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Abstract. The paper deals with freely quasiconformal and coarsely quasihyperbolic maps

between domains in Banach spaces. New characterizations for the free quasiconformality are given.

The correspondence of the boundary components is studied.

1. Introduction

This paper is continuation to [Vä1] and [Vär]. \Me assume that the reader
is familiar with these papers. They will be cited as I and II. For example, I.2.5
means the result 2.5 of. [Vä, ].

We shall use the notation and terminology of I and II. In particular, E and E'
will be real Banach spaces of dimension at least 2, and G c E and G' C .E' will
be domains. Whenever a statement involves the quasihyperbolic metric lc : lec

of G or the distance 6(c) : d(x,1G) , we shall tacitly assume rhat G I E .

Suppose that /: G --+ G' is a homeomorphism with G * E, G' + E' . In
lI.4.L4 we gave the following quantitative implications:

M-qH+ 9-FQC * g-solid + (M,C)-CQH.

Here M > 7, C 2 0, and rp: [0, m) --+ [0, m) is a homeomorphism with rp(f) > t.
We recall that QH : quasihyperbolic, FQC : freely quasiconformal and CQH :
coarsely quasihyperbolic. The main object of this paper will be the class of CQH
maps. We recall that a homeomorphism /: G'- G' is (M,C)-CQH if

(k(",y) - C)lu < k'(f *, f v) < Mk(r,y) + C

for all fr, U € G ,, where k _ kc and lct _ kc,
(M,,0) -CQH. The definitions of the other classes

be recalled in 2.18.

In Section 2 we analyze the concept of CQH maps and also obtain new char-
acterizations for FQC maps. Section 3 deals with the boundary correspondence
and the cluster sets of CQH maps. The diference between the cases dim.E < oo

and dim E : oo is essential but less striking than in the case of arbitrary homeo-

morphisms. An example in a function space is given in Section 4.

I thank again Pekka Alestalo, Jouni Luukkainen and Olli Martio for useful
discussions.

. The map f is M -QH if it is

were given in I .3.4, and they will
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2. CQH maps

2.1. Introduction to Section 2. In I.3.8 we characterized the solid maps in
terms of relativity. It turns out that the corresponding result for CQH maps is
false in general but true for a large class of domains, called natural domarns. All
finite-dimensional domains and all uniform domains are natural. We also show
that quasimöbius maps relative to the boundary of natural domains are CQH.
We next show that fully (M, C)-CQH maps axe precisely the FQC maps a,nd also
obtain the following simple geometric characterization for FQC maps: There is
M>0suchthat

dUA(r,")) < Md(fB(n,r), af B@,2r))

for each c e G and r ( d(r,?G)12 and such thai /-t satisfies the same condition.
We recall from II.6.8 that the relative distance of points n,U € G I E is

r c(n, y)_ ,l*, - 
'-1,(r) 

^ 
6(sD'

where as always 6(r) : d(x,?G).
Each domairL G * E with its QH metric k is unbounded and c-quasiconvex

for each c ) 1. Hence II.4.8 gives almost directly the following result:

2.2. Theorem. -Fbr a homeomorphism /: G + G' , the following conditions
are quantit atively equivalent :

(1) f is (M,C)-CQH.
(2) There are t12 0 and Mr ) 1 such that

whenever n,U € G and k(*,y) ) fr.

k(*, Y)

k' (f *, fv)

(to
(fo

implies k' (f *, f y) S Mo,

implies k(*, y) S Ms.

Proof. Since each domain is unbounded and c-quasiconvex in the QH metric
for every c ) 1, the equivalence of (1) and (3) follows readily from II.4.8. Further-
more, (1) implies (2) with tr : 2C, Mt - 2M . Finally assume that (2) holds.
lf. k'(fa,fy) >_ t1, then k(*,v) ( t1 or k(x,y)lM1 l lct(fu,fy). I" both cases
k(*,y) < Mlkt(fa,/y). Hence both / and /-r satisfy the condition (2) of II. .8
in the QH metric. Consequently they are C-coarsely M-Lipschitz wifh (M,C)
depending on (M1,t1) and we obtain (1). o
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2.3. Theorem. Supposethat amap f: G -- G' is C-coarsely M-Lipschitz
in the QH metric. Then there is an increasing function 0: [0, 1) -+ [0, m) , depend-
ing only on (M,C), such that

(1)

whenever l* - Vl

(2)

W1r6'(f*,fv)<o(#)
< 6(r), and

rG,(f *, f y) < 0(r"(*,y))

whenever r6(a,y) < 7.

