of Kw to Z(W)U{h} with (*) and denote
it again by Kw. Let p, ¢ as in (x) with M = ||h||. Then for all m we have
(h—hm)-p = Kw(h) — Kw(hn) > (hm — h)-q. Since (h — hp)-p — 0 and
(hm —h)-q — 0 we get Kw(hn) = Kw(h). So Kw/(h) is uniquely determined.

(Existence) Let p, ¢ asin (*) with M = ||k||. For all n > m we have

(b —hm) - p > Kw(hn) = Kw(hm) = (hm — k) - q.

Since (h—hp)-p | 0 and (h—hm)-q | 0 we get that Kw(h,) is a Cauchy-sequence.
So we can define Kw(h) as the limit of this sequence.
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(*): Since
Ew(h) = Kw(hm) =Y (Kw(hnt1) — Kw(hn))
3 (Kw(hn41) — Kw(ha)) Y
+ 3 n+1) - I\W(h )) A0

and since for every n we have (with p and ¢ as in (*) with M = ||A||)

(hnt1 — hy)-p > (KW(hn+l) = KW(hn)) YO0
(hn - hn+1) g < (I\’W(hn-}-l) — I&"W(hn)) A0

we get that
(b= hm)-p> Kw(h) = Kw(hm) = (hm — h) - g.

Now suppose h' > h? and let p, ¢ asin (x) (on Z(W)) with M = ||hl|| v || 22| -
For all n we have

(W' —BY)-p> Kw(h')—Kw(hl) = (h—h').q
(hn V by = hy) - g = Kw(hy) = Kw(hy, V %) > (hy, — R, VRE) - p
(ho VR, = h%)-p = Kw(hy V h3) = Kw(h}) > (hh =R, VAL)-q
(R —h2)-q>= Kw(h2)—Kw(h?) = (b2 —h?)-p.
By adding these inequalities and taking the limit n — co we get
(R' = h?) - p>= Kw(h') — Kw(h?) = (h2 = h') - q.

(**): Take W resolutive in U NV. Since Ky(h,) — Ky(h) uniformly on
OW , we have that H(W, Ky(hn)) — H(W, Ky(h)). Similarly Kv(h,) — Ky (h)
and H(W, Kv(hs)) —» H(W, Kv(h)). Hence

H(VV, Ku(h) - Kv(h)) = lirran(W’ I\"U(hn) — Kv(hn))
= km(Ku(hn) = Kv(hn)) = Ku(h) — Kv(h). 0

Proposition 7.2. Let U,V € % . For W € {U,V}, suppose that:

1. #(W) is a linear sublattice of Z(W), containing the constants and dense in
C(W)s;
2. Kw: ZW) - P(W) — P(W) is a map with (*).
Then there exist unique extensions of Ky to #(W), that have the same property.
The p and q needed for the extensions are the same as for the original map.
Furthermore, if Ky and Ky have property (x*), then so do the extensions.
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Proof. (Existence) Let W € {U,V}. Consider the space of pairs (%, K),
where K is a map with the desired properties on a linear sublattice Z of Z(W)s.
Define an order on this space by (Z,K) > (%Z',K') if and only if Z D #' and
K=K on #'.

(Uniqueness) Let W € {U,V} and K; and K, be two extensions of Kw to
Z(W ). Consider the space of linear sublattices # of #(W), on which K; and
K, coincide. Define an order on this space by inverse inclusion.

(+*): Let W = U UV. Consider the space of linear sublattices Z of Z(W )
on which the extensions satisfy (xx). Define an order on this space by inverse
inclusion.

In each of these cases, it is easy to check that the space is inductively ordered.
Hence, by Zorn’s lemma, there exists a maximal element. Using 7.1 we show
that the Z of this maximal element is closed for increasing sequences. Hence
R=BW).o

Now we must introduce some notions and notations of [17]. Z is the same
sheaf as we defined at the end of Section 4, i.e. it is the sheaf of local differences
of bounded continuous superharmonic functions. Furthermore, it is assumed that
1 € Z and that there is a (linear) sheaf homomorphism o of Z into the sheaf .Z
of signed Radon-measures on X such that o(f) >0 ifand only if f € #*NC. o
is called a measure representation. Furthermore, .#, is the sheaf Radon-measures
that are local images of ¢ and for any U € % we set Mpc(U) = ou(P(U) —

A semilinear perturbation in the sense of Maeda is defined as a sheaf morphism

F of # to #, such that for all U € % we have
1. F(0) e #pc(U);
2. for all M > 0, there exists a u € Apc(U)
such that for all f > g, |f|< M, |g| <M
we have: (f —g)u > Fu(f) — Fu(g) = (9 — fp.

Lemma 7.3. Let F be a semilinear perturbation in the sense of Maeda. For
U € % there is a unique map Ky: Z(U)y, — P(U) — P(U) such that for all
f € ZWU), we have: Ky(f) = q & o(q) = F(f). This map has the following
properties:
1. For all M > 0, there exist a p € Z(U),
such that for all f > g, |f|< M, |g| <M,
we have: (f —g)-p> Ku(f) — Ku(g) > 0.
2. fV U, then Ky(f) — Kv(f) € (V).

(See [7, p. 18] for first appearance of Ky in this context.)

Proof. Take f € #Z(U)y. From [17, Lemma 2.1] we know there is a ¢ €
P(U) — P(U) such that F(f) = o(q) on U. Now suppose there is a ¢' €
P(U) — P(U) with the same property. Then (g —¢') = 0 and hence ¢ —¢' €
HUYNP(U)— PU). Hence ¢ = ¢' and Ky is well defined on Z(U).
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1: Take M > 0. Then there is a p € ZP(U) such that for all f, g € Z(U)
with —M < f < g < M wehave 0 < F(f)— F(g9) <(f —g)o(p). Hence

o(0) < o(Ku(f) — Ku(9)) < o((f—9)-p)

and so we get 0 < Ky(f) — Ku(g) <(f—g)-p.

2: ov(Ku(f)) = ov(Ku(f)) = Fu(f) = Fv(f) = ov(Kv(f)) . o

Lemma 7.4. Suppose for all U € % there is a map Ky: Z(U)y, —» P(U) —
P(U) such that

1. For all M > 0, there exist a p € P(U),
such that for all f > g, |f|< M, |g| <M,
we have: (f —g)-p> Ku(f) — Ku(g) > 0.

2. fV U, then Ky(f)— Kv(f) € 52(V).

Then Fy(f) = JU(KU(f)) defines a semilinear perturbation in the sense of
Maeda.

Proof. Let V€ U € % and f € Z(U)y. Thensince Ky(f)—Kvy(f) € (V)

we have

Fy(f) = ov(Kv(f)) = ov(Ku(f)) = ou(Ku(f)) = Fu(f)

on V. So F is a sheaf morphism on Z.
Let U € % . Then evidently F(0) € .#pc(U). Now take f, g € Z(U) with
f =g and |f|,|g| <M. Then

ou((f —g)-p) = ou(Ku(f) — Ku(g)) > ou(0).

Hence (f —g)ou(p) > Fu(f) — Fu(g) > 0. Since p only depends on M (and U),
F is a semilinear perturbation in the sense of Maeda. o

Theorem 7.5. Every positive semilinear perturbation is a perturbation in
the sense of Maeda. Every perturbation in the sense of Maeda can be uniquely
extended to a positive semilinear perturbation.

The proof follows from 7.3, 7.4 and 7.2. o

Now it is easy to check that the sheaf of hyperharmonic functions considered
in [17)] is just So*(0)N C.
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