Proof. Observe that 0(l) is not required to tend to zero as t --+ 0. Assume
that fy - *l: t6(r) with 0 < i < L. Then I.2.2 implies k(r, y) StlG - l) and

Iog16, (f ",fy) l lr'(f *,fy) 3 Mk(x,y) + C < Mtl0 -t) + C.

This proves (1), and (2) is a direct corollary. o

2.4. Example. If f : G --+ G' is an (M,C)-CQH homeomorphism, both /
and /-1 satisfy the conditions of 2.3. The converse is not true as is seen from the
following example; cf.. L4.72.

Let E be a Hilbert space with an orthonormal base (ei);62.W" consider the
broken line

,4:u{fei-t,ei: j eZ},
and for r :1120, the broken tubes

D: B(A,r), G: B(A,2r).

Supposethat /: G ---+G isahomeomorphismwith / lG\D:id. Since / lA
is rather arbitrary, / need not be CQH. However, we show that it satisfies the
condition (1) of 2.3.

Write 74 : d(G) ( oo and observe that 6(c) ) r for x e D. Suppose that
a,,U eG with l, -yl:t6(r), 0 ( t < 1. If z € D, then

6'(f") r r

lf x (D and y e D, then 6(r) > 6(y) - ly - "l) r - t6(a),which implies

6'(l*) : 6(r) r- :-,LIL
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and hence
lf*-fvl <M(\+t)

6'(f *) -: r
Finally if. x (D and y 4 D, then

lf* - lvl l, - yl-i(ril: J6;: ''

Hence the condition (1) of 2.3 is true with the constant function 0(t) : 2M lr . Of
course, /-1 satisfies the same condition.

We next introduce the class of natural domains and prove in 2.10 a converse
of 2.3 for these domains.

2.5. Naturaldomains. Supposethat 0 * ACG + E. We write

,c(A): sup{rc(r ,y) : n € A,a e A}, ,-c(A) : #q
The number f 6(A) was written as 16(,4,) and called the relative size of ,a in [TV].
However, these numbers are not essentially different, since we always have

(2.6) ,o(A) <rc(A) < 216(A).

The first inequality is clear. To prove the second one, let a,b,c € A. Then

lg;E < lor;,"1 + 1"";'ål .-r6(a,c) + r6(c,b) < 216(A),
6(") i 6(") 6(") j

a^nd hence rc(A) < 216(A).
Let rlt: [0, *) --+ [0, m) be an increasing function, but we do not require that

,h(0):0. We say that a domain G + E is tf.t-natural if either G: E or

kc(A) 1r1,(rc@))

for every nonempty connected set A C G with ,c(A) < oo. Here k6(,4) is the
QH diameter of. A. A domain is called natural if it is ry'-natural for some ry'.

The broken tube G of.2.4is not a natural domain, since we have k6(r4,) : 6,
,c(A) < Ml2r ( m for the broken line .4. However, the next results show that
the class of natural domains is fairly large:

2.7. Theorem. Suppose that dim.E : Tt. 1oo. ?åen each domain in E is
tf; -natural with rl: depending only on n.

Proof. There is a rr6-bilipschitz map of E onto Rn ; cf.I.6.1. Hence we may
assume that E : Rn. The result follows from [TV, 6.9] or from [Vu, 2.18]. o

Jussi Väisälä
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2.8. Theorem. A QH ry' -uniform domainis tfs-natural. A c-uniform domain
is rfi -natural with $ : th".

Proof. The first part follows directly from the definition of QH ry'-uniformity
in II.6.8. The second part follows from II.6.16. o

2.9. Corollary. A convex domain is rf; -natural with rl:Q) : t . o

2.1O. Theorem. Suppose that G * E, G' + E', that G' is tf;-natural and
that f:G-G' isacontinuousmap. Suppose alsothat 0(to 11, Ms)0,artd
that

lf*-fyl<Ms6'(fr)
whenever n,A € G and l*-yl< Js6(o) . Then f is C -coarsely M -Lipschitz in the

QHmetrics of G andGt. Moreover, M andC dependonlyonu:(to,Mo,rlr).

Proof. By II.4.8 it suffices to find M : M(u) such that k(a,b) < tol6
implies lr'(fo,fb) < M. Assume that o,b e G with k(a,b) < tol6 and write
A:B(o,ts6(a)ft). Since k(a,b) < 1., I.2.5 yields

q;Jl. <2t' ' ts

Ö(o) c(o' Ö) < 5:
and hence a,b e A. Thus it suffices to find an estimate k'(f A) < M. For each
pairr,yE-Awehave

l* - yl - 2ts6(a)13 2to .1 t
61,;- - a{"; -1*^ - B-10 - os'

Hence r6,(fr,fV) 3 M6, which implies ,c,(f A) 3 Mo. Since G' is t!-natural,
this yields k'(f A) 3rl,(Mo): M(u). a

2.11. Corollary. Suppose that G + E, G' + E', that G and Gt tre lb-
natural andthat f: G --+ G' is ahomeomorpåism. Suppose also that 0 ( ts ( 1,
Mo ) 0, and that
(1) l* - yl < f66(r) implies lf , - fvl < Ms6'(f r),
(2) lf , - fyl < ts6'(f r) implies l, - vl ! Ms6(r).
Then f is (M,C)-CQH with M,C depending only on u : (ts,Ms,$). o

2.12. CQH and relative quasimöbius. Recall from I.5.18 that every QM (:
quasimöbius) homeomorphism f : G --+ G' is FQC. The converse is true for uniform
domains by II.7.16. Analogously, we proved in II.7.9 that a CQH map f ; G '--+ Gt
between uniform domains can be extended to a homeomorphism j:G -, G' ,

which is QM rel äG. The relatively QM maps were defined in II.5.2. It is natural
to ask whether QM rel äG implies CQH. The answer is negative, as is easily seen

from the example in 2.4. ln II.7.22 we showed that the answer is positive if the
domains G and G' are QH uniform. I.2.17 we shall extend this result to all
natural domains and hence to all domains in 8". Before that we prove the QM
invariance of natural domains.
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2.L3. Lemma.
Then

Jussi Vdisålå

Let "(*)_ *ll*l|2, and let G be a domain with 0 e G.

for aJI a,b e G.

Proof. This was proved in Case L of the proof of II.6.25. In fact, the constant
18 could be replaced by 9 with a more careful choice of the point c. o

2.L4. Lernma. Supposethat f:G --.G' isq-QMrel 0G andthat fG: G'.
Suppose alsothat a,beG with r6(a,ö) <r. Then r6,(fa,fb) Sp(t,ri <*.

Proof. If / is the inversion u, the result follows from 2.13. In the general
case we use auxiliary inversions and translations to reduce the situation to the
case where q e 0G and /(m): oo. Forgetting the point oo, / is then ?-QS ret
0G.

We may assume that 6'(/o) < 6'(fb). Choose z e 0G such that lf "- f ,l <
26'(fa). Then

16, (f a, fb) : rtfr# 
= 

r(, . WA)
< r(, * r(H)) 

= 
r(, + z(r . H))

< 2(t + ry(1 + r)). o

2.L5. Lernma. Suppose that f: G -- G' is an ?-QM homeomorphism and
that G is tft -natural. Then Gt is tl4 -natural with $1 depending only on ,b *rd ,l .

Proof. Let A' C G' be a connected set with ,c,(A') ( t, and write ,4. :
f-'A'. Since "f-' i. ?'-QM with 4'(r): ?-1(r-1)-1 and since absolute ?-QM
implies ?-QM rel 0G for the extension j,G -- G',2.14 gives an estimate
,c(A) < p(t,n). Hence k(A) < rb(p(t,rt)). Now / is cp-FQC with s - e,
by I.5.18. Thus

k' (A') S e(,1, (p(t,?))) : rl,t(t). "
2.L6. Question. Is 2.15 true for QM maps rel 0G?

2.L7. Theorem. Suppose that f :G --G' is 7-QM rel 0G with fG : G,
andthat G and G' a,re tft-naturd. Then f is (M,C)-CQH with M,C depending
only on n and lb.

Proof. Performing auxiliary inversions and translations and using 2.15 we may
assumethat m € äG and "f(*): m. Then / is ?-QS rel 0G. By symmetry
and by 2.17, it suffi.ces to find Mo - Mo(n,r/) such that

lf*-fylSMo6'(f*)



whenever n,U € G with 21" - yl < 6(").
So assume that 2lc - al < 6(c). Choose z e. 0G with lf , - lrl < 26'(f r).

Using the relative r7-quasisymmetry of / we obtain

W srffis z(r .m) 
=r(r 

+,, (#»
< ,(, +,r(r . l=;i)) < 2(1 + ,tl/z)) : Mo. o

2.78. FQC maps. We recall some terminology of Section 3 of I. Let g: [0, *)
* [0,m) be a growth function, that is, a homeomorphism with p(f) > f. A
homeomorphism /: G -- Gt is g-semisolid if
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t'(f ,, f v) 3 p(k(*,y))

for all a,A e G, and g-solid if / and /-1 satisfy this condition. For a domain
D C G, we let fo: D - f D denote the restriction of /. The homeomorphism

.f h* fully a given property if /5r has this property for each proper subdomain
D C G. This definition slightly differs from that given in I.3.4, where we asked
that also / has this property in the case G * E, G' + E' . However, it is easy
to see that these definitions are equivalent for all classes of maps considered in I
a^nd II; only the QHQS maps need a special argument. For example, assume that
G * E, G' + E', and that f:G -- G' is fully rp-semisolid. We show that /
is g-semisolid. Let a,b e G. Choose a sequence (2") in G \ {",å} such that
6(c") -* 0. Write D,: G \ {r"}. Then

k'(f o,/ä) < lclo-(f a,fb) < v(ko.(a,å)) -* e(*@,t))

asn-+@.
A fully g-solid homeomorphism is called 9-FQC. It follows that a 9-FQC

homeomorphism is fully (M,C)-CQH with (M,C) depending only on g. We
shall prove the converse in 2.27. Simultaneously we shall give a simple explicit
characterization for free quasiconformality. We first give the one-sided version:

2.19. Theorem. Forahomeomorpfusm fz G + Gt,thefollowingconditions
are quantit at ively equivalent :

(1) f is fully g-semisolid.
(2) f is fully C -coarsely M -Lipschitz in the QH metric.
(3) ?åere is M > 0 sucå tåat

a(fB (*, r)) < M d(fB (*, r), o f B (x, 2r))

whenever B(a,2r) c G.
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Proof. We show that (1) + (2) + (3) + (1). The implication (1) + (2)
follows from II.4.8. Indeed, the proof shows that we can choose an arbitrary C > 0
and then M : C/p-l(C); cf. I1.4.t4.

(2) + (3): Assume that B(a,2r): D C G and write B : B(u,r). With
the notation of 2.5 we must find Mo : Mo(M,C) such that

(2.20) ryo(fE) S Mo.

The basic inequalities 1.2.2 of. the QH metric yield

tcD(B) < z, kyo(fB) > logrJD([B).

Using these, (2), and (2.6) we obtain (2.20) with Mo - 2"2M*c .

(3) + (1): It suffices to show that / is rp-semisolid with p: gM. By I.3.7,
it suffices to show that lr - yl < 6(r)lt6 implies

lf* - fyl .,1@ -vl|
6'(f *) = "\ 61r; /

with some function 0 : 0u: [0, 1/16] --+ [0, oo) such that eft) --+ 0 as f ---+ 0.
Suppose that r,y e G with lc -yl: t|(r),0 <, < 1.11.6. Let n be the

unique integer with 2-"-l < t < 2-"; then n ) 4. For j : 0,...,n, the balls
Di: B(*,zit6(a)) lie in G. Choose a point z € 7Gt with l/z - zl <26'(fa).
The condition (3) implies that d(fD1,)G') ) 0 for j < n - 1. Hence for these
j we can choose the last point yi of the line segment lf*,2) in 0fD1. Set
Å : ly, - /rl. Then

) < lyi-, - f"l < Mlyl-r - ail

for all 2 < j < n - 1. After summation we get

(n - 2\, < Mlf* - zl < 2M6' (fr).

On the other hand,

lf, - fyl < d(fDo) < Md(fDo,af Dt) < M^.

Hence
lfr-fyl .2M'6'(f*) - n -2'

Since 2-"-r 1t, we obtain

I los( 1 lt)

Jussi Vä,isålå
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A los( L lt)

Combining these inequalities yields the desired estimate

40r

lf " - fyl - BM' log2 _-i(fr) = L"s(Vr) '"

2.2L. Corollary. For ahomeomorphism f : G -- Gt , thefollowingconditions
a,re quantitatively equivalent :

(1) / is rp-FQC,
(2) f isfully (M,C)-CQH,
(3) f *rd f -r satisfy (3) of 2.L9. o

3. Boundary behavior

3.1. Introduction to Section 3. Suppose that /: G --. E' is a map. We recall
that the closures and boundaries of sets in E are always taken in the extended
.pu,"" å : EU {m}. The cluster set of f at apoint o e äG is defined as

clus (o,.f) : n cl flU n Gl'

where U runs through all neighborhoods of a in it . lt " f x, it suffices to take
the balls U : B(a,r), r ) 0; for o: oo we can take the sets U :l'B(r) where C

denotes the complement in .8. Equivalently, a point y € E' is in clus (o, /) if and
only if there is a sequence (ci) in G such that ai ---+ a and frj - y. A point y
is an asymptotic value of / at o if there is an endcut 1 of G at a, cf. II.3.6, such
that fa --+ y as n --+ ct on 7. We let asy(a,/) denote the set of all asymptotic
values of / at o. Then obviously

asy (", f ) C clus (o, f).

We shall only consider homeomorphisms f : G + G' . Then clearly

clus (o, f) c 0G'

for all a e 0G. In the finite-dimensional case the cluster set is never empty
since .E' is compact. In the infinite-dimensional case the situation is completely
different. For example, using the example of Klee [KU it is easy to construct
a homeomorphism f : B(1) --+ B(1) of the unit ball in a separable Hilbert space
such that f I 5(112): id and such that / interchanges the domains Dr : 8(712)
alnd D2: B(1) \E(tlz). Such a map cannot be CQH, since k(D1) < oo and
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lr(Dr): oo. In fact, since B(1) is a uniform domain, a CQH map /: B(1) -r B(1)
extends to a homeomorphism of E(t) by IL7.9. On the other hand, we constructed
in I.4.12 a QH map of a half space onto a broken tube with clus(a, f) :0 at the
points c:0,oo.

We conjecture that if / is CQH, then clus (", f) # 0 for some a € 0G. We
show in 3.2 that the conjecture is true if G or G' is uniform. Next we consider
the correspondence of the boundary components in a CQH map f : G -- Gt . Let
z(G) denote the number of components of 0G. h the finite-dimensional case we
have z(G) : r(G') for topological reasons. We show that z(G) : u(G') also in
the general case provided that the boundary components can be separated by a
set of finite QH diameter. Without this condition, however, one can find a QH
map /: G --+ G' such that 0G is connected while äG' is not.

3.2. Theorem. Suppose that f : G --. G' is CQH and that Gt is a uniform
domain. Then there is a set A c 0G such that A is dense in 0G and such that
asy (o, f) * 0 for every a € A.

Proof. By II.3.10, thereis ACAG with Z:0G suchthateach o € A is
the endpoint of an endcut 7, which is a neargeodesic in G. By II.4.15, f1o is a
solid arc in G'. Since G' is uniform, it follows from II.6.28 that f 1o is an endcut
of Gt. Thus the point in Tl"n7G' is an asymptotic value of f at a. o

3.3. Lemma. Suppose that G I E is a domain and that F is closed in b
with F CG. If k@F) ( c( a, then k(F) < c1(c) < m.

Proof. Let a,b e F. Suppose first that [a,ö] C F. Integration along [o,ä]
gives

b(a,b)=##=ffA
Since F is bounded, we have d(F): d(1F). Since d@,AG): d(0F,0G), we
obtain by (2.6) ar,dI.2.2

k(a,b) <FG(AF) < 2(e" - 1).

Next assume that [",b] / F. Choose at,bL e fa,blnlF such that lo,or) C F,
[h,ä] c .F'. Then

k(a,b) I k(a,or) * k(ar, är) * &(år, b) < 4(e" - 1) * c.

Hence we can choose q :4(e" - 1) * c. o

3.4. Remark. It is natural to ask whether 3.2 holds with c1 : 6. The
following example shows that this is not the case: Let E : A2 and let n be a
positiveinteger. Write a : 2tr/n, r : sin(o/2) and xi : siia for j : 0,...,n-L.
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Then lc;-r - rjl:2r. We choose n so large that r < e-3n. Next choose

l? > 1 + e" /r and write

Then .F' is compact and connected in G. Writing
n-1

C: U S(xi,r)
,=0

we have 0F:51p1U C. Straightforward arguments based onl.2.2 show that
1

k(r) > 2tog = + log(,8 - 1).

Using suitable arcs joining points h 0F it is possible to show that
1

k(AF) 
= 

t"s ; f log(.R - 1) * 3zr.

Since r < e-3n, we see that å(ä.F') < k(f).
However, the bound in 3.3 is probably far from ihe best possible. Indeed, I

conjecture that one can choose ct:2c.
3.5. Phragmdn-Brouwer properties. It is well known that for n ) 2, the n-

sphere ,5" has the Phragmdn-Brouwer properties listed in [Wi, p. 471 or in [HY,
p. 359]. It seems to be less known that several other spaces have these properties
as well. We let Hn6) denote the integral singular homology groups of a space

X. The key result is the following:

3.6. Theorem. Let X be a topological space with H{X) : 0. Suppose
that U and V are pathwise connected open sets in X with U U V = X . Then
U nV is pathwise connected.

Proof. We use the fact that a pair of points a,b ca,n be joined by a path in
a set A C X if and only if the singular O-cycle a - å represents the zero class in
the reduced homology group Ho(A). Since U and V are open, there is an exact
reduced Mayer-Vietoris sequence

Ho(U) a Ho(V) J- nolU n V) +- Hr(x).

Let a,b e UnV, and let a e fro(t|n Iz) be the element represented by a-ö. Then
a is mapped to zero by the homomorphisms induced by the inclusions U fiV + U
and U fiV + I/. Hence oa:0. Since ff1(X) : 0, it follows from exactness that
o : 0. Hence o and ö can be joined by a path in U iV . o

A - {rrr. r. ,fin-l},

G- R2\A,
n-L

F-B(E)\U B@i,r).
J:0
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3.7. Theorem. The one-point extension E of a Banach space E with
dimE ) 2 has all the Phragmön-Brouwer properties.

Proof. First observe that å is simply connected. Indeed, if dim E : n I @ t
E is homeomorphic to ,S". If dimE: @r E is noncompact. Hence each loop
o: ^91 - E is nonsurjective and can therefore be deformed to the constant loop oo.

It follows that ä1(E):0. Moreover, .E is connected and locally pathwise
connected. By 3.6, E has the Phragmdn*Brouwer property [Wi, Property I',
p. 47]. Since .E is metrizable, the theorem follows from [Wi, II.4.12]. o

3.8. IIoIes. Consideradomain GcE. Acomponentof CG:å\G issaid
to be a åole of G. The number of all holes of G is written as z(G). Then z(G)
is either a positive integer or oo. By the following result, z(G) is also the number
of the boundary components of G:

3.9. Theorem. If C is a hole of G, then
(1) 0C:C flG: C nAG *0,
(2) GUC isconnected,
(3) CC i" connected,
(4) C contains exactly one component of 0G, namely C nG.

Proof. Clearly
Cn1G:CfiGcACl0.

Suppose that there is o € AC \ (C n G). Then o has a connected neighborhood
U cCC. Now CU t/ is a connected subset of CG and strictly larger than C.
This is impossible since C is a hole, and (1) follows.

The property (2) is an obvious consequence of (1). Since CC ir the union of
the sets G U C' over all holes C' f C , we obtain (3).

Each component of. 0G is contained in a hole of G. To prove (4) it suffices
to show that C n G is connected. By (3), the set Gr : EC is a domain with the
single hole C. Using (1) twice we get

By 3.7, h

cnG-0c-c)7Gt-)Gt.

has the Brouwer property [Wi, p. 471. Hence )Gr is connected. o

3.10. Lemma. Supposethat G C E isadomainandthat F C E isaclosed
set whieh is tåe union of a family of holes of G. Suppose aJso that U is a domain
in b containing F. Then tl \ F is connected.

Proof. The open set 7 : C-F' is the union of sets of the form G U C, where
the sets C are holes of G. From 3.9 (2) it follows that V is connected. Moreover,
UUV: .8. Since U\.F : U nV , the lemma follows from the Phragm6n-Brouwer
property of. b, given in 3.6 and 3.7. o



Free quasiconformality in Banach spaces III 405

3.L1. Corollary. If U is a domain in
domain. tr

E with AU C G, then tl n G js a

3.12. Deflnition. A set F C E separates the sets .4 and B if these sets
are contained in different components of CF.

3.13. Theorem. Supposethat f:G-G'
pair of holes of G can be separated by a set in

is CQH. Srppose also that each
G of finite QH diameter. Then

Proof. Assume lhat u(G'): s ( z(G). Choose holes Cr,. . . ,Cs*r of G. For
each pair 1 S i < j < s *L we choose a set fi; C G with k@;i) ( oo separating
C; and Ci in E. Taking closures we may assume that each 4;i is closed in .8. Let
f' be the union of the sets F;i. Then F is closed in E, &(F) ( oo, and the holes
Cr,...tCs*t lie in different components of C-F'. Sirr"" / is CQH, k'(f F) ( og,
which implies that /.F, is bounded and d(f F,AG') > 0. Thus f F is closed in E.

Let Q be a hole of Gt , and let Vq be the Q-component of C/f'. Then
OVq C f F C G'. By 3.1.1, the open set Wq : Ve i G' is connected. Hence

f-'We is a domain in G \ F, and thus contained in a component of C.F.. Since
u(Gt): s, there is a component (J of Cf' which contains a hole Cr but does not
meet f-rWg for any hole Q of Gt .

Since 0U C f', the set D :U i G is a domain by 3.11. Lel U' be the /D-
component otCTf .If.U':Ve for somehole Q of. Gt, then D cf-rWq, which
is impossible. Hence [J' CG'. Moreover,A' CU'U f F CGt. Since 07' C f F,
wehave k'(Aet)<k'(f F) ( oo. By 3.3 k'(A' ) < m, andhence k'(fD) ( oo,
which yields k(D) < oo . This gives a contradiction, since d(D, AG) : 0 . o

3.L4. Remarks. 1. In the finite-dimensional
theorem is always true.

2. We made use of the CQH property in the form
Hence the theorem holds for all homeomorphisms with

case the condition of the

this property.

3.15. Example. We construct a

connected but 0G' is not. Let E be a
Möbius map and the map given in T.4.72

B( 1) onto a broken tube Dt such that
e € 7B(L). Set G- B(1) \ l-","1 and

f:G->G'. Now "(G):1, r(G'):2.

QH map f : G G' such that 0G is
separable Hilbert space. Combining a
we obtain a QH map g of the unit ball
clus (", g) : clus (- e, g) - A for some

G' _ f G. Then g defines a QH map

3.16. Quesfion. Does there exist a CQH map of a ball onto a domain with
nonconnected boundary?
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4. An example

4.L. Introduction to Section 4. The most interesting examples of QH maps
in infinite-dimensional spaces considered so far in these papers are the map onto
a tube in I.4.1,1 and onto a broken tube in I.4.L2. Moreover, the radial power map
has been considered in I.4.10 and in I.6.5. In this section we give a variation of
the tube map in a function space.

4.2. L-formulas. Suppose that f : G --+.8' is a continuous map. Exception-
ally, E' is allowed to be 1-dimensional. Recall from I.4.2 the notation

l{., _ t-lL(*,il: limsup !#.
y-u lY - nl

The following formulas are easily verified:

(1)

(2)

(3)

(4)

They are valid whenever they make sense and contain no product of the form 0.oo
or oo.0. In (3), one of the functions "f,9 must be real-valued.

4.3, A function space. Suppose that 7 is a compact Hausdorff space contain-
ing at least two points. Let E : C(T) be the space of all continuous real-valued
functions on 7. Then .E is a Banach space with the norm

For c € .E we let M(x) and rn(c) denote the maximum and minimum of r, and
we write oscir : M(*) - *(r).

4.4. The map f . The sets

G: {r: rn(r) > 0}, G' : {*: oscr < 1}

are clearly domains in E. Alternatively

G':{*:d(r,A)<tl?},

where A is the line of all constant functions. We define a map f : G -+ G' by

f(*) : 
-, 

*tosM(x): ffi * log llcll,

llrll -sup{lr(r)l it e r}.
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or more precisely,

f (*)(t) : ffi* logM(z).

To verify that /(r) is in G' observe that

u(f (")) - 1 + rosM(x), *(f (*)) : m(x)lM(c) + Iog M(*),

and hence
osc/(c) - 1- m(a)lM(a) <L.

4.5. Theorem. Tåe map f : G ---+ Gt defined in 4.4 is a 6-QH homeomor-
phism.

Proof. We first define a map g: G' --+ E by

s@) : eM(v)-r (y _ tt(y) + t).

Since
*(s@)) : 

"M(u)-r71 - oscy) > o,

G. It is easy to verify that / o 9 : id and g o "f 
: id. Since / and g are

continuous, / is a homeomorphism with f -' : g.
g(y) €
clearly

It is easy to see that

0G:{*:m(r)-0}U{*}, 0G' - {r: oscr - 1} U {*}.
Furthermore,

(4.6) 6(r) - *(*), 6'(y)- (1 - osc y)12

for c € G, A € G'. The first equality is obvious, and we prove the second one.
Let, y € G' and write a - 1 -oscy ) 0. Assume that z e 0G',, I *. Since
oscz :1, we have either M(r) > tw(y) + afZ or *(r) < *@) - af2. Hence

lly - ,ll > o, 12, which implies 6' (y) > a 12 . To prove that 6'(y) < o, 12 we construct
z e 0G' with llz-yll : al2.lf y is a constant function y(t): c, we use Uryson's
lemma to find z e E wil,h M(z) : c*712,, m(z) : c-1/2. Then z e )Gt ard
ll, - yll:112: a,12. If y is not constant, let

v: lm(y),,tut(v)) - l*(y) - o,l2,M(y) + otl2)

be the affine increasing homeomorphism. Then z - uoU e AG' , arrd llz-yll : a 12.
To prove that /: G --. G' is 6-Lipschitz in the QH metric it suffces to show,

by I.4.6, that

(4.7) L(*, f)6(r) < 66'(f *)
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at an arbitrary point x e G. We obviously have L(r,M) ( 1 and ,D(z,id) : l.
Writing h.(x) : tlM(r) we obtain from the .L-formulas in 4.2

L(r,h) < 1.lM(r)2,

L(r, f) I L(r,h)M(r) | h(x)L(r,id) + .[(r, u)lu(x) < TlM(r).

Since (4.6) gives

6,(fr\- 1-osc/(o) : ,"(!),.
"\l*)- 2 -2M(x),

we obtain (4.7).
It remains to show that 9 is 6-Lipschitz in the QH metric. Let y € G'. Then

0 <y - M(y)+ 1 < 1. Using the formulasof.4.2 we obtain

L(v,s) - eM(v)-lL(v,M)(v - u(il + t) + eM(v)-r (z1y,ta; + L(y,M))
1yeM(Y)-t '

By (a.6) we have
6(5il : m(Sy) - emtu)-r (1 - osc y)

and thus
L(y,il6'(il 1\eM(v)-t(1 - osc y)12 : B6(sil12.

Hence g is indeed (3/2)-Lipschitz in the QH metric. o

4.8. Remark. Consider the special case of the example above where 7
consists of two points. Then .E is the plane .R2 with the norm ll"ll : lrllV lr2l,
G is the quarter plane o1 ) 0, x2 ) 0, and G' is the parallel strip lc1 - *rl a L.
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